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Abstract—This paper presents an overview of energy-efficient 
analog-to-digital converters (ADCs) specifically intended for the 
readout of Wheatstone bridge sensors. Apart from achieving 
good energy-efficiency, such bridge-to-digital converters (BDCs) 
must achieve low input-referred offset, drift and noise; high gain 
accuracy, stability and linearity; as well as high immunity to 
power-supply and common-mode variations. Various BDC 
architectures are discussed, beginning with traditional designs, in 
which an instrumentation amplifier is used to drive an ADC, and 
moving on to more recent work, which attempt to increase 
energy efficiency and reduce complexity by eliminating the 
instrumentation amplifier. The performance of these topologies, 
and in particular their energy-efficiency, will be compared and 
summarized. 

Keywords—Wheatstone bridge sensor; energy-efficiency; 
instrumentation amplifier; analog-to-digital converter; bridge-to-
digital converter. 

I. INTRODUCTION 
Although more than 180 years old, the Wheatstone bridge 

is still widely used to measure resistances (impedances) due to 
its simplicity, stability and accuracy [1,2]. Wheatstone bridges 
are often used to sense physical quantities such as pressure, 
strain, temperature and magnetic field via their effect on sensor 
impedances [3-8]. In such cases, the output of the bridge will 
typically be a mV-level differential signal superimposed on a 
much larger common-mode (CM) voltage, which must then be 
digitized by a so-called bridge-to-digital converter (BDC). To 
avoid corrupting the bridge output, a BDC should also achieve 
low input-referred offset, drift and noise; high input 
impedance, gain accuracy, stability and linearity; as well as 
high immunity to power-supply and common-mode variations. 
This challenging task is somewhat relaxed by the fact that 
sensor signals are quite slow, and so bandwidths of a few kHz 
are often quite sufficient. 

Considerable efforts have been made to improve the 
energy-efficiency of BDCs, i.e. the amount of energy that they 
need to achieve a certain input-referred noise level [3-10]. This 
is mainly due to the proliferation of battery-powered sensing 
systems, e.g. in mobile and IoT applications, in which energy 
efficiency is critical, and, to a lesser extent, by the need to 
reduce self-heating errors in precision mechatronic systems. 

As shown in Fig. 1a, a conventional BDC consists of an 
instrumentation amplifier (IA) followed by an analog-to-digital 
converter (ADC). The IA boosts the amplitude of the bridge 
output to levels that are large enough to drive the succeeding 
ADC. Being the first stage, the IA defines the BDC’s input 

characteristics and in particular, its input-referred noise, and so 
will usually determine its energy-efficiency.  

Much effort has been devoted to improving the energy-
efficiency of IAs. The number of high-gain amplifiers they 
require has been reduced from three, as in the classic three 
opamp IA [3], to one, as in the more recent capacitively-
coupled IA (CCIA) [6-8]. Furthermore, chopping has been 
widely applied to suppress in-band 1/f noise [3-10].  
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Fig. 1. Conventional BDCs (a); Direct BDCs (b). 

 Recently, BDCs that eliminate the IA entirely have been 
proposed [11-18] (Fig. 1b). The motivation for such direct 
BDCs is to eliminate the associated high-gain amplifiers and 
thus achieve lower complexity and reduced area. To avoid the 
aliasing and kT/C noise issues of discrete-time ADCs, direct 
BDCs usually consist of a high-resolution continuous-time 
(CT) ADC. Then in order to achieve good gain accuracy and 
stability, as well as low input-referred offset, drift and noise, 
dynamic compensation techniques such as chopping and 
dynamic element matching (DEM) are often employed [19]. 

This paper presents a non-exhaustive review of energy-
efficient BDCs, with the aim of discussing architectural and 
circuit-level innovations that have advanced the state of the art. 
The paper is organized as follows. Energy-efficiency metrics 
for BDCs are discussed in Section II, together with some 
general design considerations in Section III. Section IV 
discusses the energy-efficiency of conventional BDCs  (Fig. 
1a), while some recent direct BDCs are discussed in Section V 
(Fig. 1b). Comparisons of state-of-the-art BDCs are given in 
Section VI. Finally, some conclusions are drawn. 
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II. ENERGY-EFFICIENCY METRICS FOR BDCS 

In a so-called “full” Wheatstone bridge sensor (Fig. 1), all 
four bridge resistances change in tandem in a manner that 
maximizes bridge sensitivity. In this case, the output voltage 
Vout is given by  

bias
out

bridge

V r
V

R
, 

where Vbias is a DC biasing voltage, Rbridge is the nominal bridge 
resistance and r is their resistance change. So-called “half” 
bridges are also used, in which two of the resistors are fixed. In 
this case, Vout will be a non-linear function of the ratio r/Rbridge, 

bias
out

bridge2
V r

V
R r

. 

However, this ratio will often be less than 1%, and so this non-
linearity can be neglected.  

      With Vbias in the order of a few Volts, Vout will usually be at 
the mV-level and so must be boosted by an IA before being 
applied to an ADC. This should be done efficiently, i.e. the 
BDC’s input-referred noise should be made as low as possible 
while consuming the least amount of energy. Some of the 
metrics for evaluating the energy-efficiency of IAs and ADCs 
will be discussed in the following. 

The energy-efficiency of IAs is often evaluated by 
calculating their noise efficiency factor (NEF) [9], as given by 

tot
n

t

2
4
I

NEF V
V kT BW

, 

where Vn is the amplifier’s input-referred noise voltage, Itot is 
its supply current, BW is its bandwidth and VT is the thermal 
voltage kT/q. The NEF expresses how an amplifier’s noise 
performance compares to that of a single bipolar transistor with 
the same current consumption [9]. Thus, a smaller NEF 
corresponds to better energy-efficiency. However, the NEF 
does not take the IA’s supply voltage VDD into account, which 
is application and process dependent, and so a more accurate 
metric is the power efficiency factor (PEF), defined as PEF =  
NEF2×VDD [20].  

BDCs typically employ high-resolution ADCs, whose 
resolution will then be thermal-noise limited. For such ADCs, 
the appropriate metric of energy-efficiency is the Schreier 
figure of merit (FoMS) [21], defined as 

S 10log BW
FoM DR

P
, 

where DR is the ADC’s dynamic range, and P is its power 
dissipation. It is often expressed in terms of SNDR, since, in 
many practical situations, distortion is just as bad as noise.  

It should be noted that FoMS is expressed in terms of 
relative noise (or distortion) levels. However, BDCs are 
usually designed to achieve an absolute level of input-referred 
noise, which should be commensurate with that of the bridge. 
Furthermore, the IA of a BDC will typically have significant 
gain (> 10), and so will determine the BDC’s noise 

performance. As such, when evaluating the energy-efficiency 
of BDCs, the NEF and/or PEF are better metrics than FoMS. 
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Fig. 2. A conventional input stage and a current-reuse input stage (a); A 
classic 3-Opamp IA and a CCIA (b). Noise-critical stages are indicated in red. 

III. GENERAL DESIGN RULES FOR ENERGY-EFFICIENCY 
In terms of energy efficiency, the most critical block of an 

IA is usually its input stage. This will usually have significant 
gain, and thus will minimize the noise contribution of 
succeeding stages. As shown in Fig. 2a, current-reuse input 
stages are more efficient than conventional input stages since 
they provide roughly double the transconductance for the same 
supply current. This comes at the expense of less output swing. 
But this is usually not a significant drawback in BDCs, since 
their IAs employ multi-stage topologies for high open-loop 
gain and thus high closed-loop gain accuracy. 
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The number of noise-critical input stages in an IA depends 
on the chosen architecture. For example, the classic 3-Opamp 
IA and the CFIA [22], have two, while the CCIA [23] only has 
one (Fig. 2b). As a result, CCIAs are in general more energy-
efficient than either 3-Opamp IAs or CFIAs.  
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Fig. 3. Noise analysis of a CCIA. 

However, CCIAs are usually configured as inverting 
amplifiers, and so their noise gain will be higher than their 
signal gain, thus degrading their energy efficiency. From Fig. 
3, the signal gain, GCCIA, and the noise gain, NG, of a CCIA 
can be calculated as follows: 

in
CCIA

fb

C
G

C
, 

in p fb

fb

C C C
NG

C
, 

where Cfb is the feedback capacitance, Cp is the parasitic 
capacitance of the input stage and Vn is its input noise. 
Compared to the input signal Vin, the input-referred noise will 
be amplified by a noise factor, F, which is given by 

in p fbCCIA

in

C C CG
F

NG C
.

For GCCIA > 10, Cin will be much larger than both Cp and 
Cfb, which means that F ~ 1. However, if large input devices 
are required, e.g. in low-noise applications, Cp may be quite 
large, thus increasing F and reducing energy-efficiency.  

By definition, F = 1 for open-loop amplifiers, which thus 
achieve the highest energy efficiencies. However, this comes at 
the expense of reduced gain accuracy, linearity and stability, 
making them unsuitable for bridge readout applications. In 
general, improving the energy-efficiency of IAs involves 
reducing the number of noise-critical stages and reducing the 
effect of feedback and parasitic impedances on the noise factor 
F, while taking care to preserve other key BDC specifications.  

IV. CONVENTIONAL BDCS 
A traditional 3-Opamp IA can provide a well-defined gain 

and high input impedance. However, its energy efficiency is 
relatively poor because its input stage consists of two high-gain 
opamps. Moreover, its CM input level is restricted by its output 
voltage range, making it difficult to sense CM levels close to 
the supply rails. In bridge readout applications, this limits the 
maximum value of Vbias, and, in turn, limits bridge sensitivity. 
Both CFIAs and CCIAs are much better in this regard.

A. CFIA based BDCs 
In a CFIA (Fig. 4), the input and feedback voltages are first 

converted to currents by transconductance stages Gmin and 
Gmfb, respectively. Their difference is then nulled by the 
amplifier’s overall gain. The voltage gain of the IA can then be 
expressed in terms of its feedback resistors R1 and R2 as, 

min 1 2
Gain

mfb 2

G R R
A

G R
. 

A CFIA has higher CMRR and input impedance than a 3-
Opamp IA. Its CMRR is mainly determined by the CMRR of 
Gmfb and can often exceed 120 dB [4]. It is also capable of 
handling input CM voltages that include either of the supply 
rails [22]. It is also more energy efficient, since both input 
stages share a single output stage  

The main disadvantage of the CFIA is its limited gain 
accuracy. Even with precision feedback resistors, this will be 
limited by the matching of Gmin and Gmfb, which will vary over 
PVT, as well as CM voltage, and is limited to about 0.5% [4].  
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Fig. 4. BDC based on CFIA with DTADC. 

As shown in Fig. 4, the gain accuracy of CFIA’s can be 
improved by dynamic element matching (DEM) and digitally 
assisted gain error-correction [4,5]. In this way, the mismatch 
between Gmin and Gmfb is averaged out and CM-dependent gain 
errors are minimized. In [4], such a CFIA was followed by a 
SC incremental delta-  ADC, resulting in 5 ppm INL 
and a 0.7 ppm/ºC gain drift. The best reported NEF for a CFIA-
based BDC is 10.4 [4]. 

B. CCIA based BDCs 
As discussed in Section III, CCIAs are usually more 

energy-efficient than 3-Opamp IAs and CFIAs [3,23,24]. 
Furthermore, their input capacitors naturally block CM 
voltages, allowing them to have CM voltage ranges that exceed 
their own supply rails [6]. Moreover, the gain of a CFIA is set 
by a ratio of capacitors, rather than resistors, and so is usually 
more stable and accurate.  

The main drawback of the CCIA is its limited input 
impedance. This is because its input capacitances Cin are 
periodically charged/discharged by the chopped input voltage 
±Vin. The resulting input impedance Zin  1/fchopCin, where fchop 
is the chopping frequency. Zin is typically in the order of a few 
mega-Ohms [6], which is somewhat low for bridge readout.  

