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ABSTRACT

This paper presents a new point of view of oscillator noise, bringing
transparent insight into the phase noise. This work bridges funda-
mental physics of noise and existing oscillator phase noise theories
and reveals the direct correspondence of phase noise and the Ein-
stein relation. The concept of virtual damping is presented utilizing
an ensemble of oscillators as a measure of phase noise. The expla-
nation of the linewidth narrowing through virtual damping results
in a clear de¯nition of loaded and unloaded quality factors of an
oscillator. The validity of this new approach is veri¯ed by excellent
experimental agreement.

1. INTRODUCTION

Oscillator phase noise has been studied from several di®erent an-
gles, ranging from a pure mathematical physics treatment [1] to
CAD-oriented methods [2] [3] and design-oriented approaches [4]
[5], to name a few. The design-oriented approaches have evolved
from a familiar linear time-invariant theory [4] to a more accurate
time-varying theory [5], adding additional insight into the oscillator
design. These theories have helped circuit designers understand the
evolution of noise in oscillators, leading to more accurate phase noise
predictions, and lower noise designs. However, they assume rather
phenomenological standpoints and a more fundamental, yet intu-
itive understanding of the phase noise phenomenon is still needed.
Work in [6] partially addresses the issue but its focus remains on the
practical side of oscillator optimization and hence such fundamental
physical argument is still lacking.

This paper presents a theoretical work with a supporting mea-
surement that ¯lls in the gap between the fundamental physics of
noise and the existing phase noise theories. The work consists of two
main contributions. First, using an ensemble of identical oscillators
as a tool, we derive the concept of virtual damping, which will en-
able us to view oscillators and resonators in a uni¯ed framework. It
will be shown that the virtual damping rate is a fundamental mea-
sure of phase noise which can be veri¯ed experimentally. Second,
we will show that the virtual damping rate can be obtained from
the Einstein relation without resorting to speci¯c circuit parame-
ters. The derivation of the virtual damping rate using this method
will clearly show the true physical meaning of phase noise by iden-
tifying its two essential elements: sensitivity and friction (energy
loss), demonstrating good agreement with the existing phase noise
theories.

In Section 2, we de¯ne the concept of virtual damping and
demonstrate phase noise as its natural outcome using both theo-
retical and experimental treatments. In Section 3, we derive the
virtual damping rate based on physical arguments using the Ein-
stein relation and compare the results with the existing theories for
both time-invariant and time-varying cases. Finally, we calculate
the ratio of the resonator's linewidth to the oscillator's linewidth
using virtual damping in Section 4.

2. VIRTUAL DAMPING

2.1. De¯nition and Qualitative Treatment

The left hand side of Fig. 1 shows a parallel LC resonator with
an e®ective parallel tank resistance, R, representing energy loss.

Figure 1: Resonator vs. oscillator. The X's on the t-axis represent the
ideal zero-crossings.

Due to the loss, the voltage v across the tank shows an exponential
damping from a given initial voltage as shown in the ¯gure. This
damping corresponds to a Lorentzian line broadening in the energy
spectrum.

A negative resistance can be used to cancel these losses to obtain
a self-sustained oscillator, as shown in the right hand side of Fig. 1.
The active and passive device noise perturbs the phase of the oscilla-
tor, resulting in phase random walk or di®usion, which corresponds
to a line broadening of oscillator's output power spectral density,
or phase noise [1]. The line broadening of the oscillator is much
smaller than that of the resonator yet it still has the Lorentzian
shape.

A time-domain picture of the phase di®usion is shown in Fig. 2
for an ensemble of N identical oscillators where their initial phase
is the same. At the start of oscillation, they have the same phase
and the ensemble average hv(t)i of the oscillator output v(t) is equal
to v(t) of any single oscillator in the ensemble. After a su±ciently
long time, however, the output voltages from the ensemble become
incoherent due to the phase di®usion (a.k.a., jitter accumulation)
and hv(t)i tends to zero with time, as shown in Fig. 2 [7]. We will
refer to this damping of the ensemble average as virtual damping.
In other words, even though the single oscillator output v(t) per
se sustains itself, its ensemble average which matters in the mea-
surement of phase noise virtually damps. As we will show in the
next subsection, this damping has an exponential behavior. One
can logically conceive that the phase di®usion constant should be
identical to the virtual damping rate and we will denote this quan-
tity as D from this point on. A lower phase noise implies a smaller
phase di®usion constant or a slower virtual damping rate. Hence,
the oscillator phase noise can be solely characterized by D.

