
A GPU-based Interactive Bio-inspired Visual
Clustering

Ugo Erra
Dipartimento di Matematica e

Informatica
Università della Basilicata

Potenza, Italy
Email: ugo.erra@unibas.it

Bernardino Frola
Dipartimento di Informatica ed

Applicazioni
Università di Salerno

Fisciano, Italy
Email: frola@dia.unisa.it

Vittorio Scarano
Dipartimento di Informatica ed

Applicazioni
Università di Salerno

Fisciano, