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Abstract
An analysis of the phase noise in differential and single-
ended ring oscillators using a time-variant model is pre-
sented. An expression for the RMS value of the impulse
sensitivity function (ISF) is derived. A closed-form equa-
tion for phase noise of ring oscillators is calculated and a
lower limit on the phase noise of ring oscillators is shown.
Phase noise measurements of oscillators running up to
5.5GHz are shown to be in good agreement with the the-
ory.

Introduction
Due to their integrated nature, ring oscillators have recently
become an important building block in many digital and
communication systems [1]. They can also be used for some
low-tier RF products.
Recently, there has been some work on modeling the phase
noise in ring oscillators. [2] and [3] develop models for clock
jitter based on time domain treatments of MOS and bipolar
differential ring oscillators, respectively. Reference [4] pro-
poses a frequency domain approach to find the phase noise
based on an LTI model for differential ring oscillators with a
small number of stages.
In this work we present a general framework to calculate the
phase noise of ring oscillators by applying a time-variant
phase noise model [5] to ring oscillators.
Based on this derivation we obtain a lower limit on the phase
noise of ring oscillators in long and short channel regimes.
Good agreement is observed between the predictions and
measurement results of the phase noise of ring oscillators
running up to 5.5GHz.

Brief Review of the Time-Variant Model
In any practical oscillator, there are fluctuations in amplitude
and phase due to internal and external noise. The amplitude
fluctuations are significantly attenuated by the amplitude
limiting mechanism which is present in any practical stable
oscillator and is very strong in ring oscillators. Therefore, we
will focus on phase variation, which is not quenched by such
a restoring mechanism.
The output of an oscillator can be written as

(1)

Being interested in its phase,φ(t), we can treat an oscillator
as a system that converts voltages and currents to phase. As
will be seen shortly, for small perturbations this is a linear
system. It is also a time-variant system no matter how small
we make the perturbations. As an example, consider the arbi-
trary single-ended ring oscillator with a single current source
on one of the nodes, as shown in Fig. 1. Suppose that the cur-
rent source consists of an impulse of current with area∆q (in
coulombs), occurring at timet=τ. This will cause an instan-
taneous change in the voltage of that node which is given by

Vout t( ) A t( ) f ω0t φ t( )+[ ]⋅=

(2)

whereCnode is the effective capacitance on that node at the
time of charge injection. This corresponds to an equivalent
shift in the transition time for small changes in voltage.
Therefore the change in the phase,φ(t), is given by

(3)

where  and  is the voltage swing
across the capacitor. However, the proportionality constant is
time-dependent. This can be visualized by considering two
extreme cases. One case is when the impulse is injected dur-
ing an output transition. This will result in a large phase
shift. As the other extreme case, consider injecting an
impulse while the output is saturated either to supply or
ground. This impulse will have a minimal effect on the phase
of the oscillator, as shown in Fig. 2.
Unlike the amplitude response, once the phase shift is intro-
duced into the oscillator its effect persists indefinitely, since
subsequent transitions are shifted by the same amount. Thus,
the phase response of an oscillator to an impulse is a time
varying step. Also note that as long as the introduced change
in the voltage due to the current impulse is small, the result-
ant phase shift is linearly proportional to the injected charge,
and hence the transfer function from current to phase is lin-
ear. However, the time variant nature of the system does not
disappear even for small perturbations.
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Fig. 1. CMOS inverter chain ring oscillator.
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Fig. 2. Time variance of the phase response.
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symmetry of the rising and falling edges can reduceΓdc and
hence the upconversion of 1/f noise.

Calculation of the ISF for Ring Oscillators
To calculate the phase noise using (5) and (9), one needs to
know the RMS value of the ISF. This can always be done by
finding the ISF through simulation. However in this section,
we obtain a closed-form equation for the RMS value of the
ISF of ring oscillators which makes such simulations unnec-
essary.
To gain insight into the shape of the ISF for ring oscillators,
we calculate the ISF for a group of single-ended CMOS ring
oscillators in which the frequency of oscillation is kept con-
stant (through adjustment of channel length), while the num-
ber of stages is varied from 3 to 15 (odd numbers). To
calculate the ISF, a narrow current pulse is injected into one
of the nodes of the oscillator and the resulting phase shift is
measured a few cycles later. The resulting ISFs are shown in
Fig. 3. As can be seen, increasing the number of stages
reduces the peak value of the ISF. This is because the nor-
malized waveform has a period of 2π, and therefore the tran-
sitions of the normalized waveform become faster for larger
N. Since the sensitivity is inversely proportional to the slope,
the peak of the ISF drops. Also the widths of the lobes of the
ISF decrease asN becomes larger since each transition will
occupy a smaller fraction of the period.
To estimateΓrms, we assume that the ISF is triangular in
shape and that its rising and falling edges are symmetric as
shown in Fig. 4. The ISF has a maximum of , where

 is the maximum slope of the normalized waveformf in
(1). Also the width of the triangles is  and hence
the slope of the sides of the triangles is . ThereforeΓrms
is given by