This virtual dampingmanifests itself in the autocorrelation func-
tion as well. v(t1)v(t2) from the ensemble grows incoherent due to
the phase di®usion after a large enough time delay jt1 ¡ t2j and
hence the autocorrelation function hv(t1)v(t2)i tends to zero with



Figure 2: Ensemble average of v(t) and virtual damping

Figure 3: Measurement setup for the virtual damping using a digital
oscilloscope.

an increasing time di®erence jt1 ¡ t2j, again showing virtual damp-
ing.

We can observe the virtual damping phenomenon experimen-
tally, too. As will be seen later, typical oscillators have very slow
virtual damping rates making them less suitable for experimental
veri¯cation. Instead, we use a ring oscillator whose phase noise is
degraded by injection of a white noise current whose power spec-
trum can be controlled externally. This setup is shown in Fig. 3.
The oscillator has a center frequency of 5MHz. A digital oscillo-
scope is used to sample the output waveform multiple times and
calculate the average over N samples hv(t)iN . Fig. 4 shows this
average for N = 512 samples as a function of time. As can be seen
clearly, the expected value of the output is an exponentially damp-
ing sinusoidal even though the output waveform is a steady-state
sinusoidal in complete agreement with the virtual damping concept.

The spectral line broadening of an oscillator output signal or
phase noise can be thought of as the result of the virtual damping
and this provides an explanation why both resonator's energy spec-
trum and oscillator's output power spectral density have Lorentzian
broadening with di®erent linewidths. Since the virtual damping rate
is much slower than the damping in the resonator, the linewidth of

Figure 4: Measured hv(t)i512 vs. t for a 5 MHz ring oscillator.

Figure 5: Time evolution of phase distribution

the oscillator output spectrum is much smaller than the linewidth
of the resonator's energy spectrum, as shown hypothetically in Fig.
1. In other words, placing a resonator in a positive feedback loop
for oscillation results in the linewidth narrowing. The quantitative
calculation of the linewidth narrowing will be given in Sec. 4.

Fig. 5 shows time evolution of phase distribution for the en-
semble of oscillators whose initial phases are given at 0. The phase
distribution will ultimately tend to a uniform distribution across the
whole range of phase [¡¼; ¼] since there is no physical mechanism
to restore the initial phase and the uniform distribution constitutes
the most probable (the maximum entropy) state. Hence the virtual
damping rate or the phase di®usion constant D is a direct measure
of how fast the entropy grows. This implies that the minimization of
phase noise is equivalent to minimization of the entropy-growth-rate.

2.2. Quantitative Treatment

A mathematical veri¯cation of the virtual damping is given in this
subsection. The output voltage v(t) of an oscillator without ampli-
tude variation can be expressed as

v(t) = r0 cos[!0t+ Á(t)] (1)

where r0, !0 and Á(t) are the voltage amplitude, oscillation fre-
quency and phase noise, respectively. In the presence of white noise,
the phase noise Á(t) becomes a Wiener process (di®usion) where
hÁ2(t)i = 2Dt with di®usion constant D [1] [8] [9]. For a Gaussian

distribution of Á(t) at any given time, t, we have hcosÁi = e¡hÁ2i=2
and hsinÁi = 0 and therefore

hv(t)i = r0e¡hÁ
2(t)i=2 cos(!0t) = r0e

¡Dt cos(!0t) (2)

which clearly shows the exponential behavior of virtual damping,
the rate of which is given by the di®usion constant D. Similarly,
one can show

hv(t)v(t+ ¿)i = 1

2
r20e

¡Dj¿j cos!0¿ (3)

which represents the virtual damping of the autocorrelation.
The power spectral density of the oscillator output is the Fourier

transform of the autocorrelation function (3) and thus results in the
familiar Lorentzian shape [1]

Sv;v(f) = r
2
0

D

D2 + (¢!)2
(4)

where ¢! ´ ! ¡ !0. As D becomes larger, the Lorentzian shape
becomes shorter and fatter, distributing the total energy of r20=2
further from the center frequency, degrading the phase noise. This
is the frequency domain meaning of the virtual damping rate D.
For ¢!À D, the phase noise assumes a familiar f¡2 behavior:

Lf¢!g = Sv;v(f)

r20=2
¼ 2D

(¢!)2
(5)

As a numerical example, a 1 GHz oscillator whose phase noise is
-121dBc/Hz at 600 kHz o®set has D ¼ 5:645 or D=!0 » 10¡9. As
can be seen, typical good oscillators have very slow virtual damping
rates when compared to oscillation frequencies.



2.3. Experimental Veri¯cations

Using the experimental setup of Fig. 3, the virtual damping rate, D,
(reciprocal of the exponential time constant) was measured for dif-
ferent injected noise power levels. D is the inverse of time constant
of the best-¯t exponential to the resultant time domain waveforms
(e.g., Fig. 4). The oscillator phase noise was also measured using
a spectrum analyzer at 1 MHz o®set from the carrier. Equation
(5) was used to predict the phase noise using the virtual damping
rate D. The results are summarized in Table 1 showing very good
agreements between the two methods.

PN from PN from

i2n=¢f D measured D spec. analyzer
(A2=Hz) (sec¡1) (dBc/Hz) (dBc/Hz)

2:60£ 10¡15 1:02£ 104 -92.9 -93.0
4:84£ 10¡15 1:56£ 104 -91.0 -90.0
9:66£ 10¡15 3:53£ 104 -87.4 -86.5
2:12£ 10¡14 9:30£ 104 -83.3 -81.7
6:04£ 10¡14 1:90£ 105 -80.0 -79.5

Table 1. Measured D, phase noise calculated from the measured D, and
phase noise measured using a spectrum analyzer. The o®set frequency is

1MHz and the center frequency of the oscillator is 5MHz.

3. PHASE NOISE AS EINSTEIN RELATION

In this section, we will determine the virtual damping rate, D, using
a fundamental argument based on the theory of di®usion. The
key to this approach is the notion that the rate of any di®usion
process is determined by two elements a®ecting the process: the
sensitivity of the physical quantity undergoing the di®usion and
the friction (energy loss) of the environment in which the di®usion
process occurs.

For example, the di®usion constant, D, of a Brownian particle
of mass,M , immersed in a liquid at temperature, T , with frictional
coe±cient of ° in Fig. 6 is given by the Einstein relation [10] 1:

D =
kBT

M
¢ 1
°

(6)

where ° determines the frictional force ofM°V for a Brownian par-
ticle with velocity of V . The kBT=M factor represents the sensitiv-
ity of the Brownian particle to perturbations and becomes smaller
with a larger mass. This factor is obtained using the equipartition
theorem of statistical physics [12] demanding that each independent
degree of freedom of a system in equilibrium at temperature T has
a mean energy of kBT=2, i.e., hMV 2=2i = kBT=2. This sensitivity
factor is independent of the friction coe±cient of the liquid. Also,
if two identical Brownian particles are immersed in liquids with
di®erent frictions, the Brownian particle in a medium with more
friction will exhibit a slower di®usion, and hence the second factor
1=° in (6). Summarizing, the di®usion constant can be determined
only when both sensitivity and friction (energy loss) elements are
known. Now by applying the same concept to the electrical oscilla-
tors, we will quantify the phase di®usion, starting with the simpler
time-invariant case.

3.1. Time-Invariant Case

Fig. 7 shows the oscillation trajectory (limit cycle) in the (v; _v=!0)
state space for an ideal sinusoidal oscillator output.2;3 A phase ran-
dom walk by the amount of ¢Á corresponds to a random walk of the
oscillation trajectory point from A1 to A2 or equivalently a voltage
random walk from B1 to B2. In the following, we will ¯rst char-
acterize this voltage di®usion and conversion to the phase di®usion
can be easily performed by a multiplicative factor 1=r20 .

1In semiconductor physics, this is usually expressed as D=¹ = kBT=e
where ¹ is the mobility [11].

2The dot signi¯es a time-derivative.
31=!0 is used to keep the unit of voltage for the 2nd variable.

Figure 6: Brownian particle and LC tank with losses.

Figure 7: Oscillation trajectory in state space and phase di®usion

According to the °uctuation-dissipation theorem of statistical
physics [12] that states the equivalence of a loss (dissipation) ele-
ment and a thermal noise (°uctuation) element, any thermal noise
source in a circuit can be replaced with a loss. The right hand side
of Fig. 6 shows a parallel LC tank with multiple parallel losses
in a given oscillator that represent the noise sources. R1 is al-
ways reserved for the e®ective parallel tank resistance. A short-
channel MOS transistor in parallel with the LC tank will con-
tribute a loss element R = 1=(°trangd0) as its noise contribution

is i2n=¢f = 4kBT°trangd0 where °tran is the CMOS thermal noise
factor and gd0 is the transconductance at Vds = 0. Note that Fig.
6 is not an equivalent circuit model for the oscillator but is used to
identify the sensitivity and friction parts of the voltage di®usion as
in the following.

In the circuit of Fig. 6, hv2i across the capacitor and hi2i
through the inductor can be calculated noting that each of them
constitutes a degree of freedom which will have kBT=2 of ther-
mal energy according to equipartition theorem: hv2i = kBT=C and
hi2i = kBT=L. This is analogous to the kBT=M sensitivity factor
of the Brownian motion. Just as the sensitivity of the Brownian
particle was described in terms of the velocity, V (time-derivative
of the displacement, X, that di®uses), the sensitivity of the voltage
di®usion is to be described in terms of its time-derivative, _v, i.e.:

h _v2i = 1

C2
hi2i = kBT

LC2
=
kBT

C
!20 [sensitivity factor] (7)

The friction (energy loss) associated with the oscillator can be
calculated from the LR part of the resonator. Since the current in
the circuit satis¯es i = ¡(L=Req)_i where Req ´ R1jjR2jj ¢ ¢ ¢ jjRN in
the absence of the capacitor, similar to the equation of motion _V =
¡°V for the Brownian motion, we can see the friction coe±cient °
of the system is given by

1

°
=

L

Req
[energy loss (friction) factor] (8)

Now taking both sensitivity and loss into account and using the
Einstein's relation, the phase di®usion constant D is given by

D =
1

r20
¢ h _v2i ¢ 1

°
=
1

r20
¢ kBT
C

¢ !0
Qloaded

(9)

where the factor 1=r20 was introduced to convert the voltage di®usion
to the phase di®usion as mentioned earlier and Qloaded ´ CReq!0.
Since Qloaded = !0Etank=Psig = !0Cr

2
0=(2Psig) where Psig is the

power dissipation in the resonator, (9) can be rewritten as

D =
kBT

2Psig
¢
µ

!0
Qloaded

¶2
(10)



Combining this with (5) leads to Leeson's formula in the 1=f2-region
except for the ¯tting parameter F=2 [4].

Summarizing, by evaluating the sensitivity and energy loss (fric-
tion) factors of the phase di®usion process, we derived the virtual
damping constant and hence, phase noise. The power of this ap-
proach lies in the identi¯cation of the two essential elements of the
oscillator phase noise. The importance of the largely-ignored sensi-
tivity factor kBT=C has been noted in [6] from a practical perspec-
tive.

