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Abstract—Many computational intelligence techniques for 
anomaly based network intrusion detection can be found in 
literature. Translating a newly discovered intrusion 
recognition criteria into a distributable rule can be a human 
intensive effort. This paper explores a multi-modal genetic 
algorithm solution for autonomous rule creation. This 
algorithm focuses on the process of creating rules once an 
intrusion has been identified, rather than the evolution of rules 
to provide a solution for intrusion detection. The algorithm 
was demonstrated on anomalous ICMP network packets 
(input) and Snort rules (output of the algorithm). Output rules 
were sorted according to a fitness value and any duplicates 
were removed. The experimental results on ten test cases 
demonstrated a 100 percent rule alert rate. Out of 33,804 test 
packets 3 produced false positives. Each test case produced a 
minimum of three rule variations that could be used as 
candidates for a production system.  

Keywords-Intrusion detection; Computational intelligence; 
Genetic algorithms 

I.  INTRODUCTION 
In the voluminous amounts of research on anomaly based 

intrusion detection systems, little consideration has been 
given to a posteriori communication mechanisms [1]. 
Anomaly based systems typically produce two types of 
output (anomalous or not, perhaps with a companion 
confidence score). Other systems provide a label associating 
the data with a known attack type i.e. Denial of Service [2]. 
If the ability to identify a novel intrusion is valuable in one 
network it seems reasonable that knowledge gleaned from 
those efforts would be useful in another. Given the numerous 
different implementations of anomaly detection and the 
resulting unique knowledge representations used to find 
anomalies, there does not appear to be an automated solution 
to translate the newly discovered detection criteria into a 
more widely accessible format.  Indeed this knowledge 
transfer is typically performed by a human expert manually 
examining the traffic and creating a rule. The rule can 
subsequently be used as input to any system capable of 
deciphering the syntax. 

There are two fundamental approaches for Network 
Intrusion Detection Systems (IDS): behavior and rule based. 
Behavior based systems typically maintain a model of 
normal system behavior and raise exceptions when 
parameters fall outside the norm. Computational intelligence 
algorithms such as neural networks and clustering have been 

shown to be effective solutions at identifying anomalous 
behaviors [3], [4]. Rule based systems use widely 
distributable predefined signatures to detect known network 
issues. 

The cost of developing and maintaining rule sets is an 
important issue for the rule based systems. Human experts 
are required to create, test and distribute the rules. Given a 
network trace containing anomalous packets, an expert must 
investigate the numerous attributes that uniquely identify the 
attack. This involves laboriously examining the packets for 
information and creating a candidate rule. Correct rule 
creation is then a manual process of trial and error where 
each trial run is examined for a proper alert on a test file of 
captured network data. Finally, if the expert chooses to do 
so, the rule is submitted to a rule repository where it may be 
accepted into a public distribution system.  

This paper explores a solution to autonomously create 
IDS rule sets utilizing evolutionary computation techniques. 
This is accomplished by implementing a Genetic Algorithm 
(GA) to autonomously create rules from identified network 
packets that are indicative of system misuse. These packets, 
used as input, originate from network traffic identified by a 
behavior based IDS. The resulting rules from processing the 
packets may not always be optimal for direct distribution but 
should provide a basis for reducing subsequent expert 
analysis effort. The system described here can be considered 
as a one way communication mechanism bridging the two 
types of intrusion detection systems. 

The GA chosen for implementation provides multiple 
near optimal unique rules that are made available for further 
evaluation by a human expert. It would be a straightforward 
process to simply provide a single rule that contains all 
possible attributes of a given network packet. However this 
could lead to over-fitting of the rule to a single attack 
instance. In general, the more specific a rule is the more 
likely it is to eliminate false positives. However, if a rule is 
too specific it may become brittle in the sense that any minor 
variation in the attack may be missed. In addition, the more 
detailed a rule becomes, the more computational effort is 
required to process it. 

The problem we are solving is similar in approach but 
different in context from past work in network intrusion 
detection. Previous work as in [5] was primarily concerned 
with developing a multiple rule set able to separate known 
behavior from unknown. Our effort is to produce a set of 
near optimal IDS rules for a single specific anomalous 



instance previously detected by a behavior based system. 
This is accomplished via use of a GA that has several unique 
characteristics differing from previous research efforts, 
namely the representation of the population as syntactically 
correct Snort rules (as opposed to binary or researcher 
created syntax) and a three part fitness function. This fitness 
function is designed to optimize the resulting rule sets for the 
Snort rule engine based on published best practices and 
characteristics of historical rule repositories.  