(10)

Stage delay is proportional to the rise time,i.e.
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We define the unit impulse response of the system as the
amount of phase shift per unit current impulse. Based on the
foregoing argument, we obtains the following time depen-
dent impulse response

(4)

where u(t) is the unit step andΓ(x) is a periodic unitless
function with period2π, which gives the time varying pro-
portionality constant for (3). It is large when a given pertur-
bation causes a large phase shift and small where it has a
small effect [5]. SinceΓ(x) represents the sensitivity of every
point of the waveform to a perturbation,Γ(x) is called the
impulse sensitivity function(ISF).
Knowing the impulse response, we can calculateφ(t) using
the superposition integral

(5)

wherei(t) represents the input noise current injected into the
node of interest. Note that the integration arises from the
closed loop nature of the oscillator. For a white noise current
source, the argument of the second integral of (5),

(6)

has the following power spectrum

(7)

where  represents the single-sideband power spectrum
of the noise current source and  is the root mean square
(RMS) value of the ISF.φ(t) is related toψ(t) through an
ideal integration; therefore, the single sideband phase noise
spectrum for a ring oscillator withN identical stages is

(8)

wheref represents the frequency offset from the carrier. In
the case of multiple noise sources,  represents the total
current noise on each node and is given by the power sum of
individual sources [5].
In the presence of device 1/f noise, the device noise power
spectrum, , has a 1/f region in addition to the white
noise region, where  is the corner frequency between
the two regions.
From (5), it follows that the upconversion of low frequency
noise, such as 1/f noise, is governed by the DC value of the
ISF. The corner frequency between 1/f2 and 1/f3 regions in
the spectrum of the phase noise is called  and is related
to  through the following equation [5]

(9)

whereΓdc is the dc value of the ISF. Since the height of the
positive and negative lobes of the ISF are determined by the
slope of the rising and falling edges of the output waveform,
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Fig. 3. ISF for CMOS inverter chain ring oscillators with different N.
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(11)

where  is the stage delay and  is the proportionality
constant, which is typically close to 1. The period is 2N
times longer than a single stage delay,i.e.

(12)

Combining (10) and (12), we have

(13)

Note that the  dependence ofΓrms is independent of
the value of  and is general. Fig. 5 illustratesΓrms for the
ISF shown in Fig. 4 with plus signs on log-log axes. The
solid line shows the line of , which is obtained
from (13) for . To further verify the dependence of
this result on other parameters, we maintain a fixed channel
length for all the devices in the inverters while the number of
stages is varied, and therefore allow different frequencies of
oscillation. Again, Γrms is calculated and shown in Fig. 5
with circles. We also repeat the first experiment with a differ-
ent power supply (3volts as opposed to 5volts) and the result
is shown with crosses. As can be seen, the values ofΓrms are
almost identical for these three cases. This confirms that
Γrms is primarily a function ofN. This should not be surpris-
ing because as discussed earlier, ISF is a unitless, frequency
and amplitude independent function.
Equation (13) is valid for differential ring oscillators as well.
Figure 6 shows theΓrms for three sets of differential ring
oscillators, with varying number of stages (4, 6, 8, 10, 12, 14
and 16). The first set, shown with plus signs, corresponds to
oscillators, in which the total power dissipation and the drain
voltage swing are kept constant by scaling the tail current
sources and load resistors asN changes. Members of the sec-
ond set of oscillators have a fixed total power dissipation and
fixed load resistors, which results in different swings and is
depicted using circles. The third case is that of a fixed tail
current for each stage and constant load resistors, which is
illustrated using crosses. Again, in spite of the diverse varia-
tions of the frequency and other circuit parameters, the

 dependency ofΓrms and its independence from other
circuit parameters still hold. In the case of a differential ring
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oscillator, , which corresponds to ,
results in a better approximation forΓrms. This is shown
with the solid line in Fig. 6. A similar result can be obtained
for bipolar differential ring oscillators.
Although Γrms decreases as the number of stages increases,
one should not prematurely conclude that the phase noise
can be reduced using a larger number of stages, because the
number of noise sources, as well as their magnitudes, will
also increase, for a given total power dissipation and fre-
quency of oscillation.