3.2. Time-Varying Case

In the foregoing argument, we ignored the time-varying e®ects in
the phase noise evaluation. In actuality, the phase Á(t) of an oscil-
lator experiences a time-varying di®usion in that the average size
of the phase random walk periodically changes in the course of os-
cillation [5]. The time-varying e®ects are quanti¯ed using the im-
pulse sensitivity function ¡(t) describing the periodic sensitivity of
the oscillator phase to the perturbation and the noise modulating
function (NMF) ®(t) accounting for the cyclostationary noise gen-
eration [5]. This separation of the time-varying e®ects into the ISF
and the NMF agrees perfectly with our earlier view of separating
the phase di®usion into the sensitivity and loss (friction) part. The
ISF a®ects the sensitivity part and modulates (7) periodically, i.e.,
h _v2i = (kBT=C)!

2
0¡

2(t). On the other hand, the NMF describ-
ing the cyclostationary noise is equivalent to periodic circuit loss
modulation in the course of oscillation, i.e., 1=° = (L=Req)®

2(t).
Now we will modify our previous derivation of the virtual damp-

ing constant D to incorporate the time-varying e®ects. The time-
varying e®ects modulate the average size of the random walk in the
course of oscillation. Since the phase variance hÁ2(t)i in the di®u-
sion process is an accumulation of this time-varying random walk
over time, after a long observation time, the details of time-variance
in hÁ2(t)i will become negligible, hidden behind the 2Dt di®usion
where the di®usion constant is now a®ected by ¡(t) and ®(t) in
an averaged sense, modifying the contribution from the n-th noise
source Rn in (9) to

Dn =
1

r20
¢ kBT
C

¢ ¡
2
eff;rms;n

RnC
(11)

where ¡eff;n(t) = ¡n(t)®n(t). Now including all the noise sources,
we have

D =
X
n

Dn =
1

r20
¢ kBT
C

¢ !0
Qloaded

(12)

where the new de¯nition for Qloaded is

Qloaded ´ !0C
·

R1
¡2eff;rms;1

jj ¢ ¢ ¢ jj RN
¡2eff;rms;N

¸
(13)

Using qmax = r0C and i2n=¢f = 4kBT=Rn, Dn in (11) can be
rewritten as

Dn =
¡2eff;rms;n
4q2max

¢ i
2
n

¢f
¢ (14)

and the combination of (14), (12) with (5) lead us to

Lf¢!g =
X
n

i2n=¢f ¢ ¡2eff;rms;n
2q2max(¢!)2

(15)

in complete agreement with the time-varying phase noise theory in
[5].

4. LINEWIDTH NARROWING
-RESONATOR VS. OSCILLATOR-

We can compare the linewidth of the oscillator to that of the res-
onator in Fig. 1 as the damping rate determines the linewidth of

the frequency spectrum. This comparison will reveal how much
linewidth improvement we obtain by placing a given resonator into
a feedback loop and making an oscillator. Since the damping rate
for the resonator is given by 1=(2RC), we de¯ne a linewidth nar-
rowing ratio S as

S ´ ¢osc

¢res
=
Dosc

Dres
=
2

r20
¢ kBT
C

¢ Qunloaded

Qloaded
(16)

where we have used Qunloded = RC!0 and (12). In a typical elec-
trical oscillator at a normal temperature, this ratio is extremely
small: for instance, for C = 1pF , r0 = 1V , Qunloaded = 10 and
Qloaded = 5, S ¼ 1:6 £ 10¡8 and hence shows that the linewidth
of a resonator is narrowed by almost 8 orders of magnitude when
placed in a positive feedback loop to make an oscillator.

One important point is that the linewidth narrowing is directly
proportional to the ratio of kBT=C to oscillator mean square ampli-
tude. This shows the crucial importance of selecting a larger tank
amplitude and a larger C (or a smaller L) for given quality factors
to improve the phase noise [6].

5. CONCLUSION

In this paper, we presented a theoretical framework with a support-
ing measurement that views the oscillator phase noise from a funda-
mental physics perspective. The virtual damping concept puts the
oscillator phase noise theory and well-known resonator theory under
the same framework. We have shown that the virtual damping rate
is identical to the phase di®usion constant and hence a direct mea-
sure of the oscillator phase noise. Identi¯cation of oscillator phase
noise as the Einstein relation reveals the essence of oscillator phase
noise from fundamental physics perspective, bringing a transparent
insight into the noise phenomenon.
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