As a consequence of the population representation a 
unique distance method was required. The cardinality of the 
rule genotype attributes is variable. Gene features may be 
removed or added as Snort rules are not limited to a fixed 
number of fields. There are optional fields and most 
production rules contain a variety of them. Because of this, 
mutation and crossover required special consideration as 
well. The presented GA solution accommodates these 
features. 

The input data is different than prior work as well. In this 
case a single instance of labeled data is presented to the 
system and the rule set is evolved to detect it. The question is 
can this be done without producing a rule that provides a 
positive response to network traffic that is not an anomaly 
(false positive).  

II. BACKGROUND 
Genetic Algorithms are an effective heuristic search 

technique inspired by concepts of evolutionary biology. 
They became popular with the published work of John 
Holland in the 1970’s. For an evolutionary algorithm to be 
categorized as a GA it needs a population representation of 
possible solutions, variation operators, selection and 
replacement mechanisms. When optimizing multi-modal 
functions a conventional GA’s population tends to converge 
to one of the optimal, or near optimal points. 

A specific implementation of a GA called Restricted 
Tournament Selection (RTS) provides a solution for 
maintaining several optimal solutions in the population [6]. 
This modification is possible because a GA utilizes a 
population of many (hundreds, thousands or more) possible 
solutions. This is effective in situations when the fitness 
function is not capable of representing the fitness with a high 
fidelity. An evaluation function is used to determine the 
‘fitness’ of individuals in a population. This fitness is a 
measure indicating how well the individual solves a given 
problem. 

The RTS algorithms ability to maintain several fit 
solutions will be leveraged to produce unique rules that alert 
on a given anomalous packet. This assumes that the solution 
surface for generating rules is not uni-modal. There are 
several syntax models available for the rule format. Because 
of its widespread use the Snort rule format was implemented. 

A. Snort 
Snort is an open source IDS created by Martin Roesch 

[7]. It is capable of performing protocol analysis, content 
searching/matching and utilizing predefined signatures. 
Several signature rule sets are available for use including 
those officially approved by the Sourcefire Vulnerability 

Research Team (VRT) and those contributed by other 
communities. Three sources for acquiring rules were used in 
this project. The first two sets are VRT certified rules and 
community rules available online at http://www.snort.org. 
The third set was obtained from emerging threats and is 
available online at http://www.emergingthreats.net. All of 
these sets combined to define 16,181 rules including 146 
ICMP specific rules. 

Snort supports a simple rule language that matches 
against network packets, generating alerts or log messages. 
Rules are broken into two logical areas: rule headers and rule 
options [8]. Rule headers contain required protocol fields 
that every rule must have and rule options contain a list of 
optional information used to refine a match. The rule field 
format and an example rule are as follows: 

 
<action><protocol><sourceIP><sourcePort><direction> 
<destIP> <destPort> (<rule options>) 

 
alert tcp any any -> 192.168.1.0 21 (content:”USER”) 

 
The rule action tells Snort what to do when a match 

occurs. A common action, as shown in the example, is to log 
information to an alert file. The protocol field specifies one 
of four possible values: TCP, UDP, ICMP and IP. Each 
value has options specific to the protocol available for use in 
the option section. The source IP address field can contain 
the keyword “any”, a single IP address or a CIDR (Classless 
Inter-Domain Routing) block. CIDR blocks allow for 
specifying ranges of IP addresses. Port numbers may be 
specified as a single static port, a range or use the keyword 
“any”.  

There are two direction operators. One specifies that the 
source and destination portions of a rule must match the 
appropriate items from a packet. The bidirectional operator 
indicates that the source and destination sections can match 
either portion of a packet. This allows for tracking two way 
conversations as seen between a typical client and server 
application. 

Rule options provide further refinement of matching 
parameters and tie the rule to a rule identification system. 
There are four major categories of rule options: general, 
payload, non-payload and post-detection. General options 
provide information about the rule such as reference 
information, rule identification and specific log messages. 
Payload options examine data contained in the packet data 
such as content matching expressions. Non-payload options 
provide matching specifications against packet header data 
outside of ports and IP addresses. Options include fragment 
offsets, time-to-live values and specific IP options. 

