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Outline of Talk

• Introduction to Compute-In-Memory
– What memory?
– When is it useful?
– When is it not useful?

• Case Studies:
– SSD compute-in-memory for list intersection
– Mythic’s analog compute-in-memory for GPS correlation
– Mythic’s analog compute-in-memory for neural networks

• Conclusion
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Compute-in-Memory in a Nutshell

• Compute-in-memory is a broad range of techniques 
with a single underlying principal:

Sometimes it is better* to create additional 
compute at the memory than move data from 
the memory to the main compute.

* = faster and/or more efficient

• This is particularly important for today’s data 
processing applications, and post-Moore design.
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“In Memory” is Relative

• “Compute-in-Memory” is relatively to an existing 
system that has both compute and memory.

• Let’s consider a standard memory system
– There are progressively larger caches (including DRAM)
– Memory closer to CPU is faster & smaller
– Main memory is in SSD or HDD

CPU L1 L2 L3

Chip

DRAM SSD

Chips Small System
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“In Memory” is Relative

• Typically, CPU works on L1 Cache
• “Compute-in-Memory” could mean…

– Compute at L2/L3
– Compute in the DRAM chips
– Compute in the SSD
– Compute in an accelerator that contains memory

CPU L1 L2 L3

Chip

DRAM SSD

Chips Small System
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Memory Systems are Built for Data Access Patterns

• The existing memory structure has built-in 
assumptions:
– Temporal Locality

• If at one point a particular memory location is referenced, then 
it is likely that the same location will be referenced again in the 
near future.

– Spatial Locality
• If a particular storage location is referenced at a particular time, 

then it is likely that nearby memory locations will be referenced 
in the near future.

– Probability, not Certainty
• We do not know exactly what data will be needed next
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Data Access Patterns: Analysis Via “Working Set”

Working set: the amount of 
memory needed by the application 
over a period of time

Frequency of Use  (1/Period)

Amount of 
Memory Typical Access 

Pattern



2019 Custom Integrated Circuits Conference – Education Sessions Slide 7

SSD Size (Unlimited)

L3 Cache Size

DRAM Size

L1 Cache Size
L2 Cache Size

Caches Capture Small Working Sets

The cache system captures larger 
and larger working sets. The mostly 
infrequently used data is stored in 
system storage (SSD)

Frequency of Use  (1/Period)

Amount of 
Memory Typical Access 

Pattern
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SSD Size (Unlimited)

L3 Cache Size

DRAM Size

L1 Cache Size
L2 Cache Size

Compute-in-Memory Captures More Difficult Access Patterns

Some applications have access 
patterns that do not “play nice” with 
the traditional memory hierarchy

Frequency of Use  (1/Period)

Amount of 
Memory Difficult Access 

Patterns

Compute-in-
Memory systems 
can target these 
applications.



2019 Custom Integrated Circuits Conference – Education Sessions Slide 9

Other Reasons for Compute-in-Memory

• Deterministic Data Patterns
– In some cases, we know the exact data access pattern to 

be performed, so hierarchical memory systems do not 
provide a benefit and are inefficient.

• ASIC Capabilities Further Minimize Data Movement
– In other cases, we can build in ASIC capabilities that take 

advantage of known data patterns.

• Analog Computation
– In extreme cases, analog computation can be added to 

achieve most minimal data movement.
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Compute-in-Memory is Not Always Useful

• General Purpose Computing
– You need an application to take advantage of.

• Low Application Importance
– If this application is not >90% of the system time or 

power, then you will not be able to get a 10x 
improvement.

• Small Working Sets
– Compute-in-memory often requires relatively large 

working sets to make sense.
– Applications that fit in L1 cache are hard to improve.
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SSD In-Storage Computing for List 
Intersection

J. Wang, D. Park, Y.S. Kee, Y. 
Papakonstantinou, S. Swanson

UC San Diego, Samsung

Data Management on New Hardware, 2016
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Remember: “In Memory” is Relative

• Typically, CPU works on L1 Cache
• “Compute-in-Memory” could mean…

– Compute at L2/L3
– Compute in the DRAM chips
– Compute in the SSD!
– Compute in an accelerator that contains memory

CPU L1 L2 L3

Chip

DRAM SSD

Chips Small System

Accelerator



2019 Custom Integrated Circuits Conference – Education Sessions Slide 13

Case Study: List Intersection

• List intersection finds the common elements in a 
set of data

• Intersection is prominent in search engines and 
analytics queries (lots of data)

