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Abstract— With growing amount of data gathered nowadays,
the need for efficient data mining methodologies is getting
more and more common. There is a large number of different
classification algorithms, but choosing the best one for given data
is still a difficult task. Thanks to different data mining contests
we can gather lots of meta level information about classification
problems and strategies leading to optimal (or close to optimal)
solutions. One of the contests was organized in parallel with the
ICAISC’06 conference held in Zakopane. We took part in it,
and our model classified the test data with the highest accuracy.
The process which led to the winner model was not simple – it
required multiaspect analysis of the data and different algorithms
(from the point of view of suitability to the data). This arti cle
presents our road to the winner model with numerous comments
on both successful and unsuccessful efforts. It also presents our
model testing methodology, which always plays important role
in the pursuit of accurate and well generalizing models.

I. I NTRODUCTION

Thorough analysis of particular data always requires using
a multitude of different techniques. The data set we analyze
here defines a classification task, so we need to:

• apply different classification algorithms,
• try different data transformations before the classifi-

cation stage (from some simple and basic ones to some
advanced functions constructed for the particular task),

• apply a reasonable testing methodology(for model
validation).

To efficiently search for accurate models we need a data
mining environment facilitating complex models construction,
easy application of many learning algorithms of different
types, performing validation in a simple way and possibly
providing some tools for meta-level learning (like searching
in the space of models).

Our efforts were supported by the GHOSTM INER system,
which is a general tool for data mining developed by our team
in cooperation with FQS Poland [1]. The system provides all
the functions mentioned above. In the area of meta-learningit
contains a simple parameter search algorithm, which although
performing a greedy search is very helpful in exploring the
space of model parameters.

II. T HE CONTEST DATA

The data we analyze here was prepared by organizers of the
ICAISC’06 conference1. It was the subject of a handwritten
digit recognition competition organized in parallel to thecon-
ference. The organizers extended the data originally prepared
by members of the Bogazici University, Istanbul, Turkey [2],
[3]. The resulting set of data vectors was split into two parts.
One of them contained 80% of the data (5036 vectors) and
played the role of the training set. The rest (20% – 1263
examples) of the data became available at the time of the
contest adjudication and served as the test set to estimate the
accuracy of models on (so called) unseen data2.

Originally the data vectors were prepared in two versions:
dynamic and static. The dynamic representation of a digit
consisted of a number of 2D coordinates corresponding to pen
movement. This form of the data has not been available to us.
The static representation has the form of a bitmap resulting
from blurring 32 by 32 pixel monochromatic images and then
reduction of resolution to 8 by 8 pixels. Each final pixel is
described by an integer from the interval[0,16], since the
value is the number of black pixels in an appropriate 4 by 4
pixel part of the blurred image. The data preprocessing stage is
depicted schematically in figure 1, which we copied from [2]
with authors permission. The original split of the data set was
different than the contest one. The authors divided the datainto
four sets: one for training (1934 examples), one for validation
(called cross-validation in [2] but such name is misleading;
this set consists of 946 examples) and two sets for testing
(one calledwriter-dependentwith 943 examples and the other
writer-independentwith 1797 data vectors—the former one
contained digits written by the same 30 authors, who wrote
the digits of the training and validation sets, and the latter
contained digits written by another 14 authors).

Some examples of data vectors are shown graphically in
figure 2. For each class (there are 10 classes representing digits
0,1, . . . ,9) we show two examples: one very readable and one
of the less “obvious” cases). The figure shows 8 by 8 pixel

1ICAISC’06 was the Eighth International Conference on Artificial Intelli-
gence and Soft Computing, held in Zakopane, Poland in June 2006.

2During the contest, the test part was provided without classlabels—the
labels were disclosed after the adjudication.
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Fig. 1. Data preprocessing schema – the figure comes from [2] (included
with permission of the authors).

maps representing the 64 feature values with different degrees
of grey—white squares present the value of 0 and black ones
the maximum value of 16. As it can be seen in the figure,
the classification decisions are not always clear for human,
so we should not expect the computational intelligence (CI)
classifiers to be 100% correct.

