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CHIPMUNK: A Systolically Scalable 0.9 mm2,
3.08 Gop/s/mW @ 1.2 mW Accelerator for

Near-Sensor Recurrent Neural Network Inference
Francesco Conti∗†, Lukas Cavigelli∗, Gianna Paulin∗, Igor Susmelj∗, Luca Benini∗†

∗Integrated Systems Laboratory, ETH Zürich, Switzerland
†Energy-Efficient Embedded Systems Laboratory, University of Bologna, Italy

Abstract—Recurrent neural networks (RNNs) are state-of-the-art
in voice awareness/understanding and speech recognition. On-
device computation of RNNs on low-power mobile and wearable
devices would be key to applications such as zero-latency voice-
based human-machine interfaces. Here we present CHIPMUNK,
a small (<1 mm2) hardware accelerator for Long-Short Term
Memory RNNs in UMC 65 nm technology capable to operate
at a measured peak efficiency up to 3.08 Gop/s/mW at 1.24 mW
peak power. To implement big RNN models without incurring
in huge memory transfer overhead, multiple CHIPMUNK engines
can cooperate to form a single systolic array. In this way, the
CHIPMUNK architecture in a 75 tiles configuration can achieve
real-time phoneme extraction on a demanding RNN topology
proposed in [1], consuming less than 13 mW of average power.

I. INTRODUCTION
In the last few years, we have witnessed an “artificial in-
telligence” revolution that has been fueled by the concurrent
availability of huge amounts of training data, computing power
to learn upon it, and evolution of “smart” algorithms, in
particular those based on deep learning. Within this field,
recurrent neural networks (RNNs), particularly Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRU),
are receiving increasing attention: They have shown state-of-
the-art accuracy in tasks such as speech recognition [1], [2]
and language translation [3], making them the forefront of the
“intelligent” user interfaces of products such as Amazon Alexa,
Google Assistant, Apple Siri, Microsoft Cortana and others.
One of the key limitations of the current generation of com-
mercial products based on RNNs is that these embedded,
edge devices depend on remote servers taking care of the
computational workload necessary for the deployment of these
algorithms. Moreover, when RNNs are used as a component
of human-machine interfaces, the intrinsic latency of network
communication can also be problematic, as people expect the
“smart” devices to reply not only accurately, but also timely.
For these reasons, it is very attractive to integrate RNN capabil-
ities locally in embedded mobile and wearable platforms, mak-
ing them capable of state-of-the-art voice and speech recog-
nition autonomously and independent from external servers.
Nonetheless, while much attention has recently been dedi-
cated to the deployment of embedded low-power inference
accelerators for forward-only deep networks deployment [4]–
[8], making RNNs energy-efficient is a fundamentally harder
problem: the necessity to keep and update an internal state and
the widespread usage of densely connected layers translate to
very large memory footprint and high bandwidth requirements.
In this work, we present a twofold contribution towards the
deployment of RNN-based algorithms in devices such as
smartphones, smartwatches and wearables. First, we designed
CHIPMUNK, a small and low-energy hardware accelerator

engine targeted at real-time speech recognition and capable
to operate autonomously on moderate size LSTM networks.
We present silicon results from a prototype chip containing
a CHIPMUNK engine, which has been fabricated in UMC
65 nm technology; the chip can achieve up to 3.8 Gop/s at
maximum efficiency operating point (@0.75V), consuming
only 1.24mW.
Second, we conceived a scalable computing architecture, apt
to operate on bigger LSTM models as well. As the main
limitation to the deployment of big RNNs in embedded sce-
narios stems from their memory boundedness, we designed
the CHIPMUNK engines so that they can be replicated in a
systolic array, cooperating on a single bigger LSTM network.
This methodology allows the acceleration of large-scale RNNs,
which can be made fast enough to operate in real-time un-
der realistically tight time, memory and battery constraints
without requiring complex, power hungry and expensive high-
bandwidth main memory interfaces.

