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Abstract—Process variations are a major concern in today’s compute the stochastic solution. However, the resulting- co
chip design since they can significantly degrade chip perfer pled equation can be solved very efficiently with decoupling
mance. To predict such degradation, existing circuit and MBAS and adaptive time stepping inside the solver. This algorith

simulators rely on Monte Carlo algorithms, which are typically - .
too slow. Therefore, novel fast stochastic simulators areighly 12 been successfully integrated into a SPICE-type program

desired. This paper first reviews our recently developed strhastic  Perform various (e.g., DC, AC, transient and periodic syead
testing simulator that can achieve speedup factors of hundwds to  state) simulation for integrated circuits with both Gaassand

thousands over Monte Carlo. Then, we develop a fast hierardbal non-Gaussian uncertainties. It can also be eas"y extetoed
stochastic spectral simulator to simulate a complex circuior simulate MEMS designs (c.f. Sectibn I1). In this paper wel wil

system consisting of several blocks. We further present a $& : .
simulation approach based on anchored ANOVA (analysis of present two recent advancements based on this formulation.

variance) for some design problems with many process varians. First, Section Il will present a hierarchical uncertainty
This approach can reduce the simulation cost and can idengf quantification method based on stochastic testing. Hikieat
which variation sources have strong impacts on the circuis  simylators can be very useful for the statistical verifiati
performance. The simulation results of some circuit and MENS of a complex electronic system and for multi-domain chip
examples are reported to show the effectiveness of our sinatbr. . . . .
design (such as MEMS-IC co-design). In this simulation flow,
we first decompose a complex system into several blocks and
. INTRODUCTION use stochastic spectral methods to simulate each block, The
As the device size shrinks to the sub-micro and nano-metach block is treated as a random parameter in the higher-
scale, process variations have led to significant deg@uatievel system, which can be again simulated efficiently using
of chip performance and yield[1][][2]. Therefore, efficienstochastic spectral methods. This approach can be hundfreds
stochastic simulators are highly desired to facilitatdatan- times faster than the hierarchical Monte Carlo methodir}.[31
aware chip design. Existing circuit and MEMS simulators use Second, in Section IV we will present an approach to im-
Monte Carlo[3], [4] for stochastic simulation. Despiteé@ase prove the efficiency of stochastic spectral methods when-sim
of implementation, Monte Carlo requires a huge number @fting circuits with many random parameters. It is knowrt tha
repeated simulations due to its slow convergence rate, vepectral methods can be affected by the curse of dimensional
often leading to prohibitively long computation times. ity. In this paper, we utilize adaptive anchored ANOVA[32]-
Stochastic spectral methods [5]-[9] are promising alterngg7] to reduce the simulation cost. This approach expldiés t
tive techniques. In fact, they have shown significant sppedgparsity on-the-fly according to the variance of the comgute
over Monte Carlo in many engineering fields. The key idea {srms in ANOVA decomposition, and it turns out to be suitable
to represent the stochastic solution as a linear combmmatipr many circuit problems due to the weak coupling among
of some basis functions such as polynomial chdos [10] @¥fferent variation sources. This algorithm can also belifee
generalized polynomial chads [8], which then can be comtbutglobal sensitivity analysis that can determine which pagtems
by stochastic Galerkiri [5] or stochastic collocation|[IB] contribute the most to the performance metric of interest.
techniques. Such techniques have been successfully dpplieThe simulation results of some integrated circuits and
to simulate the uncertainties in VLSI interconnects [14F MEMS/IC co-design cases are reported to show the effective-
electromagnetic and microwave devices|[18]+-[20], nom@ineness of the proposed algorithms.
circuits [21]-[24] and MEMS device$ [25]=[27].
An efficient stochastic testing simulator has been proposed Il. STOCHASTIC TESTING SIMULATOR
to simulate integrated circuit§ [28]=[30]. This simulaisra
hybrid version of the stochastic collocation and the stetiba  In this section we summarize the algorithms and results of
Galerkin methods. Similar to stochastic Galerkin, stottbasour recently developed fast stochastic testing circuitsitor.
testing sets up a coupled deterministic equation to directVe refer the readers t6 [28]=[30] for the technical details.
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Fig. 1. Overall flow of the stochastic testing simulator.