Boosting a CCIA’s input impedance involves finding ways 
to ensure that the currents required to charge/discharge Cin are 
not drawn from the input signal Vin. In [6], this was achieved 
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by a capacitively-coupled positive feedback loop, which was 
driven by the output of the CCIA. In [7], an auxiliary pre-
charge buffer was used. The latter solution requires active 
blocks which cannot operate beyond the supply rails, and thus 
limit the CCIA’s CM input range. 
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Fig. 5. BDC based on CCIA with DTADC using a dynamic filter (a); BDC 
based on CCIA with gated CTADC (b). 

Another drawback of CCIAs is that they generate output 
spikes at 2fchop. These are caused by the finite slew rate of their 
output stages, which cannot instantaneously generate the 
chopped output voltage ±Vout dictated by the feedback loop and 
the choppers [6].  

To avoid introducing extra offset and non-linearity, the 
output spikes of a CCIA should not be digitized. In a discrete-
time ADC, this can be readily achieved by sampling the output 
of the CCIA just before the chopping transitions [6]. But the 
CCIA’s bandwidth then needs to be wide enough to ensure 
complete settling, which leads to increased noise aliasing. 
Furthermore, the ADC’s sampling frequency fs is now the same 
as 2fchop, which limits design flexibility. In [7], a dynamic filter 
(DF) was used to limit the noise bandwidth while maintaining 
settling accuracy (Fig. 5a). The resulting IA achieved an NEF 
of 6.4, at the expense of increased design complexity. 

Alternatively, the input of a continuous-time delta-sigma 
 can be gated to avoid the spikes [8]. As 

shown in Fig. 5b, the ADC’s input is shorted to a CM voltage 
during the spikes, and connected to the CCIA after the spikes 
have died out. Since the spikes are quite short, the use of gating 
only results in a small (2.5%) reduction in the CCIA effective 
gain. The design in [8] achieves an NEF of 5, as well as 12.5 
nV/ºC offset drift and 28 ppm INL, which represents the state 
of the art for this level of stability and linearity. 

C. Open- loop VCO-based BDCs 
Recently, VCO-based BDCs have been proposed. As 

shown in Fig. 6, these consist of an input transconductor  Gmin, 
whose output current drives a pair of current-controlled  
oscillators CCO1,2, whose output phase can then be sampled 
and differentiated to realize a 1st order sigma-delta modulator 
[24]. The open-loop input Gm stage confers high input 
impedance and energy-efficiency. In [10], an NEF of 4.6 was 
achieved with a simple and compact design. 
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Fig. 6. Open-loop VCO-based BDC. 

 However, the use of an open-loop Gm stage also results in 
poor gain accuracy and non-linearity (INL of 348 ppm). 
Moreover, CCO mismatch results in a residual offset of about 
50 μV, which is quite large for a BDC. 

V. DIRECT BDCS 
A conventional BDC usually requires two feedback loops, 

one around its IA and the other around its  ADC. Each loop 
should have enough gain to obtain high linearity, which 
typically requires at least two high gain amplifiers, and hence, 
increased complexity and area. Moreover, the BDC’s overall 
gain will be defined by at least two resistor/capacitor ratios [3-
8,10], making it twice as hard to achieve gain accuracy. To 
address these issues, a number of direct BDC architectures 
have been proposed, in which the IA and ADC have been 
embedded in a single feedback loop. 

A. Closed-loop CFIA-like BDCs 

A
Cint
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chop
Gmin

GmfbGmfb
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Filter
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Fig. 7. Closed-loop CFIA-like BDC: Gm-C  BDC. 

In [11], a CFIA and an ADC were embedded in the 
feedback loop of a single sigma-delta modulator. The result is 
shown in Fig. 7. Matched transconductors (Gmin and Gmfb) were 
used in both the signal and feedback paths, giving the 
modulator the high input impedance and CMRR of a CFIA. To 
accommodate the limited input range of Gmfb, however, the  
large-amplitude quantization noise generated by its 1-bit DAC 
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was first filtered by a 2nd order RC filter. This in turn required 
an extra feedback path to compensate for the extra delay in the 
feedback path. Compared to a conventional CFIA-based BDC 
with similar performance [4], the design in [12] required less 
area, but achieved a somewhat worse NEF of 12. To save more 
area, the combination of the 1-bit DAC and an analog filter 
could be replaced by a FIR filter [25]. 