B. Snort Rule Processing 
This section briefly describes how Snort internally 

processes rules and a required modification to that process. 
The rule can be seen as a Boolean truth statement. In order 
for Snort to identify a match, a logical and of all positive 
field matches is utilized. Upon discovery of a false condition 
in the and evaluation, further processing of that rule is 
halted. 



Snort builds a tree data structure used to compare rule 
values against packet features. Each mandatory field in a rule 
is stored in rule tree node (RTN). An OTN (optional tree 
node) is associated with an RTN and used to store optional 
rule fields. If multiple rules have the same RTN fields they 
are only represented by a single node. This optimization 
feature allows for removal of multiple rules from 
consideration once a negative match occurs.  

The optimization aspect of this rule tree structure 
implementation is detrimental to our proposed GA fitness 
algorithm discussed in section 3. If the Snort engine 
processes a rule section that proves false, that rule is no 
longer considered for a possible match. This is a logical 
performance enhancement that speeds the execution of the 
rule engine. However this short circuit of rule evaluation 
prevents using a modified Snort source as a basis for rule 
fitness evaluation. 

An attempt was made to encourage the GA to craft good 
rules to reduce human expert analysis effort spent on 
examining the rules produced. Good being a subjective term 
we have defined it in respect to three measurements. First the 
rule has to be able to recognize the packet as being an 
anomaly. Second it should conform to a grammar checker 
called dumbpig produced by Ward [9]. This tool parses a 
rule, reports on badly formatted entries, incorrect usage, and 
alerts to possible performance issues. Finally the rule should 
be similar in the number and type of fields used in existing 
rules. The assumption being that these rules have been vetted 
by the community of experts and are therefore worthy of 
emulation. 

III. EXPERIMENTAL APPROACH 
This section describes the implementation details of the 

final solution. The input data processing and its 
representation are presented. This data is fed to a GA 
implemented with RTS. A fitness function implemented in 
three parts is described. The resulting rules produced by the 
GA are then sorted by fitness and the top three rules are 
presented as possible solutions. 

A. Input Processing 
It is assumed that the anomalous network traffic will 

already have been identified in advance. Systems such as 
those described by Linda et al [3] and Taylor with Alves-
Foss [4] are capable of isolating this kind of traffic. The 
network traffic data is expected to be contained in a PCAP 
formatted file. PCAP data files have become industry 
standard and are the output of an application programming 
interface library called libpcap. Utilizing the Perl CPAN 
module (Net::Pcap) based on this library, the information is 
read into the program memory space. Having network data 
stored in files, as opposed to real time capture on a network 
interface, enables offline processing. However the PCAP 
library is capable of performing both functions. 

After the packets are read into memory each one is 
parsed and stored in a data structure. For ICMP packets, this 
structure includes the following: source IP address, 
destination IP address, ICMP id, type, code, sequence 

number and packet size. These are all fields used in the GA 
population representation described in the next section. 

B. Genetic Algorithm Description 
A pseudo-code implementation of a GA is presented in 

Fig. 1; numbered lines are described more fully later. 
One of the first tasks in building a GA is to decide upon a 

representation of the solution population (line 1) and create 
a number of individuals in that population. Each individual 
is stored as a representation of a variable length list of Snort 
rule fields. A Perl associative array maintains these mixed 
type values. The field key, type and acceptable range values 
are shown in Table 1. Field key values are taken directly 
from the Snort rule syntax definitions. The ranges may 
include values that are not allowed according to 
specifications but are technically allowable within the data 
type or are specific to Snort rule processing. For instance, 
the src and dst fields can contain a variable name that Snort 
will replace with a configurable value at runtime. 

Each individual in this population can be represented 
using a variable length vector )x,,(x n0 ��iv�  of mixed 
data type values x. The total population is the set of 
vectors � �TT vvvP ��� ,...,, 10� . For the experiment described 
here the population size T was fixed at 200. This value was 
chosen as a reasonable tradeoff between time efficiency and 
solution convergence. The first generation of individuals 
was populated by randomly generating values in the domain 
range of the given fields with a random number of options. 