III. T ESTING METHODOLOGY

Prediction of which model will be the most accurate when
applied to data unavailable (unseen) during the analysis isnot
a simple task. We must validate models we create, but the
exact way of doing it is not self-evident. One of the most
popular is to detach a validation set and estimate the accuracy
on unseen data by the accuracy obtained for this validation
set. This is a simple method, which does not consume much
computation time, however it is not a reliable validation.
To see this consider a classification task and a family of
models, which obtain similar accuracy on the training data,
but have different decision borders—for example we can think
of simple linear discriminant models with different decision
borders. Such models will usually obtain different resultsfor
the validation data set. If such family is large, the probability of
finding a model very accurate in classification of the validation
data is quite high, so trying large number of candidate models
leads to small validation errors, but not necessarily guarantees
small errors on unseen data in general. As an extreme example,
we can think of a family of models generated randomly. If we
tried many times, we would certainly get an accurate model for
validation data, but such technique is no longer a validation,
but rather learning on the validation data.

Fig. 2. Training data examples.

The same comments apply to classification results published
in numerous articles, where an accuracy obtained for a sep-
arate test set is presented, e.g. many publications concerning
some of the UCI repository data [4]. New models improve
classification of the test data by one or two examples, and are
commented as significantly better models while there is no
statistical evidence to claim so. It must be emphasized, that in
such cases the test set is in fact an extension of the training
set—although it is not used directly in the adaptive processes
of model training, it is used for final model selection which
must be seen as a special kind of training. As a consequence,
such results overestimate the accuracy on unseen data.

A separate test set is a very good solution in the case of
different competitions, but it is a completely different situation
than in the case of validation. The competitors can not try
multiple models and select those which obtain the best results
for the test set, because the contest organizers do not publish
test data labels before the adjudication.

Much more reasonable way of model validation is based on
the cross-validation (CV) technique. A CV performed within
the training set provides an estimation of the accuracy for
unseen data (the average accuracy obtained for the validation
parts of CV folds). Although such CV estimates are not perfect
(the limited number of data affects the independence of the
CV results), they are much better than those measured for
a single validation set, because the validation part in each
fold is different and determined randomly, so it is much more
probable that a method obtaining high CV scores provides
good generalization. Moreover, in most interesting cases,we



can repeat CV test to overcome the possible problem of
accidental distribution.

In our approach, we used different numbers of folds in CV.
The larger the number of CV folds, the more computation
time is required, but the more similar training conditions are
provided. On the other hand, the larger number of CV folds the
less independent are the models generated in the CV process,
because the common part of the training sets gets larger. Thus,
determination of the optimum number of folds is not trivial.

Thanks to cross-validation we obtain the information about
average test accuracy and also about the variance of these
results. High average test accuracy is not the only aim we
strive to. To be confident about high accuracy on the contest
test set, we need a method showing small variance within the
CV. Hence, our model selection criterion is usually not just
the value of average accuracy, but the value decreased by a
quantity related to the standard deviation:

SM = AM −ασM, (1)

whereAM is the average accuracy obtained for methodM, σM

is the standard deviation andα is a control parameter (in our
approaches we usually setα = 1). Such technique is sound
with statistical approaches like hypotheses testing.

IV. TOWARD THE WINNER SOLUTION

The starting point of the search for the best model is to
test different base methods. By the base methods we mean
a group of complementary methods which are derived from
different computational intelligence fields such as machine
learning, statistics or neural networks. The complementarity
constraint is very important because otherwise, the searchfor
optimal (or suboptimal) solution may take unnecessarily much
time or may finish with poor results.

During the search procedure, we have always paid the most
attention to the criterion (1) to select the most promising (i.e.
most accurate and stable) methods.

In the first phase of searching the following methods were
tried: k Nearest Neightbors [5], Naive Bayes [6], Support
Vector Machine [7], [8], [9], SSV decision tree [10], [11],
NRBF [12] and FSM [13].

A. Base methods

The results presented below are the validation results of
10-fold cross-validation. In most cases the CV procedure was
repeated 10 times and results (errors and standard deviations)
were averaged. Such tests are denoted byXCV . In the case of
just a single CV test the labelCV is used. The labelTE stands
before the error obtained on the testing part of data which was
calculated after the contest, because the class labels werenot
available before.