A. Overview of the Simulator whered., ,, is a Delta function; integerg andv denotes the de-

The overall flow of the stochastic testing simulator is showdf€es 0f in ¢ (¢x) andgj(&x ), respectively. Givemy. (&x),
in Fig.[I. The main procedures are summarized below. ~ One can utilize a three-term recurrence relation to coostru
1) Set Up Stochastic Circuit EquationsSiven a circuit such orthonormal univariate polynomials [39]. The unistei
netlist, the device models and the specification of devic@eneralized polynomial chaos basis functions for Gaussian
level uncertainties, one can use modified nodal analysis [§8@mma, Beta and uniform distributions can be easily obtaine

to obtain a stochastic differential algebraic equation: by shifting and scaling existing Hermite, Laguerre, Jacobi
and Legendre polynomials, respectively [6]) [8]. Since for

dtf(f(tvf)af) Sl 4 o . (1) any integerk € [1, K] there is a one-to-one correspondence
—a T f ("T(tvg)’g) = Bi(t) betweenk and &, for simplicity we rewrite [B) as

where «(t) is the input signal;Z € R™ denotes nodal K ~

voltages and branch curreni@;c R" and f € R" represent F(t,€) ~ &(t,€) = Zik(t)Hk (€)- (7)

the charge/flux and current/voltage terms, respectivereH k=1

§=[§1, <, &) € Q (with © C RY) represents! independent a2

In order to findz(¢, £), we need to calculate the coefficient
vectorsi* (t)’s. In stochastic testingi (¢, €) is substituted into
(@) and then the resulting residual is forced to zer&a@esting

random variables describing device-level uncertaintiése
joint probability density function of is

. d pointsfl, e ,EK, giving the following coupled deterministic
p(&) = [ pr (&), (2) differential algebraic equation of sizeX
. N dA(X(1) | ooy
wherepy, () is the marginal density ofy. € Qi C R. —g + f(x(t)) = Bu(t), (8)
2) Stochastic Testing FormulationWhen #(¢,¢) has a

bounded 2nd-order moment, we can approximate it by Where the state vector(t) = [&'(t); - ;2" (¢)] collects all
truncated generalized polynomial chaos expansibn[6], [8] coefficient vectors in{7). This new differential equati@nde

- - - easily set up by stacking the function values[df (1) evalliate

Bt =t = 2a(t)Ha(E) (3) at each testing point [28]. [30].
aGEP In stochastic testing, the testing points are selected as

where i5(t) € R™ denotes a coefficient indexed by vectofollows [28], [30]:
a = lag, - ,aq € N?, and the basis functioﬁa(f) isan  Step 1.For each{, selectp + 1 Gauss quadrature points

orthonormal multivariate polynomial with the highest ardé ¢;'s and weightsw;’s [40]-[42] to evaluate an integral by
& being ;. In stochastic testing, the highest total degree of

p+1
the polynomials is set gs, leading toP = {d| ax, € N, 0 < / dén ~ AV 9
a1 + -+ + ag < p}. Consequently, the total number of basis 9(8k)Pr(81)dEn ;g(gk) k ©
functions is ok '
p+d (p+d)! which provides the exact solution wheri¢y.) is a polynomial
K= » = (4)  of degree< 2p+ 1 [40]. The d-dimensional quadrature points

. and weights for{ are then obtained by a tensor rule, leading
Since all components g@f are assumed mutually independentg (p +1)? samples in total.

the multivariate basis function can be constructed as Step 2.Define a matrixVeR** X the (j, k) element of
. d X which is H;,(£7). Among the obtainedp+1)¢ d-dimensional
Hs(§) = H Py (Ek): (5) quadrature points, select tté points with the largest weights
k=1

as the final testing points, subject to the the constrairtt\tha
where ¢¥ (&) is a degreey, univariate polynomial of¢;, is invertible and well conditioned.
satisfying the orthonormality condition 3) Simulation Stepinstead of simulating {1) using a huge
number of random samples, our simulator directly solves the
(5 (&), o5 (&) = /fbﬁ(fk)ébﬁ(ﬁk)pk(&k)d&k =0, (6) deterministic equatiori]8) to obtain a generalized polyiabm
Qp

—

chaos expansion fa#(¢, £). In DC and AC analysis, we only
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Fig. 2. Schematic of the BJT Colpitts oscillator. Fig. 3. Distributions of the period: (a) stochastic testifly) Monte Carlo.

need to compute Fhe stat|c_soll_Jt|on by_ Newton’s iterations, . - ¢ R" denotes displacements and rotationgt)
In transient analysis, numerical integration can be peréut

i . nxn
given an initial condition to obtain the statistical infaation denotes the inputs such as voltage soursés; € R are

(e.g., expectation and standard deviation) at each timet.poitbe mass matrix and damping coefficient matrix, respegtvel

L . - denotes the net forces from electrostatic and mechanical
This simulator is very efficient due to several reaséns [28]. L . ; : o

Lo . rces. This differential equation can be obtained by @iszy
First, it requires only a small number of samples to setllip (

when the parameter dimensionality is not high. Second, the 2 partial differential equation or an integral equatig],

linear equations inside Newton'’s iterations can be deceuijIOr by using the fast hybrid platform that comb|nes finite-

: element/boundary-element models with analytical MEMS de-
although [(8) is coupled, and thus the overall cost has onlyv%e models[44}[46]. First re resentiﬁ’g!f ) by a truncated
linear dependence on the number of basis functions. Third b b L) Dy

adaptive time stepping can further speed up the time_domgénerallzed polynomial-chaos expansion and then fordiag t

n. . . :
stochastic simulation. residual of [ID) to zero at a set of testing points, we caniobta

a coupled deterministiend-order differential equation. This
B. Performance Summary new 2nd-order differential equation can be directly used for

Extensive circuit simulation examples have been reportétpchastic static and modal analysis. For transient aisalys
in [28], showing promising results for analog/RF and digit£an convert thignd-order differential equation intolst-order
circuits with a small to medium number of random parametef@€ Which has a similar form witf(8), and thus the algorithms
For those examples, the stochastic testing simulator rasrsh in [28]-[30] can be directly used.

2 3
10°x to 10°x speedup over Monte Carlo due to the fast ||y zraRCHICAL UNCERTAINTY QUANTIFICATION
convergence of generalized polynomial-chaos expansidns.
circuit simulator is also significantly more efficient thamet
standard stochastic Galerkinl [5] and stochastic collocati
solvers [11]-13], especially for time-domain simulation

This section presents a hierarchical non-Monte Carlo flow
for simulating a stochastic system consisting of severaihs.
Let us consider Figld4, which can be the abstraction of a

Stochastic periodic steady-state solvers have been furtﬁgmplex electronic circuit or system (e.g., phase-locipklo

: . design with multi-domain devices (e.g., a chip with both
developed on this platform and tested on both forced cicuff’ 2§
(e.g., low-noise amplifier) and autonomous circuits (eog- transistors and MEMS). The output of each block (denoted

cillators . As an example, we consider the Colpitts BJTY yi) depends on a group of low-level raD(jom parameters
) [29] P P ; € R%, and the output of the whole systeimis a function

oscillator in Fig.[2, the frequency of which is influenced b _ )
the Gaussian variation of; and non-Gaussian variation Ofof all low-level random parameters. Stochastic analysistfe

C1. With a3rd-order generalized polynomial-chaos expansioW,hOIe system Is a challenging t.aSk dL.Je to_the pote_ntlalgelar
our stochastic testing simulator is abdut faster than the problem size and parameter.dlmensmnallty. In this paper we
solver based on stochastic Galerkinl[23]. Higj. 3 shows tRgsume that;'s are mutually independent.

histograms of the simulated period from our simulator and. The Key Idea

from Monte Carlo, which are consistent with each other. Note Instead of directly simulating the whole system us'ﬁag

that Monte Carlo is abou$07x slower than our simulator

e ; i as the random sources, we propose to perform uncertainty
when the similar level of accuracy is required.

guantification in a hierarchical way.
C. Extension to MEMS Simulation 1) Step 1: We use our fast stochastic spectral simula-

The stochastic testing method can be easily extended !5 [28]: [2€] to extract a surrogate model for each block

simulate MEMS designs. Considering uncertainties, we can Y = fi(é% withé eR% i=1,---,q. (11)

describe a MEMS device by 2nd-order differential equation .
With the surrogate modelg,; can be evaluated very rapidly.