II. RELATED WORK
A recent thorough survey of efforts on hardware acceleration
and design of efficient shows that few efforts have been fo-
cused on RNN inference [9]. We thus focus on this application,
surveying state-of-the-art implementations from data-center to
ultra-low power accelerators in the remainder of this section.
Data center workloads for RNNs are often offloaded to
GPUs or specialized semi-independent co-processors such as
Google’s Tensor Processing Unit (TPU) [10] consuming in
the order of 50-300 W. The TPU is a unified architecture to
target DNNs with convolutional and densely connected layers
as well as LSTMs. However, TPUs suffer from low utilization
when running RNNs. Yet 29% of the workload running on
Google’s TPUs is devoted to RNN inference [10], showing
their relevance in commercial applications.
In a lower power range (tens of Watts), several FPGA im-
plementations can be found. The Efficient Speech-recognition
Engine (ESE) [11] targets the deployment of RNNs on a Xilinx
UltraScale FPGA. To maximize efficiency and address the
memory boundedness of RNNs, it heavily focuses on network
quantization and pruning of the recurrent topologies and thus
this accelerator engine is mainly targeted at sparse matrix-
vector operations. Rybalkin et al. [12] also target bidirectional
LSTMs in their FPGA accelerator. Bidirectional LSTMs have
been shown to obtain better accuracy in some cases [1] but are
less attractive for an online, real-time scenario as they inher-
ently increase the network latency. Finally, DeepStream [13]
is a small hardware accelerator deployed on a Xilinx Zynq
7020 targeted at text recognition with RNNs. It requires to
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Fig. 1. Data dependency graph of a LSTM. The majority of computations are
the vector-matrix mult. (green) and can be distributed across multiple chips.
Top-right: distribution of a vector matrix mult. to a systolic array of chips.

continuously stream in weights, which makes it impractical
for big RNN topologies with millions of weights.
The only published ultra-low power (few mW) implemen-
tation, the DNPU [14], uses two separate special-purpose
engines for convolutional layers (called CP), on one side,
and fully-connected and recurrent ones on the other (called
FRP). The FRP does not include any particular facilities to
address the stateful nature of RNNs, and it includes only a
small amount of memory (10 kB) making external memory
accesses necessary for even small RNNs, thus limiting peak
performance by introducing a serious bandwidth bottleneck.

III. ARCHITECTURE
A. Operating principle
Long Short-Term Memory (LSTM) network layers [15] are
often described with the following set of canonical equations:

it = σ(Wxixt +Whiht−1 +wci � ct−1 + bi) (1)
ft = σ(Wxfxt +Whfht−1 +wcf � ct−1 + bf ) (2)
ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc) (3)
ot = σ(Wxoxt +Whoht−1 +wco � ct + bo) (4)
ht = ot � tanh(ct) (5)

where x is the input state vector; i, f , o are called input,
forget and output gates respectively; c and h are the cell
and hidden states. The subscript indicates either the current
state t or the previous t − 1, and � denotes element-wise
multiplication1. The characteristic dimensions of all vectors
and matrices depend on the size of the input state (Nx) and
on that of the hidden state (Nh). Multiple LSTM layers can be
connected by using the hidden state of one layer as input of
the next. Finally, LSTM networks often include a final densely
connected layer without recurrence: yt = σ(Whyht).
In CHIPMUNK, we exploit two distinct observations regarding
LSTMs. First, all compute steps are based on the same set of
basic operations: i) matrix-vector products, ii) element-wise
vector products, and iii) element-wise non-linear activations.
The internal datapath of CHIPMUNK can be configured to
execute these three basic operations (Section III-B) and the
LSTM state parameters are stored on-chip. Second, the vast
amount of data required to compute one time step of a RNN

1 In most literature Eqs. (1), (2) and (4) use matrix notation for Wci, Wcf
and Wco; however as these matrices are diagonal by construction, we use
the element-wise product notation here for consistence with what is actually
implemented in the CHIPMUNK hardware.
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Fig. 2. LSTM datapath used in CHIPMUNK and typical sequence of
operations. The datapath can be used to implement the operations in Eqs. (1)
to (5) by appropriately controlling the muxes and clearing the register states.

are the weights. Storing them on-chip is thus essential to
achieve high energy efficiency. To this end, we a large share
of the overall chip area is dedicated to SRAM to keep the
weights local. For larger LSTMs not fitting on a single chip,
we allow operation in a systolic mode where the weights
are split across multiple connected chips and only the much
smaller intermediate results are exchanged as further discussed
in Section III-C.

B. Tile architecture
A product between a matrix of size A × B and a vector of
size B is composed of two nested loops, i.e. in pseudo-code:

for a in range(0, A): # row loop
for b in range(0, B): # column loop
z += W[a,b] * x[b]

In CHIPMUNK, the highlighted row loop is executed on multi-
ple parallel units, while the inner loop is executed sequentially.
Fig. 2a shows a high-level diagram of the CHIPMUNK LSTM
datapath that implements this functionality. Nlstm parallel
LSTM units are used to execute all the iterations of the row
loop at the same time. Each LSTM unit is composed of
an embedded memory bank to store weights (W ), registers
for storing the ot, ft, it and ct values locally, a multiply-
accumulate unit and two lookup tables to implement the non-
linear activation functions. xt and ht are kept outside of the
LSTM units, in a bank of Nlstm registers. At each cycle of
a column loop, one element of the input state and one of the
hidden state are selected depending on the iteration index and
broadcast to all LSTM units. Fig. 2b shows the basic operation
loops composing a LSTM network deployed on CHIPMUNK.
All state variables use 8 bit fixed point precision, while 16 bits
are used within the multiply-accumulate block to minimize
overflows. I/O is performed via an input stream port and an
output stream port, each consisting of 8 bits of data and 2 bits
to enable a simple ready/valid handshake. Weights are loaded
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at the beginning of the computation of a LSTM layer, and
inputs are streamed in sequentially. The internal state of the
LSTM cell in terms of cell state and hidden state is retained
between consecutive LSTM input “frames” to implement the
recurrent nature of the network. A CHIPMUNK engine can be
used to implement a full LSTM network with Nx, Nh ≤ Nlstm

storing the weights on chip. Larger networks require to stream
them in from an external source.