• Speed of list intersection is dependent on many 
parameters: algorithm, list length and correlation

Are the data usage requirements amenable to 
compute-in-memory?
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SSD Architecture

• Modern SSDs are typically architected with a higher 
(2-4x) internal bandwidth than the host interface 
bandwidth

• Using the SSD controller as an off-load engine to 
execute some programs
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Smart SSD Architecture

New firmware 
layer for 

running these 
algorithms
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Smart SSD Host Interaction

• Host system sends only metadata to the Smart SSD 
(addresses, lengths of lists)

• Load lists are stored on the Smart SSD
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Effects on Smart SSD Performance: Entry 
Size

• Larger entry size improves both execution time and 
energy compared to regular SSD implementation

• Above 256 entry size, load data is dominant
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Remember: Uniform workload is better!

• Compute-in-memory is better for uniform data 
workload applications  (wide access pattern)

• Consistently accessing a large set of data

SSD Size (Unlimited)

L3 Cache Size

DRAM Size

L1 Cache Size
L2 Cache Size

Frequency of Use  (1/Period)

Amount of 
Memory Wide Access 

Pattern
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However: Larger amount of data is better too

• Workload looks similar, except for the amount of 
data

• Compute-in-memory benefits applications that 
have memory loads as the primary bottleneck

SSD Size (Unlimited)

L3 Cache Size

DRAM Size

L1 Cache Size
L2 Cache Size

Frequency of Use  (1/Period)

Amount of 
Memory Need large 

dataset to 
make sense
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A 36.8 2b-TOPS/W Self Calibrating GPS 
Accelerator Implemented Using 

Analog Calculation in 65nm LP CMOS

Skylar Skrzyniarz1,2, Laura Fick2, Jinal Shah2, Yejoong Kim2,
Dennis Sylvester2, David Blaauw2, David Fick1, Michael B. Henry1

1Mythic (fka Isocline), Austin, TX
2University of Michigan, Ann Arbor, MI
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GPS is a 4-Dimensional Search

• Need to find X, Y, 
Z, and T

• Calculated by 
acquiring time 
offset from 4+ 
satellites

• GPS is a CDMA 
signal
– Received below 

thermal noise 
floor

Ed ti SSSSSSS i Slid

X

Y
Z

T
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Executing GPS Acquisition: The Problem 

• Time-domain search
• Timing offset (T) is 

calculated
– Done through 

correlation
• 1000’s of 2-bit vector 

multiply
• 1000’s of results to 

accumulate
• Pattern is very long

– Reject noise
– Increase gain

GPS 
Satellite

GPS 
Receiver

T
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Executing GPS Acquisition: The Problem 

• Requires many 
operations
– (10-350)×109 for civilian 
– 35×1012 for military

• Energy intensive
– 19-665 mJ per satellite

• Time consuming
– 10-350 ms per satellite

strong signal ≈ 19mJ, 
10ms

weak signal ≈ 665mJ, 
350ms



Analog Calculation as the 
Solution
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Analog Calculation

Example Uses

Advantages

Disadvantages

�Multiply �Absolute-value-
of-difference

�Summation

�Energy efficient
�Result is a 
voltage

�Energy efficient
�Area efficient

�Can use many 
inputs
�Process tolerant

�Area
�Variation

�Special device
(flash)
�Variation

�Lower energy 
efficiency

I1 I2

I3=I1+I2
Vt

CurrentConductanceCharge

Kramer, A.H
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Analog Calculation: 
Adding 4096 2-Bit Numbers

Large adder 
tree needed for 
many addends

�Digital:
� 8168 full adders
� 15 stage tree
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Analog Calculation: 
Adding 4096 2-Bit Numbers

Large adder 
tree needed for 
many addends

Multiplication
ControlMultiplication

Control

Summation Wire

Digital
Inputs

Control Individual
Currents

Combined
Current

Logic Cells

Single Wire Summation
Regardless of how 

many addends

� Digital:
� 8168 full adders
� 15 stage tree

� Analog:
� Current-mode summation
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Analog Calculation:
Application Advantages

• Main challenge of analog calculation is added noise
– Noise ↓ as input terms ↑
– GPS has many input terms

• Correlation result has narrow dynamic range
– Zero mean result
– 48.5-to-51.5% vs. 0-to-100%
– High resolution

• 0.5% change in current per LSB

– Circuits heavily optimized for this small range
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Performing a Calculation:
Initialization 