Limits on the Phase Noise of Differential Ring Oscillators
For CMOS transistors, the channel noise current density is
given by

(14)

whereµ is the mobility,Cox is the gate oxide capacitance per
unit area,W andL are the channel width and length of the
device,andVGS-VT is the gate voltage overdrive. The coeffi-
cientγ is 2/3 for long channel devices in the saturation region
and about 2.5 for short-channel devices.
For a differential MOS ring oscillator, the total power dissi-
pation is

(15)

whereN is the number of stages,Itail is the tail bias current
of the differential pair, andVdd is the supply voltage. The
frequency of oscillation can be approximated by

(16)

Only the noise of the transistors forming the differential pair
and the load is taken into account. As long as the output
resistance of the transistors in the differential pair is large
compared to the load, the total current noise on each single-
ended node is given by

(17)

where ∆V is the voltage swing across a half circuit and
 for a balanced stage in the long

channel regime and  in the short channel
case, whereEc is the critical field in silicon. The phase noise
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Fig. 5. Γrms vs. number of stages for CMOS inverter chain oscillators.
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due to all 2N noise sources is 2 times the value given by (8).
Using , the lower bound for the phase noise of
a differential MOS ring oscillator is

(18)

A similar analysis can be performed for the inverter-chain
ring oscillators, and it turns out that unlike the differential
case, the phase noise at a given power dissipation and fre-
quency is not a strong function of the number of stages. This
result may be understood as a consequence of the necessary
reduction in the charge swing that is required to accommo-
date a constant frequency of oscillation at a fixed power level
asN increases. At the same time increasing the number of
stages at a given total power dissipation demands a propor-
tional reduction of tail current sources, which will reduce the
swing, and henceqmax, by a factor of .

Measurement Results and Conclusion
Fifteen differential ring oscillators were built in a 0.25µ pro-
cess technology, covering a large span of frequencies up to
5.5GHz. The basic topology of all the ring oscillators in
Table 1. is shown in Fig. 7. All the oscillators, except the one
marked with N/A, have the tuning circuit shown. The resis-
tors are implemented using an undoped polysilicon layer.
The main reason to use poly resistors has been to reduce 1/f
noise upconversion by making the waveform on each node
closer to an ideal RC limited step and hence more symmetri-
cal. The measured phase noise is compared with the pre-
dicted value and the lower limit in Table 1. Equations (8) and
(13) are used to calculate the predicted phase noise and the
limit is obtained from (18). AnEc of 4x106 V/m and aγ of
2.5 is used in all the above calculations. A very good agree-
ment between the predicted and measured values is
observed. It is also noteworthy that the measured and pre-

dicted phase noise is always larger than the limit obtained
from (18).
In a separate experiment, a current-starved single-stage ring
oscillator, which consists of two NMOS and two PMOS
devices in series, is implemented in the same process tech-
nology. The outer NMOS and PMOS control the pull-down
and pull-up currents while the inner devices act as an
inverter. The 1/f3 corner of the phase noise is measured for
different ratios of the pull-up and pull-down currents while
keeping the frequency constant. One can observe a sharp
reduction in the corner frequency at the point of symmetry in
Fig. 8.
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Table 1: Measurement results for differential MOS ring oscillators in a 0.25µm
process technology.
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4 4.2/0.25 2k 1 10 2.81 34% -97.5 -94.9 -95.2

4 8.4/0.25 1k 2 20 4.47 42% -96.0 -94.0 -94.3

4 16.8/0.25 500 4 40 3.89 44% -100.7 -97.0 -97.4

4 33.6/0.25 250 8 80 5.43 25% -100.8 -99.2 -98.5

4 8.4/0.25 2k 1 10 2.87 37% -97.3 -95.9 -93.8

4 16.8/0.25 1k 2 20 3.39 45% -98.8 -97.2 -96.8

4 33.6/0.25 500 4 40 5.33 32% -97.9 -96.5 -95.3

4 16.8/0.25 2k 1 10 1.75 73% -101.6 -97.0 -95.2

4 33.6/0.25 1k 2 20 2.24 58% -102.5 -100.3 -99.0

4 33.6/0.25 2k 1 10 1.27 67% -104.4 -101.6 -100.2

4 67.2/0.25 1k 2 20 1.19 76% -107.9 -102.0 -100.0

4 33.6/0.25 2k 1 10 1.53 N/A -102.7 -98.1 -97.3

6 13.4/0.25 3k 0.67 10 859 58% -106.0 -104.6 -104.3

8 6.7/0.25 4k 0.5 10 731 74% -106.2 -105.7 -106.0

12 4.2/0.25 6k 0.33 10 458 52% -108.5 -108.4 -108.0

Vdd

control

C

bias

Gnd
Fig. 7.A differential ring oscillator.
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Fig. 8.1/f3 corner vs. rise/fall drive ratio in a current starved ring.