M (27(5 0 g) dZ(&, L‘)+ Note that other techniques [18]. [31]. ]48] can also be ziti
) ) 2 . . g .
p t(ié; ) (10) to build surrogate models. For numerical stability, we defin
Lo dZ(E S - o
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Fig. 4. Demonstration of hierarchical uncertainty quacdiiion [47]. Rss lss
such thatg“i has a zero mean and unit variance. Fig. 5. Schematic of a voltage-control oscillator with MEM&pacitors.

2) Step 2:By treating(;'s as the new random sources, we

computeh by solving the system-level equation . . . . .
P y g y q given density function. Therefore, the iteration paramsete

F(E, 5) =0, with f: [STEEEIN @I (13) andx; are not known. In our hierarchical stochastic simulator,

thi bl i Ived foll :
Again, we use the stochastic testing algoritim] [28]-[30] to 's problem |s#so.ve as Tolows o ,
o When f;(¢&;) is smooth enough and; is of low di-

solve efficiently this system-level stochastic problenocas- onali he | I in th
tic Galerkin and stochastic collocation can be utilized @#.w mensionality, we compute the integrals @l(14) in the
parameter space gf. In this case, the multi-dimensional

Note that can be either an algebraic or a differential St - k
[1B) g quadrature rule of; is utilized to evaluate the integral.

equation, depending on the specific problems. = - . . :
q P g P P o When f;(&;) is non-smooth o€; has a high dimension-
B. Numerical Implementation ality, we evaluate this surrogate model at a large number
The main challenge of our hierarchical uncertainty quantifi ~ of Monte Carlo samples. After that, the density function
cation flow lies in Step 2. As shown in Section I, in order to ~ Of ¢ can be fitted as a monotone piecewise polynomial

employ stochastic testing, we need the univariate gezerhli or a monotone piecewise rational quadratic function [47].
polynomial basis functions and Gauss quadrature rulé; of The special form of the obtained density function allows
which are not readily available. Let(¢;) be the probability us to analytically compute; andr;. For further details
density function of;, then we first construgi-+ 1 orthogonal on this approach, we refer the readers(to [47].

polynomials;(¢;) via [39]

mi+1(G) = (G — ) 75(G) — Kimi—1(Gi)s
ﬂ-*l(ci) = O? TFO(CZ') = 17 .] = 07 Y Z 1

C. MEMSI/IC Co-Design Example

As a demonstration, we consider the voltage-controlled
oscillator in Fig.[b. This oscillator has two independent

with identical MEMS capacitor€’,,, the 3-D schematic of which
[ Gim3 (¢)p(¢a)dg: [ 72, (C)p(Ca)d is shown in Fig[b. Each MEMS capacitor is influenced by
V= “MW, Kjt1 = "‘MW (14) four Gaussian-type process and geometric parametershand t
2 g L K2 2 Fi k2 k2 k2

transistor threshold voltage is also influenced by the Ganss
andro = 1. Herer;(¢;) is a degreerpolynomial with leading type temperature variation. Therefore, this circuit haseni
coefficient 1. After that, the firsp + 1 basis functions are random parameters in total. Since it is inefficient to digect

obtained by normalization: solve the coupled stochastic circuit and MEMS equations, ou
5(G) proposed hierarchical stochastic simulator is employed.
$;(() = —=>—, forj=0,1,---,p.  (15) 1) Surrogate Model ExtractionThe stochastic testing al-
RoR1 " Ky

gorithm has been implemented in the commercial MEMS sim-
In order to obtain the Gauss quadrature points and weiglhistor MEMS+ [49] to solve the stochastic MEMS equation
for ¢;, we first form a symmetric tridiagonal matrix € (@0). A3rd-order generalized polynomial-chaos expansion and
RPHDX ) with J; 5 = v;_1, Jj 41 = Jj41,; = /F; and 35 testing points are used to calculate the displacementshwhi
other elements being zero. Let its eigenvalue decompoditio then provide the capacitance as a surrogate model.[Fig. 7
J = UxUT, whereU is a unitary matrix, then thg-th quadra- plots the density functions of the MEMS capacitor from our
ture point and weight arg; ; andu%_’j, respectively[[40]. simulator and from Monte Carlo using000 samples. The
From [13) it becomes obvious that both the basis funetesults match perfectly, and our simulator is ab®wk faster.