CURRENT_SUM_POS

CURRENT_SUM_NEG

RESULT_NE
G

RESULT_P
OS

VRE
F

Time

VRE
F

Time

Voltage

Equalizing 
Opamp VREF

Sample/
Hold

3-Bit 
Flash
ADC

RESULT_POS
CURRENT_SUM_POS

CURRENT_SUM_NEG

ADC_OUT<2:0>

RESULT_NEG

NEGPOS

4096 Cells
12288 Current 
Steering Sources

PATTERN_IN

PATTERN_OUT

DATA_IN<3:0>

CM 
Opamp

Voltage
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Performing a Calculation:
Execution (48.5%)

VREF

VREF

RESULT_NEG

RESULT_POS

EQ and CM 
amps keep 
current 
constant

~100’s uV

∆V1 -100 mV

Voltage

Voltage

Pattern Shifts

CURRENT_SUM_NE
G

CURRENT_SUM_POS

Time

Time
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Performing a Calculation:
Execution (51.5%) 

VRE
F

VRE
F

Pattern 
Shifts

Cells flip 
opposite 
direction

∆V2 100 
mV

CURRENT_SUM_POS

CURRENT_SUM_NEG

RESULT_NEG

RESULT_POS

∆V1 -100 mV

Voltage

Voltage

Time

Time
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Performing a Calculation:
Execution (50%)

VRE
F

VRE
F

Pattern 
Shifts

Cells near
50%

∆V3 0 
mV

∆V1 -100 mV

Voltage

Voltage

Time

∆V2 100 
mV

Time

CURRENT_SUM_POS

CURRENT_SUM_NEG

RESULT_NEG

RESULT_POS
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Die Photo

• TSMC65LP � All biases generated on-chip � 0.325 mm2

1024 Cells 1024 Cells

1024 Cells 1024 Cells

Analog
Chain

Digital
Control

& 
Decap
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Results:
Implementation vs. Ideal

• Digital simulation is ideal
• Single pass through 

matched filter
– 4096 correlation calculations

� Measured output 
overlaid digital
� 170 MHz
� 25 C
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Results: Analog Computation

• Signal has 
inherent noise
– RF front-end

• Analog 
computation 
noise:
– 10× lower
– Dominated by 

current 
source 
variation
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Results: Comparison

• 340-27,000×
performance 
increase

• 67× energy 
efficiency 
increase

• Scalable for 
application

This Work  MITRE ISCAS’11JSSC’05

Topology

Clock 
Frequency 

(MHz)

TOPS
Power (mW)

TOPS/W

Technology

Vector Length

Quantization

Area (mm2)

VDD (V)

Digital storage/
switched current

All digital Analog storage/
switched capacitor

Analog storage/
switched current

170

0.70*

18.9*

36.8

65 nm

4,096*

2-bit

0.325*

1.20 (Analog) 
1.15 (Digital)

20.46

1.05

1,900

0.55

180 nm

51,150

2-bit

88.0

1.8

0.2

2.56E-5

0.0004

64.0

130  nm

128

Analog

0.13

1.0

8

2.05E-3

2

1.05

350 nm

256

Analog

0.54

2.0

*The design could be tiled to proportionally scale these metrics.

TOPS/mm2 2.154* 0.0119 0.0001970.0038
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Conclusion

• Implemented a 36.8 2b-TOPS/W matched filter for 
GPS application

• Uses analog calculation to achieve improvement in:
– Energy

• 67× gain in energy efficiency compared to all-digital 
implementation 

– Performance
• 340-27,000× higher performance than previous analog 

implementations

– Area

• Analog calculation has negligible noise contributions



2019 Custom Integrated Circuits Conference – Education Sessions 

Analog Computation in Flash Memory for 
Datacenter-scale AI Inference in a Small Chip

Dave Fick, CTO/Founder
Mike Henry, CEO/Founder

HotChips 2018
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DNNs are Largely Multiply-Accumulate

Primary DNN Calculation is   Input Vector * Weight 
Matrix = Output Vector

Input Data
Neuron Weights Outputs Equations

Key Operation:  Multiply-Accumulate, or “MAC”

Figure of Merit: How many picojoules to execute a MAC?
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Memory Access Includes Weight Data and 
Intermediate Data

Input Data
Neuron Weights Outputs Equations

“Intermediate Data”

“Weight Data”
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For a 1000 input, 1000 neuron matrix….

Intermediate Data Accesses are Naturally Amortized

1,000 Inputs
1,000,000 Weights 1,000 Outputs

Intermediate data accesses are amortized 64-
1024x since they are used in many MAC operations
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For a 1000 input, 1000 neuron matrix….