B. Closed-loop CCIA-like BDCs 
A CCIA and an ADC can also be merged into a single 

sigma-delta modulator by embedding them in a CCIA-like 
capacitively-coupled feedback loop [26]. Like a CCIA, the 
resulting BDC only has a single noise-critical stage and so 
should inherit its energy efficiency, as well as its input 
characteristics: wide input CM range, high gain accuracy, but 
only moderate input impedance. The latter can be boosted with 
the same techniques used for CCIAs [6,7]. As in a closed-loop 
CFIA-like BDC, however, measures must be taken to ensure 
that the quantization noise fed back from the modulator’s DAC 
does not overload the input stage. 
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Fig. 8. Closed-loop CCIA-like BDC: Closed-loop VCO BDC. 

As shown in Fig. 8, a VCO-based ADC is embedded in a 
chopped and capacitively-coupled feedback loop [15]. A 5-bit 
DAC is used to ensure that the feedback quantization noise 
does not overload the input transconductor. Compared to the 
open-loop VCO-based BDC in [10], it achieves better linearity 
and a (10×) larger input range. However, it only achieves an 
NEF of 22.6, probably due to the non-idealities of its 
capacitive DAC such as charge injection and non-linearity. 
Although not intended for bridge readout, the design in [27] 
embedded a Gm-C integrator and a 5-bit SAR into a similar 
feedback loop. Compared to [15], it achieves better energy 
efficiency (an NEF of 7.8).  

C. Current-mode BDCs 
Instead of reading out the open-circuit output voltage of a 

Wheatstone bridge, another approach is to read out its short-
circuit output current. One example of this current-mode 
approach is shown in Fig. 9a, in which the bridge is connected 
to the input of a transimpedance amplifier (TIA). The output 
voltage Vout will then be a non-linear function of r, 

bias
out f2 2

bridge

2 V r
V R

R r
. 

In many cases, however, r/Rbridge will be less than 1%, and so 
this non-linearity can be neglected. To achieve high gain, the 
feedback resistance Rf, will be much larger than Rbridge, and so 
the BDC’s input-referred noise will be mainly determined by 
the TIA. A possible drawback is the fact that the BDCs gain 
will now be determined by Rf, whose temperature dependency 
and stability may not match that of the bridge. 
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Fig. 9. Wheatstone bridge interface with analog feedback (a); Wheatstone 
bridge interface with digital feedback (b). 

As shown in Fig. 9b, another variant on current-mode 
readout is to use a resistive DAC to balance the output of the 
bridge, and thus null its short-circuit output current. Balancing 
the bridge also maximizes its immunity to to variations in Vbias 
[16]. In [17], a Wheatstone bridge made from resistors with 
opposite temperature coefficients was used to realize a CMOS 
temperature sensor. The bridge was readout by connecting it to 
the virtual ground formed by the 1st integrator of a M. In 
the ratiometric case, i.e. when Vrefp = Vbias and Vrefn = GND, the 
modulator’s bitstream average μ is given by  

f2 2
bridge

2 r
R

R r
. 

In [17], the energy efficiency of the  could have 
been improved by chopping the 1st integrator and thus 
suppressing its 1/f noise. However, care should then be taken to 
avoid quantization noise fold-back, and the subsequent 
degradation of the modulator’s in-band noise. The usual 
approach is to choose fchop = fs, or, in the case of a FIR-DAC, 
ensuring that fchop coincides with one of its frequency-domain 
notches [28,29]. Alternatively, fchop can be chosen more 
flexibly by arranging the chopping transitions to coincide with 
the “zero” phases of a return-to-zero (RZ) DAC [30]. 
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By chopping the 1st integrator at fs, the temperature sensor 
in [18] achieves 10× more energy efficiency than the one in 
[17]. Its NEF is still only about 10, mainly because the DAC 
resistors degrade the noise factor of the 1st integrator (F ~ 1.4).    

VI. COMPARISON 
The performance of some selected BDCs is summarized in 

Table I. Note that none of the presented BDCs in this overview 
uses a current-reuse input stage, and so the differences in their 
energy-efficiency is mainly due to architectural differences.  

In general, conventional BDCs achieve better energy-
efficiency, than direct BDCs, as well as better accuracy and 
stability [8,10]. This is because their input stages can be 
optimized for the efficient and accurate amplification of small 
DC signal. Although the open-loop VCO-based BDC 
demonstrates good technology scalability and state-of-the-art 
energy-efficiency, it suffers from poor gain accuracy and 
linearity [10]. Direct BDCs are usually simpler and more 
compact than their conventional counterparts [12,15]. 
However, preserving this advantage, while achieving a 
competitive trade-off between energy efficiency and other 
important specifications, remains an open problem.  

TABLE I 

THE STATE-OF-THE-ART BDCS

 [4] [7] [8] [10] [12] [15] [18] 

Architecture CFIA+ 
 

CCIA+ 
 

CCIA+ 
 

Open-loop 
VCO 

Gm-C 
 

Closed-
loop VCO 

Current-mode 
 

Input stage PMOS NMOS PMOS PMOS PMOS PMOS PMOS 

Technology    40 nm  40 nm 0.18  

Area (mm2) 6 0.531 0.73 0.0145 3 0.06 0.73 

Supply Voltage (V) 5 3.3 1.8 1.2 5 1.2 1.8 

Supply Current (mA) 0.27 0.0751 1.2 0.015 0.24 0.0175 0.082 

±Input range (mV)  40 20 10 4 40 50 5793 

DC CMRR (dB) 140 109 134 91 120 -- -- 

CM Input Range (V) 0–2.5 0–3 0–3.3 0.15–0.65 0–2.5 -- 0.9 

INL (ppm) 5 5 28 2882 15 792 -- 

Gain Drift (ppm/ ºC) 0.7 0.81 8.9 -- -- -- -- 

Offset (μV) 0.05 1.8 7 50 1 300 -- 

Offset Drift (nV/ºC) 6 70 12.5 -- -- -- -- 

Input noise density 
 16.2 19 3.7 32 20 140 36 

NEF 10.4 6.41 5.0 4.8 12 22.6 10 

 
                   1. Without taking account of the ADC. 2. Estimated from THD. 3. Normalized to Eq. 1. 

 

As discussed in Section III, reducing the number of input 
stages is one way to improve energy-efficiency. For example, 
although the input stages of [4] and [8] both employ the 
PMOS-input folded-cascode topology. However, the CFIA [4] 
requires two input stages, while the CCIA [8], only requires 
one. This results in an NEF difference of about 2×.  

The noise factor also plays an important role in BDCs’ 
energy-efficiency. In Table I, the best NEF is achieved by an 
open-loop design (F = 1) [13], while the efficiency of [18], 

which also employs a single input stage, is degraded by a poor 
noise factor (F = 1.4).  

Among the selected BDCs, the CCIA-based designs [7,8] 
achieve a well-balanced performance in terms of energy-
efficiency, accuracy, and stability. However, to achieve this, 
efforts must be put to avoid digitizing the CCIA’s output 
spikes. Moreover, the CCIA’s input impedance needs to be 
boosted to properly amplify the bridge signal. 
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CONCLUSION 
This paper has presented an overview of several recently 

developed BDCs that target high energy-efficiency, including 
conventional BDCs, which consist of an IA followed by an 
ADC, and direct BDCs, which do not have an IA. As discussed 
in the paper, although direct BDCs are usually more compact, 
they are not as energy efficient as their conventional 
counterparts. The main reason stems from the fact that the 
noise-critical input stage of a direct BDC has to process both 
the output of the bridge and the output of a feedback DAC. The 
latter is then a source of extra input-referred noise. 
Furthermore, special care must be taken to ensure that 
chopping the input stage does not cause quantization noise 
fold-back and thus to even more in-band noise. Compared to 
conventional BDCs, this results in more complex designs, with 
multiple trade-offs between energy-efficiency and other 
important BDC parameters such as accuracy, stability and 
linearity. However, the energy efficiency gap is not that large 
and so will probably be bridged by future direct BDC designs. 
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