tions and quadrature points/weights depend on the pratyabil 2) Higher-Level SimulationThe obtained MEMS capaci-
density function of¢;. Unfortunately, unlike the bottom-leveltor models are normalized as done [n](12) (and denoted as
random parameteé’s that are well defined by process cards;; and (). A higher-level equation is constructed, which
the intermediate-level random parametgerdoes not have a is the stochastic differential algebraic equation [ (1) fo
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Fig. 9. Histograms of the oscillator period, (a) from our rarehical
stochastic spectral simulator, (b) from hierarchical Mo@arlo [31].

this example. The constructed basis functions and Gauss

quadrature points/weights faj; are plotted in Fig[18. The

stochastic-testing-based periodic steady-state solg} s Wheres is a subset of the full index set = {1,2,---,d}.
utilized to solve this higher-level stochastic equatiopttovide L€t s be the complementary set of such thats Us = 7
3rd-order generalized polynomial expansions for all bran@dsN's =0 and|s| be the number of elements in When

currents, nodal voltages and the oscillation period. In Big § = i1, ijs|} # 0, we setQ, = Q;, @ - @ Qy |, & =
the computed oscillator period from our hierarchical ststie  [§ir» i, ] € 25 and have the Lebesgue measure
spectral simulator is compared with that from the hierarghi s

Monte Carlo approacH [31]. Our approach requires atily dp(&s) = g(p’“ (E) dS). (17)

samples and less thdnminute for the higher-level stochastic
simulation, whereas the method [n[31] requis@80 samples Then,g; (53) in ANOVA decomposition[(1b) is defined recur-
to achieve the similar level of accuracy. Therefore, theedpe sively by the following formula
factor of our technique is abo@b0x. ~ ~ ~
[ E(9©) = [ 9(©an@) = g0, it s =0
IV. ANOVA-B ASED SPARSE TECHNIQUE gs(€)=4¢ . Q
Some circuit and MEMS problems cannot be simulated in 9s(&s) — tzc:s 9:+(&) , if s # 0.
a hierarchical way. When such designs have a large number _ ~ _
of random parameters, the performance of stochastic spectteregs(&s) = [ g(€)du(&s), and the integration is computed
methods can significantly degrade, since the number of basis s -
function K is a polynomial function ofl. To mitigate the curse for aII_ ele_mer_1t_s except those #. From [IB), we have the
of dimensionality in high-dimensional problems, spargify followmg intuitive results:
the coefficients in generalized polynomial coefficients ban ¢ 9o IS @ constant term; .
exploited. This section presents a simulation flow thateixpl ~ * if s={j}, theng. (&) = 91 (5)r 95(&s) = 941(§) =
such sparsity using anchored ANOVA (analysis of variance). 9431 (&) — 903 =
A. ANOVA and Anchored ANOVA Decomposition - sl kA} and;j <k, theng(&) = gy (gj’gk_) and
= 9s(&s) = G103 (&35 &) = 9451 (&5) = 94x3 (k) — 90

1) ANOVA: Lety = g(¢) be a.performance metric of inter- . bothg,(é.) andgs(£,) are|s|-variable functions, and the
est smoothly dependent on the independent random parameter decomposition[(16) hag? terms in total

& G!ven a sample of, the _C(_)rr_esp_ond_mg outpy can be Since all terms in the ANOVA decomposition are mutually
obtained by calling a deterministic circuit or MEMS simulat
orthogonal[[32], [[3b], we have