The first tested method was the kNN. Typically thek is set
to 5 at the first trial. The results are

kNN, k = 5
XCV: 0.031± 0.007 TE: 0.033

In some sense this result can be used as a reference.

In the next step we tried to determine the optimum value of
k via internal cross-validation. Internal cross-validation means
that it is run within the training data. It turned out, that the
range of the optimumk is more or less the interval[3,6]. So,
the initial value was quite a good try.

The kNN was also tested with different distance measures
like Minkovsky (with different scales, including 1 for Man-
hattan), Chebychev and Canberra. However the results were
similar or worse than for standard Euclidean metric.

In another test the training data set was standardized be-
fore running the kNN. The standardization was performed
separately for each feature (per feature standardization). The
results are

Std | kNN, k = 5
XCV: 0.045± 0.009 TE: 0.044

It means that the standardization made the accuracy deteri-
orate. This is not surprising, because each feature represents
intensityof a given region of digit. For example the top left
corner will show significantly less variance than some pixels
in the middle of the image, and this is a precious information
we lose with per feature standardization. Other methods like
per data set standardization(each feature is scaled with regard
to the overall average and variance within the data set) or no
scaling at all are much more useful.

Our second base method was Naive Bayes (NB). Unfortu-
nately, it is very rare when the NB is among the best methods.
The results without and with standardization are:

Naive Bayes
XCV: 0.848± 0.012 TE: 0.853

Std | Naive Bayes
XCV: 0.161± 0.018 TE: 0.154

The third method, we tried, was Support Vector Machine
(SVM). Our implementation of SVM is based on the SMO
algorithm proposed by Platt [14] with modifications proposed
by Keerthi [15]. SVM is a binary classifier and to use the SVM
for 10-class problem a committee of SVMs must be used. For
most benchmarks it is not important whether to use theone-
class against the restscheme (buildingN classifiers, whereN
is the number of classes) or to useone class against one class
and to build(N

2 ) classifiers. The results for theone against the
rest technique and Gaussian kernel are as follows:

SVM, G
CV: 1.0 ± 0.00 TE: -

Std | SVM, G
CV: 0.217± 0.018 TE: -

So poor results have two reasons: the first is the inadequacy
of Gaussian kernel parameters (C was set to 1 and Gaussian
dispersion to 0.1) and the second is that standardization is not
a good idea in this case (as pointed out above). The results of



searching for the optimal Gaussian parameters are presented
in the following section.

In the case of linear kernel for SVM the results were better
but still not so interesting:

SVM, L
XCV: 0.12± 0.013 TE: -

Another tested method was the normalized RBF (NRBF).
In this case we observe similar behavior as in the case of
SVM—bad influence of inadequate Gaussian basis function
parameters and the effect of superfluous standardization:

NRBF
CV: 0.90± 0.0008 TE: -

Std | NRBF
CV: 0.095± 0.012 TE: 0.086

Separability of Split Value (SSV) is a criterion used mainly
for decision tree construction. Although the algorithm is
independent of standardization and often generates compact
and accurate trees, it is not succesful in this case:

SSV
XCV: 0.14± 0.018 TE: 0.14

We have also applied FSM neural network algorithm to the
problem. The adaptive process of FSM adjusts its architecture
to the complexity of the problem. The results are better than
all other presented so far, except those of the kNN model:

FSM
XCV: 0.043± 0.043 TE: 0.042

In most cases, the efforts to improve the results presented
above were fruitless, however for some methods a meta-search
for appropriate parameters was successful.

B. Pursuit of optimal parameters

Finding optimal parameters of SVM can be tricky. We
ran several meta-search processes to check a broad range of
values. Figure 3 presents 5-fold CV test results for different
values of the Gaussian kernel dispersion. The two lines with
points represent the predicted accuracy and accuracy minus
standard deviation (according to the criterion 1) respectively.
The Gaussian dispersion in SVM behaves exponentially, so we
tried the range[−13,0] of powers of 2. It can be seen that the
highest results are obtained when the value of bias is around
2−10. Now it is clear why the initial dispersion of Gaussian
kernel (0.1≈ 2−3.32) was so bad.