The selection of a field’s inclusion in a rule was not 
uniformly random in all cases. An analysis of the fields 
present in the 146 ICMP specific Snort rules was performed. 
Statistics were compiled on the type and frequency of rule 
option values present. An assumption was made that these 
rules, having been vetted and accepted into the official 
repositories by experts, exhibit desirable characteristics 
worthy of emulation.  

Whenever a decision needs to be made about a field’s 
inclusion a random number r is generated in the range 0 to 
N where N is the number of rules.  Given a frequency count 
fc of a given field f from the set of rules N such that fc < 
cardinality (N), the field f is included in a rule if the 
generated r is less than fc. In other words, a field is 
randomly selected for inclusion proportional to the relative  

Figure 1. Genetic Algorithm 

1 Create an initial population 
2 LOOP while below execution count      

3 select individuals as parents 
4 create children from parent 
(crossover/mutation) 
5 select and replace individuals with children 
6 update fitness values 

End LOOP 



TABLE 1:  RULE POPULATION FIELDS 

Field Type Range 
proto string ‘icmp’ 
src string or CIDR ‘$SNET’ or 0.0.0.0/0 
sport string or integer ‘any’ 
dst string or CIDR ‘$DNET’ or 0.0.0.0/0 
dport integer ‘any’ 
itype integer 0-255 
icode integer 0-255 
icmp_id integer 0-65535 
icmp_seq integer 0-65535 
dsize integer 0-65535 
content string Any text 

 
frequency of its presence in the original 146 ICMP rules. 
For example, the dsize field occurred 13 times in the set of 
146 rules. Therefore close to a 9% chance exists that this 
field will be picked for inclusion. 

After an initial population is created, a series of variations 
and replacement selections must take place on some of the 
population individuals. This process repeats until some 
acceptable solution or predefined iteration limit is reached. 
For this project a fixed number of 1000 iterations were 
selected. After looping (line 2) the defined number of 
iterations, processing terminated and the fittest individuals 
maintained by the RTS selection algorithm were isolated as 
the final best rule set. The details of variation and selection 
that occur in this loop are presented next. 

A steady state population model was implemented. This 
means that for a given iteration in the loop, only a maximum 
of two individuals in the original population are selected for 
replacement. This is in contrast to a generational model 
where the entire population is replaced by the offspring.  In 
this case, two individuals were selected as parents and two 
offspring were created from them. Subsequently, two more 
individuals were then selected for replacement by the new 
offspring creating a new generation. 

The two candidate parent individuals were randomly 
selected independent of any fitness or distance measure (line 
3). Crossover between the two parents to create two new 
offspring utilized uniform crossover. Creation of these two 
offspring is a two step process consisting of rule header 
creation and rule option creation. 

Rule header creation consists of randomly choosing a 
field from either parent and copying that value into the 
child. For the given ICMP problem, there is not much 
variability in the header portion and header creation is not 
that important relative to the option fields.  

Each option field of the new offspring rule is a copy of a 
field selected from a given parent. For each offspring a 
primary parent of the original two candidates is selected. 
Each option field of that primary parent is then considered 
for inclusion in the new child. A random number from a 
uniform distribution over 0.0-1.0 is generated. If the number 
is greater than 0.5 than the primary parents value is utilized; 
otherwise consideration is given to retrieving the 
information from the second parent. At this point, if the 
second parent contains the option field, it is copied into the 

child. However, if the field does not exist in the second 
parent, then the default action is to revert to the value from 
the primary parent. The net result of this is a child that 
contains the same number of options as the primary parent 
but with potentially different values from the secondary 
parent. Variation in child option count is left as a possibility 
in the mutation operator. 

After crossover, mutation occurs on both children prior to 
replacement selection (line 4). As was the case in crossover, 
rule header mutation and rule option mutation behave 
differently. 

There is a 25% independent chance of mutating the rule 
header of a single child. Once selected for mutation the 
header src or dst IP field is randomly chosen for change. 
This change consists of randomly choosing between the 
three available options: any, Snort IP variable ($DNET or 
$SNET) and the test packet IP address (source or destination 
as appropriate). 