With ANOVA decomposition[[32],[[35], we have
y=96 = g.(&), (16) Var (9(6)) = - Var (9:(60)) (19)
sCT

sCT

(18)



whereVar (e) denotes the variance over the whole paramet@fgorithm 1 Stochastic Testing Circuit Simulator Based on
spacef2. What makes ANOVA practically useful is that forAnchored ANOVA.

many engineering problems(¢) is mainly influenced by the 1: Initialize Si’s and set3 = 0; o _ .
terms that depend only on a small number of variables, and& At the anchor point, run a deterministic SPICE simulation

thus it can be well approximated by a truncated ANOVA o obtaing, and sety = go;

decomposition 3 for k=1, .-, mdo
. . 4: for eachs € S;, do
g(€) ~ Z 9s(&s), sCT (20) s run stochastic testing simulator to get the generalized
s|<m polynomial-chaos expansion ¢f (&,) ;
where m < d is called theeffective dimension Unfor- & get the gener_alized polynomial-chaos expansion of
tunately, it is still difficult to obtain the truncated ANOVA 9s(8s) according to[(IIB),#
decomposition due to the high-dimensional integral§).(18 update = 3 + Var (95 (55));
2) Anchored ANOVA:In order to avoid the expensive s: updatey = y + g.(&,);

multidimensional integrals,[[35] has proposed an efficien®: end for
algorithm which is called anchored ANOVA i [B3]._[B6], 10  for eachs € S, do

[37]. Assuming that,’s have standard uniform distributions, 11: 0, = Var (gs ({5)) /B;
anchored ANOVA first choses a deterministic point called,. if 0, <o
anchored poing = [g1,--- ,qa] € [0,1]%, and then replaces 3. for any index set’ € S; with j > k, remove
the Lebesgue measure with the Dirac measure s/ from S if s C o'
(€ = 16 (6~ ) a5 (u e
& 16: end for

As a result,go = ¢(¢), and

qr, if k€5

€. otherwise. (22)  For a given effective dimensiom < d, let

(&) =g (&) win & = {
Anchored ANOVA was further extended to Gaussian random Sp={slsCZ|s|=k}, k=1,---m (25)
parameters in[[36]. In[[33],[[37], this algorithm was com- _ o _ _ _
bined with stochastic collocation to efficiently solve highcontain the initialized index sets for all-variate terms in
dimensional stochastic partial differential equationseve the the ANOVA decomposition. Given an anchor poigitand

index s was selected adaptively. a thresholdo, our adaptive ANOVA-based stochastic circuit
simulation is summarized in Algorithil 1. The index set for
B. Anchored ANOVA for Stochastic Circuit Problems each level is selected adaptively. As shown in Lih@so 15, if

In many circuit and MEMS problems, the process variatioris{€Mys () has a small variance, then any term whose index
can be non-uniform and non-Gaussian. We show that anchot&l includess as a strict subset will be ignored. All univariate
ANOVA can be applied to such more general cases. terms in ANOVA (i.e.,|s| = 1) are kept. Le.t the final size

Observation: The anchored ANOVA in [35] can be applieﬂf S be ny and the total polynomial order in the stochastic
if pr (k) > 0 for any &y, € testing simulator be, then the total number of samples used

Proof: Let u; denote the cumulative density function” Algorithm 1l is

for &, thenu, can be treated as a random variable uni- m (k + p)!
formly distributed on[0,1]. Since p(¢,) > 0 for any N=1+) n ol (26)
&k € Qu, there existg, = A\ (ug). Thereforeg(&q, -+, &) = k=1 P
g(Ai(ur),- - Aa(ua)) = (@) with @ = [ur,---ual. For most circuit problems, setting the effective dimensisn
Following (22), we have 2 or 3 can achieve a high accuracy due to the weak couplings
N ~ L e, ifk €3 among different random parameters. For many cases, the uni-
s (i) = 1 () , with g = { uy, otherwise, (23)  variate terms in ANOVA decomposition dominate the output
B . . B of interest, leading to a near-linear complexity with regye
wherep = [p1,--- ,pd] is the anchor point foii. The above the parameter dimensionality
result can be rewritten as
o - s A Jifkes C. Global Sensitivity Analysis
(@) =g (&) wime = { YRR e _ | _ |
k(&k), otherwise, Algorithm[1 provides a sparse generalized polynomial-shao
from which we can obtairys({i) defined in [IB). Conse- expanSIOI’y:‘&%pyaHa(g)- From this resul, we can identity

quently, the decomposition fagr(£) can be obta_ined by usinghow much each parameter contributes to the output by global
7= [M(p1), -+, Aa(pa)] as an anchor point of. B sensitivity analysis. Two kinds of sensitivity informatican