Similarly the values of theC parameter of SVM can be
examined. This parameter also shows exponential behavior and
again a range of powers of 2 was checked. In this case the
range was[0,10]. Figure 4 presents the dependence between
the (logarithm of)C and validation accuracy (and stability).
The optimum values ofC are in the area of 24 (though larger
values should also work successfully), so the initial valueof
1 was also far from optimal.
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Fig. 3. Meta-parameter search for the bias of SVM’s Gaussiankernel
function.

The SVM with new values of its free parameters yields
much better results:

SVM, 16, 0.001
XCV: 0.0377± 0.0075 TE: 0.028

All the interesting results we have obtained with SVM con-
cerned the Gaussian kernel, so here and in further descriptions
we write just SVM (instead of SVM, G).

We have also run a meta-search for the dispersion of
normalized Gaussian basis function of NRBF. The results are
presented in figure 5. As in the previous cases a range of
powers of 2 was investigated. Finally the value 0.0115≈2−6.44

was chosen. The optimization decreased the error to 2.84%:

NRBF
XCV: 0.0284± 0.0069 TE: 0.0285

C. Selection and extraction of features and prototype vectors

We have tested a number of feature selection methods
(feature selection based on correlation coefficient, F-score or
SSV criterion [16]) but they were not useful because of the
information loss (each feature represents a pixel and only the
corner-pixels are less important but still not useless). Principal
Components Analysis (PCA) was not useful either. After PCA
the results were not worse, but to obtain similar results as
without PCA nearly all PC’s must be used, as it can be seen
in figure 6.

Some prototype selection algorithms were also investigated.
We have tested the Explore [17], DROP [18], ENN [19] and
LVQ with different numbers of neurons [20]. The error with
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Explore was over 10%. The DROP3 was significantly better
but still not satisfactory:

Drop3
CV: 0.056± 0.0059 TE: 0.058

The results of ENN are slightly below those of kNN:

ENN
CV: 0.035± 0.005 TE: 0.0387

The prediction of performance of LVQ with different num-
bers of neurons can be seen in figure 7. The conclusion is that,
in this data set, there are no simple sets of prototypes, which
would offer high classification accuracy. The test results for
3000 and 5000 of neurons are the following:
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Fig. 6. SVM performance on subsequent collections of PCs.

LVQ 3000
XCV: 0.034± 0.0083 TE: 0.026

LVQ 5000
XCV: 0.0323± 0.0076 TE: 0.029

D. Committees

Successful models combined into committees may improve
and stabilize their results. We have tested several types of
committees with different configurations of models.

One of the simplest kinds of committee is based on the idea
of voting (each committee member has a single vote and all the
votes are equally important). A bit more advanced rule defines
a weighted committee, where in the place of voting scheme we
calculate the probabilities of belonging to the classes on the
basis of the probabilities obtained from submodels (Fj ):

pw(i|x) =
1
N

N

∑
j=1

p(i|x,Fj). (2)

Herex is an observed vector,p(i|x,Fj) is the probability that
vector x belongs toi-th class according to submodelFj , and
pw(i|x) is the probability thatx belongs toi-th class according
to the committee.

A weighted committee of three different prototype selection
schemes: Explorer, DROP3 and LVQ (with 1000 neurons),
gave quite interesting though not the best results:

CommW[Explorer,DROP3,LVQ1000]
CV: 0.036± 0.0073 TE: 0.037

Another two weighted committees, worth a mention, com-
bine SVM with NRBF and SVM with kNN respectively:

CommW [SVM+NRBF]
XCV: 0.0216± 0.0067 TE: 0.0174
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CommW [SVM+kNN]
XCV: 0.0215± 0.0057 TE: 0.0206

The weighted committee composed of kNN and NRBF is
significantly worse than the previous two:

CommW [kNN+NRBF]
XCV: 0.027± 0.008 TE: 0.028

As it was mentioned above the SVM for multi-class prob-
lems may be used in a voting scheme with SVMs trained
on pairs of classes. Each of the

(

N
2

)