 Option mutation is considered separately from header 
mutation and it has a 25% chance of occurring as well on 
each option in the child. The reason for this separation of 
mutation is a result of programming convenience and need 
not occur in this manner. The integer domain values such as 
icode, itype, icmp_id and icmp_seq are processed the same 
according to their domain ranges. A random value within a 
window bracketing the original value is chosen. If this 
operation results in a value outside of the acceptable domain 
range defined in Table 1, the value is set equal to the closest 
boundary value. Content keyword mutation occurs by 
randomly selecting a range of the test packets data load and 
transforming any non printable characters into hex 
representation. Finally, with a 10% chance, it is possible 
that any of the options are simply removed from the rule. A 
future enhancement for consideration would be to add a 
nonexistent parent option field to the rule. 

Once mutation is performed the two resulting offspring 
are evaluated to replace candidates in the population. This is 
a critical step for the maintenance of a multi-modal solution 
set. Uni-modal GA solutions using tournament selection 
randomly pick two individuals for replacement. These 
values are replaced if the new children have better fitness 
values. RTS instead picks from a window size w, an 
individual that is closest to the new child (line 5). The size 
of the population contained in w is defined by empirical 
testing and each member is drawn from the original 
population using a uniformly random selection process. For 
this project w is set at twenty-five. Determination of the best 
value for w was not examined exhaustively and there could 
be a better value. Closeness is determined by a distance 
function. After determination of the closest individual to the 
candidate child a competition is held based on fitness 
between the child and selected individual. The one with the 
best fitness is selected for inclusion into the solution 
population. 



C. Three Part Fitness Function 
In order to rank the individuals’ fitness an evaluation 

function called the fitness function was defined. The fitness 
function is a critical component of a GA as it is a primary 
source for determining an individual’s selection for survival 
and evolution. As was described at the end of the 
background section, three criteria were identified to judge a 
‘good’ rule. The criteria are described as complete rule 
match, partial rule match and grammar check. Each criterion 
is implemented as a function that returns a numeric value. 
This sum of all three values constitutes the fitness value with 
a larger value indicating a higher fitness (line 6). Details of 
each criterion function are presented next. 

First a rule should be able to recognize the packet as being 
an anomaly. This is tested by running Snort with a candidate 
rule on a test packet and evaluating the result. A system call 
to the Snort command line was created that sends the output 
to a comma separated file. This output file is then read for 
existence of an alert related to the rule. If this exists a value 
of 10.0 is returned, otherwise the value 0.0 is returned. This 
relatively large value was chosen to promote the importance 
of rules that cause an actual alert. 

Second the rule is checked for a bad format, incorrect 
structure and possible performance issues. The Perl based 
dumbpig grammar checker was incorporated into the project 
code base to perform this check [9]. A function call with the 
rule data results in a floating point value between 0.0 and 
1.0. The fewer issues the function finds the greater the return 
value.  

The final evaluation is executed even when a rule does not 
completely match an evaluation packet. As was described in 
the background section, Snort rule evaluation short circuits 
processing a given rule definition whenever it finds a non 
match. In response to this behavior, a Snort rule evaluation 
process was recreated without this aspect. Instead, the 
processing was modified to track matches on all possible rule 
fields. For each field a Boolean value is maintained with 1 
indicating match and 0 not. After a complete pass evaluating 
all fields in a rule, the final value is computed according to: 
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where N is the number of fields to compare and match is the 
function that returns the Boolean result of the comparison. 

The final fitness evaluation of a candidate rule is then 
computed as a sum of all three criteria. This fitness value is 
stored with a reference to the rule and only updated as 
needed. As this is the final computation step, execution 
resumes at the beginning of the loop and continues as 
appropriate. 

D. Output Processing 
The output of the GA described in the previous section is 

a set of rules along with their respective fitness values. These 
rules are sorted according to the fitness values with any 
duplicate rules removed. The resulting top three (highest 

fitness value) rules are then proposed as possible rule 
definitions to be distributed. This assumes that the top rules 
induce Snort to alert on the related packet. It was found in 
our testing that this occurred in all ten tests cases, with an 
average 28% of the final rules producing a match 

E. Complexity Analysis 
Rule generation in the manner described was considered 

to be an offline process so initially minimal consideration 
was given to runtime performance. However the complexity 
of the RTS GA is N x w where w is the size of the selection 
window [1]. The complexity analysis of our implementation 
is complicated by the three part fitness test. Specifically the 
call to the Snort executable is an unknown quantity. The 
runtime performance of Snort varies greatly depending upon 
the nature of the rule set and volume of network traffic. In 
this project, the observed process run time of just the Snort 
binary was less than 1 second in all test cases on a desktop 
DELL with an Intel E5430 CPU and 4 GB’s of RAM. The 
average run time of the test cases was 57 seconds. This 
reflects the heavy usage of string manipulation procedures. 
In addition, the project was implemented in PERL with a 
focus on program correctness and process visibility instead 
of runtime performance. 