0.35

@ main sensitivity
0.3~ Il total sensitivityf|

0.25

0.2
0.15 m
0.1

0.05

L - L L L 1 L L L
0 5 10 15 20 25 .30 35 40 45 50
Parameter index

Fig. 11. Global sensitivity for the CMOS folded-cascode raienal amplifier.

Vad L Fig. 11 shows the computed main sensitivity and total
I.:I , sensitivity resulting from all device-level random parderns.
]_l ' ' _ Clearly, the uncertainty of the output is dominated by only

a few number of device-level variations. The indices of the
five device-level variations that contribute most to thepotit
lbaist :I Vout variation arel, 50, 51, 11 and46.
@ Lo % V. CONCLUSION

Vb,as Dlbais th This paper has demonstrated a fast stochastic circuit sim-
ulator for integrated circuits and MEMS. This simulator can
= = provide 100x to 1000x speedup over Monte Carlo when the
parameter dimensionality is not high. Based on this simulat

a hierarchical stochastic spectral simulation flow has been
developed. This hierarchical simulator has been testednby a

be used to measure the importance of paranggtethe main oscillator with MEMS capacitors, showing high accuracy and

sensitivity S, and total sensitivityT;, as computed below: @ Promising250x speedup over hierarchical Monte Carlo.
For integrated circuits with high parameter dimensiogalit

Fig. 10. The schematic of a CMOS folded-cascode operatiamgdlifier.

> |yo7|2 > lyal” a sparsity-aware simulator has been further developedibase
S, = 27020 =22 (27) on anchored ANOVA. This simulator has an almost linear
Var(y) Var(y) complexity when the couplings among different parametess a

D. Circuit Simulation Example weak and a small number of parameters dominate the output

Consider the CMOS folded-cascode operational amplifief interest. This simulator has been successfully appleed t
shown in Fig.[ID. This circuit has3 random parameters €xtract the sparse generalized polynomial-chaos expaisio
describing the device-level uncertainties (variationgeafiper- @ CMOS amplifier with over50 random parameters, at the
ature, threshold voltage, gate oxide thickness, channeitie cost of less tharl-minute CPU time. Based on the obtained
and width). We sep=3, m=3 ando=0.01 for this example, results, global sensitivity has been analyzed to identifijyciv
aiming to extract a generalized polynomial chaos exparfsion parameters affect the output voltage the most.
the static voltage of,,; (other quality of interest such as DC
gain and total harmonic distortion can also be extracted). D
rectly using stochastic testing requirgg720 samples, which ~ This work was supported by the MIT-SkoTech Collaborative
is too expensive on a regular workstation. Using the ANOvARrogram and the MIT-Rocca Seed Fund. Elfadel's work was
based sparse simulator, orf} terms are needed to achievelso supported by SRC under the MEES I, MEES II, and
a similar accuracy with Monte Carlo using)00 samples: ACE'S programs, and by ATIC under the TwinLab program.
besides the constant term, or#y$ univariate terms and6 Z. Zhang would like to thank Coventor Inc. for providing the
bivariate terms are computed, and fevariable terms are MEMS capacitor example and the MEMS+ license.
required. Our simulator uség'3 samples and less thdamin
CPU time to obtain a sparse generalized polynomial-chaos
expansion with only267 non-zero coefficients. Note that the [I D- SGEO;i”QFeXaZ%aSE’” 'IEEE Trans. Semicond. Manutol. 21, no. 1,
full truncated anchored ANOVA requires4858 terms and [2] ng Nassif, “Modeling and analysis of manufacturingiations,” in
482513 samples, which cosi$42x more than our simulator. Proc. Int. Conf. Custom Integrated CircuitSept. 2001, pp. 223 — 228.
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