Weight Data Accesses are Not Amortized

1,000 Inputs
1,000,000 Weights 1,000 Outputs

Weight data could need to be stored in DRAM, and it does 
not have the same amortization as the intermediate data
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DNN Processing is All About Weight Memory
Network Weights MACs …@ 30 FPS

AlexNet1 61 M 725 M 22 B

ResNet-181 11 M 1.8 B 54 B

ResNet-501 23 M 3.5 B 105 B

VGG-191 144 M 22 B 660 B

OpenPose2 46 M 180 B 5400 B

10+M parameters to store

20+B memory accesses

How do we achieve…
– High Energy Efficiency
– High Performance
– “Edge” Power Budget (e.g., 

5W)

1: 224x224 resolution
2: 656x368 resolution

Very hard to fit this 
in an Edge solution
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Common Techniques for Reducing Weight Energy 
Consumption

Weight Re-use
• Focus on CNN

– Re-use weights for multiple 
windows

– Can build specialized 
structures

� Not all problems map to 
CNN well

• Focus on Large Batch
– Re-use weights for multiple 

inputs
� Edge is often batch=1
� Increases latency

Weight Reduction
• Shrink the Model

– Use a smaller network that 
can fit on-chip  (e.g., 
SqueezeNet)

� Possibly reduced capability

• Compress the Model
– Use sparsity to eliminate up 

to 99% of the parameters
– Use literal compression
� Possibly reduced capability

• Reduce Weight Precision
– 32b Floating Point => 2-8b 

Integer
� Possibly reduced capability



2019 Custom Integrated Circuits Conference – Education Sessions 

Key Question: Use DRAM or Not?

Benefits of DRAM

� Can fit arbitrarily large 
models

� Not as much SRAM needed 
on chip

Drawbacks of DRAM

� Huge energy cost for 
reading weights

� Limited bandwidth getting 
to weight data

� Variable energy efficiency 
& performance depending 
on application

Slide 45
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Common NN Accelerator Design Points

Enterprise
With DRAM

Enterprise
No-DRAM

Edge
With DRAM

Edge
No-DRAM

SRAM <50 MB 100+ MB < 5 MB < 5 MB

DRAM 8+ GB - 4-8 GB -

Power 70+ W 70+ W 3-5 W 1-3 W

Sparsity Light Light Moderate Heavy

Precision 32f / 16f / 8i 32f / 16f / 8i 8i 1-8i

Accuracy Great Great Moderate Poor

Performance High High Very Low Very Low

Efficiency 25 pJ/MAC 2 pJ/MAC 10 pJ/MAC 5 pJ/MAC
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Mythic is Fundamentally Different

Enterprise
With DRAM

Enterprise
No-DRAM

Edge
With DRAM

Edge
No-DRAM

Mythic
NVM

SRAM <50 MB 100+ MB < 5 MB < 5 MB < 5 MB

DRAM 8+ GB - 4-8 GB - -

Power 70+ W 70+ W 3-5 W 1-3 W 1-5 W

Sparsity Light Light Moderate Heavy None

Precision 32f / 16f / 
8i

32f / 16f / 
8i

8i 1-8i 1-8i

Accuracy Great Great Moderate Poor Great

Performance High High Very Low Very Low High

Efficiency 25 pJ/MAC 2 pJ/MAC 10 pJ/MAC 5 pJ/MAC 0.5 pJ/MAC
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Mythic is Fundamentally Different

Enterprise
With DRAM

Enterprise
No-DRAM

Edge
With DRAM

Edge
No-DRAM

Mythic
NVM

SRAM <50 MB 100+ MB < 5 MB < 5 MB < 5 MB

DRAM 8+ GB - 4-8 GB - -

Power 70+ W 70+ W 3-5 W 1-3 W 1-5 W

Sparsity Light Light Moderate Heavy None

Precision 32f / 16f / 
8i

32f / 16f / 
8i

8i 1-8i 1-8i

Accuracy Great Great Moderate Poor Great

Performance High High Very Low Very Low High

Efficiency 25 pJ/MAC 2 pJ/MAC 10 pJ/MAC 5 pJ/MAC 0.5 pJ/MAC

Also, Mythic does this in a 40nm 
process, compared to 7/10/16nm
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Mythic is a PCIe Accelerator
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We Also Support Multiple IPUs
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Mythic’s New Architecture Merges Enterprise 
and Edge

Mythic introduces the
Matrix Multiplying Memory
– Never read weights

This effectively makes weight 
memory access energy-free
(only pay for MAC)