IV. TEST DATA AND RESULTS 
This section describes the results of running the system 

on two test data sets. A subset of the resulting rules that 
compiled the best fitness (largest) values are presented in 
addition to information on fitness and algorithm progression. 

A. ICMP Test Data 
ICMP rules and characteristics were the primary focus of a 

test data set created to show a proof of concept. Three packet 
creation tools: Nemesis, packETH and ISIC were utilized to 
provide two sets of test network data. The first two tools 
provided customized individual packets designed to trigger 
specific rules. The third tool, ISIC, was used to create a large 
set of packets composed of random values to test for false 
positives. The use of these tools and the resulting test data 
sets are described in this section. 

Nemesis and packETH are network packet crafting and 
injection tools [10],[11]. Details of an individual ICMP 
packet can be specified making them well suited for creating 
and reproducing test scenarios. They are similar in 
functionality but packETH features a graphical user interface 
while Nemesis is a command line tool. An example Nemesis 
Linux command line used to create a packet is shown below. 
 
> nemesis -i 7 -s 0 -d 11 -d lo 
 
This command will create an ICMP packet with an itype of 
7, a sequence number of 0 and an icmp_id value in the 
header of 11. Subsequently, the packet will be placed on the 
lo or loopback interface of the machine. With a packet 
capture tool attached to this interface, the data can then be 
captured into a static file and reused for later testing by 
replaying the file.  



The individual test packets created using the tools in the 
manner just described were captured and stored as a PCAP 
data file. A total of ten different test packets were created to 
trigger ten different Snort rules. Each rule was chosen for its 
rule keyword variety and membership in a rule class. The 
packet specifics and class types are presented in Table 2 in 
Snort rule format. 

Snort was exercised with the ten hand crafted test packets 
against 146 ICMP rules from the three sources mentioned in 
the background section. These test packets were crafted to 
match all conditions of ten specific rules that were 
categorized into a variety of rule classes. Each individual 
packet was run against the original set of rules to ensure that 
a one to one relationship of packet to rule existed. In other 
words a single packet matched with a single rule. However 
this was not entirely possible as some of the rule definitions 
are broad enough to alert on only a few attributes. For 
instance test packet 8 triggered an alert on a rule that only 
specified itype 8 and icode 0. This is a generic ping rule and 
is technically correct. This type of issue aside Snort 
positively identified 100% of the test packets with no false 
positives or false negatives. 

A second large test set of random valued ICMP packets 
was created to evaluate the system for false positives. ISIC is 
a generic utility used to test the stability of an IP stack [12]. 
It is capable of creating a large number of test packets 
containing random values. The random values are correct in 
that they fall within a field’s acceptable data range. 
However, the value may not be currently in use or match a 
prerequisite implied by a setting in another field. These 
packets are then typically sent to a target while observing for 
any anomalous results. For this project 23 megabytes of data 
containing 33,794 ICMP packets were created. 

In the same manner as was described in the hand crafted 
packet test creation, the random test set was run against 
Snort and the original rules. This resulted in a total of 31,929 
alerts. Eighty-eight percent (28,293) of the alerts were 
triggered by a single rule designed to find undefined codes.  

TABLE 2:  ICMP PACKET DETAILS. 