SVM models has one
vote for its winner class. The class which collects the highest
number of votes becomes the final winner of the committee
voting. This scheme ((N

2 ) SVM) turned out to be the first our
model to break the error threshold of 2%:

(N
2 ) SVM

XCV: 0.0177± 0.005 TE: 0.0119

To stabilize and sometimes even obtain better performance
a CV committee can be used. CV-committees consist of
submodels trained the same way as in the CV test, but
the models built, compose a committee classifier. The CV-
committees were successfully used by us in [12], [21]. To
escape impasses during classification 11-fold CV was used in
place of the typical 10-fold CV. CV committee of(N

2 ) SVM
produced just a bit better result:

CVC [(N
2 ) SVM]

XCV: 0.0175± 0.0056 TE: 0.0111

The weighted committee of(N
2 ) SVM with NRBF were not

so successful as similar committee with one class against the
rest scheme:

CommW[(N
2 ) SVM + NRBF]

CV: 0.0261± 0.0071 TE: 0.027

A number of committees with local competence (as pro-
posed in [21]) were also tried, but without significant im-
provements. For example the above committee in its local
competence version (where submodels are turned into CV
committees):

CommCompW[CVC[NRBF]+CVC[(N
2 ) SVM]]

CV: 0.0262± 0.0069 TE: -

Some feature extraction ideas were tested, but most without
significant results. These include theisland-score(the number
of white regions in a given digit) and vertical and horizontal
densities.

E. Darkening

It is easier to come up with new ideas, when we know as
much as possible about the results obtained so far. Although
we found quite accurate models with some methods applied
to raw data, we started looking for some data transformations
to get even better results. The analysis of erroneous test cases
within cross-validation showed that some data vectors are easy
to classify visually, but still they are erroneous cases. Itwas
a consequence of the fact, that these vectors coordinates were
smaller than for most other vectors. In other words the digits
were brighter than others—sometimes the largest value in a
vector was 9, while the norm is that the most intensive pixels
have the value of 16. We guess that the reason behind the
differences is the method of blurring used by the contest
organizers, which was probably different than the one applied
by the original authors. As a result digits with the same
contours but with normal darkness of the pixels are quite
far from their brighter copies in the sense of most distance
measures. This brought the idea that it is worth to normalize
the brightness of the pixels within each vector. It is a special
kind of normalization since it concerns vectors instead of
features. We decided to use a linear transformation with a
threshold, which prevents from values greater than 16:

fk(xi) = 16·max(1,

xi

vk(x)
), (3)

where xi is the ith coordinate of vectorx and vk(x) is the
minimum of 1 and thekth minimum coordinate ofx. k is
the parameter controlling the transformation, which must be
within the range from 1 to the dimensionality ofx—the smaller
k, the stronger darkening of the image (very smallk should
force vk to be 1, and the pixels will get either 16 or 0
values). The transformation may be calleddarkening, because
it reduces the brightness of some digit images.

To find the optimum number ofk for the darkening trans-
formation followed by a classification algorithm we need
to perform some meta-search. For different classifiers we
obtainedk = 56 andk = 59 as the optimum values.

Two examples of exceptionally bright digits are presented in
figure 8. They were selected to show how the 3NN classifier
improves its results thanks to the brightness normalization.



Fig. 8. Brightness correction examples.

Bright digits usually seem more similar to other bright digits,
than to darker digits representing the same class. The figure
shows bright and darkened (withk = 56) versions of two
examples (vectors 2576 and 4694), and their closest neigh-
bors. The top two rows correspond to the first example, the
remaining two to the second. In the leftmost column we see
the illustrations of bright and dark versions of the examples.
The middle column shows the nearest neighbors of the digits
and the right-hand column the second nearest neighbors. The
neighbors are determined on the basis of Euclidean distance
to the analyzed example. It can be seen, that in the case of the
first example, the bright 5 is closer to a bright 3 (example
1986, distance equal to 18.7) and to a bright 0 (example
134, distance: 21.0) than to other examples of digit 5. After
darkening, the case 2576 moves in the feature space toward
other examples of 5, so that the nearest two neighbors also
belong to class 5 (examples 2978 and 2986 with distances
of 27.1 and 32.0). Notice that the distances to another bright
digits are significantly smaller than the distance to the nearest
neighbor after darkening. The second example is also rectified
by darkening, however it is not so evident as in the case
of the former example. It is a bright 9 whose two nearest
neighbors are bright representatives of class 3 (examples 1708
and 1958 with respective distances of 17.7 and 21.4). After
darkening the nearest neighbor is another instance of 9 (4603
with Euclidean distance 26.9). The second nearest neighbor
of the darkened 9 represents class 3 (case 1761 with distance
27.3).