And eliminates the need for…
– Batch > 1
– CNN Focus
– Sparsity or Compression
– Nerfed DNN Models

Made possible with
Mixed-Signal Computing 

on embedded flash
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Revisiting Matrix Multiply

Primary DNN Calculation is   Input Vector * Weight 
Matrix = Output Vector

Input Data
Neuron Weights Outputs Equations

Flash Transistors
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Analog Circuits Give us the MAC We Need
Flash transistors can be 
modeled as variable resistors
representing the weight

The V=IR current equation 
will achieve the math we 
need:

Inputs (X) = DAC
Weights (R) = Flash transistors
Outputs (Y) = ADC Outputs

The ADCs convert current to 
digital codes, and provide the 
non-linearity needed for DNN

V2

RA2

V1

RA1

V0

RA0

RB2

RB1

RB0

RC2

RC1

RC0

YA YB YC

ADC ADC ADC

  DAC

  DAC

  DACX2

X1

X0
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DACs & ADCs Give Us a Flexible Architecture

We have a digital top-
level architecture:

• Interconnect

• Intermediate data 
storage

• Programmability 
(XLA/ONNX => Mythic 
IPU)

V2

RA2

V1

RA1

V0

RA0

RB2

RB1

RB0

RC2

RC1

RC0

YA YB YC

ADC ADC ADC

  DAC

  DAC

  DACX2

X1

X0
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To Simplify we use Digital Approximation

To improve time-to-
market, 
we have left the Input 
DAC as a future endeavor

We achieve the same 
result through digital 
approximation

Silver lining: we have 
future improvements 
available

V2

RA2

V1

RA1

V0

RA0

RB2

RB1

RB0

RC2

RC1

RC0

YA YB YC

ADC ADC ADC

Dig
Approx

Dig
Approx

Dig
ApproxX2

X1

X0
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We Account For All Energy Consumed

Analog 
Compute

0.25

Digital 
Storage

0.1

Control 
Logic
0.05

PCIe 
Port
0.1

Energy (pJ/MAC)
Total = 0.5

Numbers are for a typical 
application, e.g. ResNet-50
– Batch size = 1
– We are relatively application-

agnostic (especially compared to 
DRAM-based systems)

8b analog compute accounts for 
about half of our energy
– We can also run lower precision
– Control, storage, and PCIe 

accounts for the other half
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Example Application: ResNet-50

Running at 224x224 resolution.  Mythic estimated, GPU/SoC measured

GPU Performance in an Edge Form Factor!
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Example Application: OpenPose

Running at 656x368 resolution.  Mythic estimated, GPU/SoC measured
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Mythic Mixed-Signal Computing

Input
Data Activations

Weight 
Storage 

+
Analog Matrix 

MultiplierDi
gi

ta
l t

o 
An

al
og

An
al

og
 T

o 
Di

gi
ta

l

SRAM RISC-V

SIMD Router

Single Tile

Made possible with
Mixed-Signal Computing 

on embedded flash
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Mythic Mixed-Signal Computing

Input
Data Activations

Weight 
Storage 

+
Analog Matrix 

MultiplierDi
gi

ta
l t

o 
An

al
og

An
al

og
 T

o 
Di

gi
ta

l

SRAM

Scene 
Segmentation

Example DNN Mapping (Post-Silicon)
O

bject Tracking

Camera 
Enhancement

Tiles 
Connected in 

a Grid

RISC-V

SIMD Router

Single Tile

Network 
Connections Expandable Grid of Tiles
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System Overview

Initial Product
• 50M weight capacity
• PCIe 2.1 x4
• Basic Control Processor

Envisioned Customizations (Gen 1)
• Up to 250M weight capacity
• PCIe 2.1 x16
• USB 3.0/2.0
• Direct Audio/Video Interfaces
• Enhanced Control Processor (e.g., ARM)

Intelligence Processing Unit (IPU)

Scene 
Segmentation

Object
Tracking

Camera 
Enhancement

PCIE
Control Processor
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Wrapping Up
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What is Possible with Compute-in-Memory?

• >10x improvement in energy efficiency
• >10x improvement in performance

• Application specific benefits
– Not every algorithm can benefit from CiM!
– Some benefit more than others
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Compute-in-Memory Considerations

• What does the working set look like?
– Is it “wide”?
– Is it “large”?

• How important is this algorithm to our system?
– Does it use up 90% of something?

• How predictable are our data patterns?
– Can we reduce data movement somehow?