C. Systolic scaling
As the main target of the CHIPMUNK accelerator is to enable
ultra-low latency applications such as on-device real-time
speech recognition, the computing power of a single engine
might not be sufficient. A single engine cannot be arbitrarily
scaled up: LSTM units are all coupled to the same set of
registers via simple multiplexers, making it impractical to
increase Nlstm above a few hundred units. Instead, to provide
a more scalable and elegant solution, we designed CHIPMUNK
so that multiple engines can be connected as tiles and share
the burden of the RNN computation in a spatial fashion.
Fig. 3 shows how the computation is split between multiple
tiles in the case of a 3 × 3 array. The input state is split into
vectors of size Nlstm and each vector is broadcast vertically
along a column. The new value for the internal gates/states
is computed by accumulating the results computed by each
row. Finally, the last column can compute the output hidden
state, which is broadcasted vertically to the columns for the
next iteration (cf. Fig. 3c). For a given network size/systolic
configuration, these connections can be hard-wired such that
no external multiplexing is required.

IV. RESULTS & DISCUSSION
A. Silicon prototype & Comparison with State-of-the-Art
We designed and built a silicon prototype based on a single
CHIPMUNK tile as described in Section III-B. The prototype
chip was fabricated in UMC 65 nm technology, using high volt-
age threshold cells to minimize leakage. It features Nlstm = 96
LSTM units, which hold their weight and bias parameters in 12
separate SRAM banks (81.7 kB in total). The full chip, shown
in Fig. 4, occupies 1.57mm2 including the pads. The chip
exposes the interface described in Section III-C for tile-to-tile
communication, so that it would be possible to prototype a
systolic array using many discrete chips.
Fig. 4 shows the experimental results obtained by testing
the CHIPMUNK prototype at room temperature (25 ◦C). The
prototype is fully functional in an operating range between
0.75V (limited by SRAM failure) and 1.24V, corresponding
to a range of 20 to 168MHz of maximum clock frequency and
from 1.24 to 29mW of power consumption. The peak perfor-

mance in terms of operations per second2 of one CHIPMUNK
chip is 32.2 Gop/s (at 1.24V) and the peak energy efficiency
(3.08 Gop/s/mW) is reached at 0.75V.
Table I compares architectural parameters and synthetic results
between CHIPMUNK and the existing VLSI and FPGA-based
implementations for which performance and energy numbers
have been published. Our work reaches comparable perfor-
mance with the DNPU proposed by Shin et al. [14]. Perfor-
mance is obviously below that claimed by Google TPU [10],
but this is mostly due to the different size. In fact, despite
the TPU uses 28 nm integration, CHIPMUNK has 2.8× better
area efficiency - and a performance-wise “TPU-equivalent”
array with ∼115 CHIPMUNK engines would consume only
3.33W, an order of magnitude less than the TPU. CHIPMUNK
advances the state-of-the-art energy efficiency with respect to
the DNPU, showing a 39% improvement. Moreover, the DNPU
does not include any provision to address the fundamental
memory boundedness of RNNs, which CHIPMUNK addresses
via systolic scaling. All FPGA implementations [11]–[13] are
at least two orders of magnitude less energy-efficient.
In terms of arithmetic precision we have chosen to use 8 bit
fixed-point representations for storage and perform the MAC
operations with 16 bit precision. This is in line with Google’s
TPU and higher than the 4-7 bit of the DNPU.