The brightness normalization improves test accuracies by
0.1%-0.5% for most of the models we have tested. The
differences (although not very large) are confirmed with the
paired t-test to be statistically significant.

The first example of positive influence of darkening is the
transformation performed withk = 56 combined with the(N

2 )

scheme of SVMs:

Dark 56 | (N
2 ) SVM

XCV: 0.0163± 0.0063 TE: 0.0103

As presented above, without darkening the CV error was
0.0177.

Another example of the influence of darkening is its com-
bination with the weighted committee of NRBF and SVM:

Dark 56 | CommW [NRBF + SVM]
XCV: 0.0194± 0.006 TE: 0.0166

In this case darkening also decreased the error while pre-
serving the standard deviation.

Another promising value ofk for darkening was 59 which
also offered a decrease of the error of(N

2 ) with SVM:

Dark 59 | (N
2 ) SVM

XCV: 0.0159± 0.0055 TE: 0.0103

To obtain higher stability a CV committee was built on the
basis of(N

2 ) SVM. Again the error got a bit smaller:

Dark 59 | CVC[(N
2 ) SVM]

XCV: 0.0151± 0.0057 TE: 0.0103

Finally, a weighted committee of two models: a(N
2 ) SVM

and a CV committee of(N
2 ) SVM was composed.

Dark 59 | CommW[(N
2 ) SVM + CVC[(N

2 ) SVM]]
XCV: 0.01499± 0.006 TE: 0.0095

Although we should not expect a significance in the dif-
ferences between (at least) the last three models presented,
the last one is the winner of the competition. It misclassifies
just 12 test instances. The kNN withk = 5 misclassifies 42
instances. So the best model outperforms the kNN over three
times in an absolutely fair test.

V. CONCLUSIONS AND FUTURE PLANS

The way to the winner model was not straight or easy. The
final solution was a consequence of many different types of
experiments. It can not be expected that for a real world,
nontrivial data, a single model will solve the problem with
satisfactory results.

There are so many different adaptive methods and new ones
are still emerging. Now the most important problem is to be
able to find the methods (and their parameters) which provide
the best models of given data. Thus, the procedures of model
searching will get more and more important. Nowadays meta-
search is usually performed by a human with some help of
computational intelligence tools, but already now we feel a
strong need for automatization of such processes.

In meta-learning it is very important to observe carefully
the results of tests at each step of the search process. We need
to learn how these results point the most promising directions
of further steps. We need to learn more about the ways we
search for attractive solutions and try to convert the knowledge
into formal procedures. Our experience augmented with the



possibility of performing tests thoroughly and systematically
should bring very successful meta-learning techniques.

We have used some elements of meta-learning in our model
searching procedures. We still work on more abstract, much
more exhaustive and smart meta-learning which can be applied
to different tasks, and hopefully will soon compete with
humans.
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[12] K. Grąbczewski and N. Jankowski, “Mining for complex models
comprising feature selection and classification,” inFeature extraction,
foundations and applications, I. Guyon, S. Gunn, M. Nikravesh, and
L. Zadeh, Eds. Springer, 2006, pp. 473–489.

[13] R. Adamczak, W. Duch, and N. Jankowski, “New developments in the
feature space mapping model,” inThird Conference on Neural Networks
and Their Applications. Kule, Poland: Polish Neural Networks Society,
Oct. 1997, pp. 65–70.

[14] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods — Support
Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds.
Cambridge, MA.: MIT Press, 1998.

[15] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R.K. Murthy,
“Improvements to Platt’s SMO algorithm for SVM classifier design,”
Neural Computation, vol. 13, pp. 637–649, 2001.
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