 Packet Details Class Type 
0 icmp_id:667;itype:0;content:"ficken" attempted-dos 
1 same as #1 except random IP’s and IP 

identification field. 
attempted-dos 

2 dsize:0;itype:8;icode:0 attempted-recon 
3 icode:0;itype:5 bad-unknown 
4 icode:2;itype:3;  misc-activity 
5 icode:2;itype:3; content:"|28 00 00 50 00 

00 00 00 F9 57 1F 30 00 00 00 00 00 00 
00 00 00 00 00 00|” 

attempted-user 

6 icode:0;itype:8;dsize:20; 
content:"abcde12345fghij6789"; 

trojan-activity 

7 itype:8;icode:0;dsize:32;content:"abcdefgh
ijklmnopqr|0000|";depth:22; 

trojan-activity 

8 icmp_id:123;icmp_seq:0;itype:0; 
content:"shell bound to port"; 

attempted-dos 

9 icode:0; itype:40; misc-activity 

The remaining 3,636 alerts were produced by 51 unique 
rules. Of this set, 6 alerts were generated from 4 rules that 
were used to craft matches in the first test set. These were 
carefully noted for the evaluation phase as genuine alerts. 
They should be ignored when testing for false positives as 
indeed they are not. 

After generating the two data sets, the original ten rule 
definitions used for the hand crafted packets were saved. 
These rules then became one basis for the final evaluation of 
the evolved rules correctness. It was not expected that the 
created rules exactly match the originals but they should be 
similar in content and behavior. 

B. Test Results 
In order to show the progression of the algorithms search 

for a set of optimal rules, Table 3 provides average fitness 
information, largest final rule fitness and the number of times 
a child was used to replace a member of the population. The 
columns are labeled with a test packet identifier of P0-P9. It 
can be seen in all test cases that the average final fitness 
values are higher than the initial average fitness. The fitness 
value of the final best solution (rule) in each case is 
approximately two or three times that of the final average. 
The child creation step did produce an individual, on 
average, every five iterations that improved fitness as 
indicated by the replacement count. 

Fig. 2 shows the top three fittest individuals for test case 
P0. For clarity the original rule definition used to create the 
test packet is included as the last line and is labeled as src. 
For formatting reasons the action, protocol, sid, classtype 
and rev number have been removed. These values are 
metadata information and do not contribute to Snorts 
recognition engine execution. As can be seen there is a 
variety in the rule header composure. The specific IP 
addresses were retrieved from the test packet headers. 
Retaining these in a production rule may not add value but 
this depends on knowledge not used as input into this 
system. A rule option commonality can be observed in the 
inclusion of similar content values and itype fields. The first 
rule contains an icode field that does not appear in the 
original rule. As this field was not identified in the original 

TABLE 3:  FITNESS AND RUN DATA 

 Initial Avg 
Fitness 

Final Avg 
Fitness 

Best 
Fitness Replace 

P0 5.05 7.95 31 145 

P1 5.23 10.49 31 207 

P2 2.5 8.92 22 185 

P3 2.63 9.06 22 191 

P4 2.6 10.35 22 224 

P5 4.6 10.24 30.6 209 

P6 5.14 11.5 30.6 258 

P7 5.22 11.86 30.72 270 

P8 4.97 9.12 26.47 180 
P9 2.46 9.54 22 218 



 
rule a default value was supplied when creating the packet. 
This value was manually verified as being correct for the test 
packet. Because of space considerations the other top three 
rules generated from each of the remaining nine cases are not 
shown. 

A simple test of rule correctness involved running the ten 
test anomaly packets against the corresponding set of top 
three generated rules. All of the packets were recognized and 
generated the appropriate Snort alerts for a 100% positive  
identification rate for each of the top three rules for the 10 
tests. This was expected based on the composition of the 
fitness evaluation function. It should be noted that all three 
of the rules contain valid identifying fields. A post 
processing step could involve any combination of the 
defined fields to create a valid rule. 

A possibly more interesting test concerns the occurrence 
of false positives. It has been observed that a simple rule 
definition could contain just one field that matches a large 
number of packets. This would certainly produce a large 
positive identification rate. A set of random ICMP test 
packets was created to test for this scenario. In addition to 
the random packets, the ten hand crafted packets were used 
since they were readily available. For a given rule generated 
by our algorithm, only one of the crafted packets should 
generate an alert. 

As can be seen in Fig. 3 the false positive rate was very 
low. The vertical axis indicates the number of false positives 
for a given test rule set. A total of four false positives were 
generated from the set of 30 generated rules over the more  

 

Figure 3. False Positive Chart 

than 33,000 test packets. Three false positives came from 
the hand crafted packets. None of the false positives were 
generated from the single top fittest rule for each test case.  