B. Real-world speech recognition
To evaluate CHIPMUNK on a real-world problem, we tar-
geted CTC-3L-421H-UNI, a 3-layer, 421-hidden units per layer
LSTM topology introduced by Graves et al. [1], which takes
as input a stream of 123 Mel-Frequency Cepstral Coeffi-
cients (MFCCs) extracted from an audio stream and identifies
phonemes with an error rate of 19.6%, evaluated on the
TIMIT database. The MFCC input “frames” are produced with
a 10ms rate, which means that any embedded low-latency
real-time RNN implementation should be able to elaborate
the full network in less than this time. We evaluate three
different CHIPMUNK configurations: a systolic array of 75
units, divided in 3 sub-arrays of 5 × 5 engines; a single
array of 5 × 5 engines; and a single CHIPMUNK engine. The
largest configuration can host the full topology in a spatial
fashion; each of the sub-arrays hosts one layer of the RNN.
After the initial programming phase, it does not need any
reprogramming. The smaller arrays need to be reconfigured
at each new layer (in the 5 × 5 array case) or multiple times
per layer (in the single unit case).
Table II reports execution time and power for these three
configurations. Execution times include both computation and
reconfiguration, excluding only the initial configuration which
doesn’t need to be repeated for each new frame/layer. Bold
time/power values indicate configurations that can meet the
10ms deadline. As the CTC-3L-421H-UNI topology has ∼
3.8 × 106 weights, a 3 × 5 × 5 systolic configuration is best
used (all weights stored locally). Smaller configurations imply
a > 80% overhead for reloading weights.
Average power, also shown in Table II, is computed under the
assumption that the array is perfectly duty cycled when not
in use over the 10ms window. Even in the assumption that
the CHIPMUNK array is always-on, the 12.55 mW required to
process this network would only add ∼4% to idle power on

2As customary for neural network accelerators, we count 1 multiply-
accumulate as 2 operations.
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TABLE I. COMPARISON TO EXISTING VLSI AND FPGA IMPLEMENTATIONS

THIS WORK DNPU*[14] Google TPU†[10] Han et al.‡[11] Rybalkin et al. [12] Chang et al. [13]

Technology UMC 65 nm CMOS 65 nm CMOS 28 nm CMOS Xilinx XCKU060 Xilinx Z7045 Xilinx Z7020
Area core: 0.93 mm2 core*: ∼2.0 mm2 – 294k LUT 33k LUT 7.6k LUT

die: 1.57 mm2 die: 16.0 mm2 die: ∼300 mm2 453k FF 15k FF, 33 DSP 13k FF, 50 DSP
On-chip memory 82 kB 10 kB 28 MB 4.2 MB 332 kB –
Arithmetic 8-16 bit 4-7 bit 8-16 bit 12 bit, pruned 5-16 bit 16 bit
Number of MACs 96 64 66k – – 4
Core voltage 1.24 V / 0.75 V 1.1 V / 0.77 V – – – –
Frequency 168 / 20 MHz 200 / 50 MHz 700 MHz 200 MHz 166 MHz 142 MHz
Power 29.03 / 1.24 mW 21 / 2.6 mW 40-28 W 41 W ∼10 W 2.3 W
Peak performance 32.3 / 3.8 Gop/s 25 / 6.25 Gop/s 3.7-2.8 Top/s 2.5 Top/s (equiv.)‡ 152 Gop/s 0.389 Gop/s
Energy efficiency 1.11 / 3.08 Gop/s/mW 1.10 / 2.22 Gop/s/mW <0.13 Gop/s/mW 0.061 Gop/s/mW‡ 0.0152 Gop/s/mW 0.000146 Gop/s/mW
Area efficiency 34.4 Gop/s/mm2 12.5 Gop/s/mm2 12.3-9.3 Gop/s/mm2 – – –
* The DNPU is a mixed CNN-RNN processor. We report here only the figures related to the RNN subunit.
† We present here the values from [10] based on the two LSTMs for which they measured the performance. For both, the TPU is severely memory bandwidth limited.
‡ They assume a well-structured sparsity of 11.2% in the weight matrices. Reported numbers are dense-equivalent throughput. Underlying compute throughput: 282 Gop/s.

TABLE II. CTC-3L-421H-UNI SPEECH RECOGNITION LSTM
EXECUTED ON CHIPMUNK WITH A 10 MS CONSTRAINT

Configuration PERF @1.24V EFF @0.75V

Execution time
systolic 3×5×5 0.09 ms 0.76 ms

systolic 5×5 1.59 ms 13.31 ms
single 38.23 ms 321.14 ms

Peak power
systolic 3×5×5 1833.75 mW 165.75 mW

systolic 5×5 611.25 mW 55.25 mW
single 24.45 mW 2.21 mW

Average power
systolic 3×5×5 16.53 mW 12.55 mW

systolic 5×5 96.89 mW -

a typical smartphone (300 to 400 mW [16]). Adding a filter
to drop clearly uninteresting input (e.g. silence) would likely
decrease this overhead by an order of magnitude.

V. CONCLUSION
We have presented an architecture and silicon measurement
results for a small (0.9 mm2) RNN hardware accelerator pro-
viding 3.8 Gop/s at 1.2 mW in 65 nm digital CMOS technology,
resulting in new state-of-the-art energy and area efficiencies
of 3.08 Gop/s/mW and 34.4 Gop/s/mm2. The systolic design
is scalable to accommodate also large RNNs efficiently by
connecting multiple identical chips on the circuit board.
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