V. RELATED WORK 
This section reviews the work from four different papers 

that relate to autonomous rule creation. The first two discuss 
the use of GA’s and their applicability to network intrusion 
detection. The third paper is relevant in that Snort rules are 
created for a specific malware signature. The final paper 
reviews the capability of a multi-modal GA to find and 
maintain multiple optimal solutions. 

Goyal and Kumar [13] were concerned with 
identification of malicious computer network connections. 
The scope of their experiment focused on generating rules 
for six attack types belonging to two different classes: Denial 
of Service and Probes. The labeled KDD 99 Cup data set 
was used as training and testing input data for a simple 
genetic algorithm. Eight fields from the data set were used in 
the encoding of the population: protocol, type of service, flag 
(error or normal connection), duration of bytes sent, duration 
of the connection, percentage of connections to different 
hosts, number of operations on access control files and 
number of outbound commands in an ftp control session. 
The rules generated produced from the trained GA were able 
to correctly identify the test data with ninety-two percent 
accuracy. 

GAs and decision trees have also been used to produce 
rules classifying network connections [14]. The source and 
destination IP address, port numbers and network protocol 
type from a database were used as input to evolve a solution 
in a crowding form of GA. The initial random population 
was created with chromosomes representing these input 
values. A training set of connections was marked by a human 
expert as normal or anomalous. Subsequently, the GA was 
executed utilizing a fitness function that compared the 
evolved rule to this training set. Partial or complete matches 
for an anomaly were rewarded and normal connection 
matches were penalized. Consequently the resulting rule set 
was biased towards anomaly recognition rules. No empirical 
testing of these rules sets was reported. 

Wang, Jha and Ganapathy describe a tool called NetSpy 
that automatically generates network signatures for specific 
instances of spyware [15]. The spyware signature generation 
section most closely resembles the work presented in this 
paper.  Network traffic is identified as belonging to a 
particular piece of malware. A modified version of the 
Longest Common Subsequence algorithm is used to produce 
regular expressions. The expressions are then added to a 
Snort rule as a payload detection option. The most significant 
difference in their approach to the one presented in this paper 
is the rule generation algorithm. 

Sing and Deb compared the performance of eight multi-
modal optimization algorithms based on evolutionary 
algorithms [16]. Multi-modal problems involve finding more 
than one optimal solution for a given task. Modifications to 
simple GAs such as crowding, RTS, clearing, fitness sharing 
and species conserving were presented. These methods using 
real encoded populations were tested against three 

235.130.217.126/32 any -> any any  
 (itype:0; content:"ficken|0A|"; icode:0;) 
$SNET any -> 140.53.42.24/32 any  
 (itype:0; content:"cken";) 
$SNET any -> any any  
 (content:"fick"; dsize:7;)  
(src) $HOME_NET any -> $EXTERNAL_NET any 
 (icmp_id:667; itype:0; content:"ficken";)  

Figure 2. Packet 0 Generated Rules 



mathematical functions. The computational complexity 
ranged from O(N) to O(N2). Among the approaches 
examined RTS, deterministic crowding, original clearing and 
a proposed modified clearing method found more optima. 

VI. CONCLUSION 
The primary goal of devising a solution to decrease 

human effort in creating Snort rules based on anomalous 
network traffic was accomplished. All of the ten hand crafted 
test packets resulted in a set of rules that caused Snort to 
alert. Not all of the rules were unique, but in each case there 
were at least three unique rules and as many as eight. Testing 
showed that these rules were specific to the packets and 
produced only four false positives from 33,804 test packets. 
These successful results indicate that the generated rules can 
be used by analysts as the basis for production rules. 

A key enabling technology was the use of a multi-modal 
GA. A critical condition in the performance of a GA’s search 
capability is the ability of the fitness function to accurately 
indicate progress in exploration of the solution set. For this 
project a three part fitness function was developed. It proved 
to be sufficient in aiding generation of rules that caused 
alerts on test cases. Further refinement of this function and 
the addition of more rule options may increase the capability 
of the system to define robust rules. In addition defining the 
capability to include session information instead of single 
packet rules could be explored. Finally expanding the 
domain of the test packets to UDP and TCP would provide a 
broader coverage of the anomalous network possibilities. 
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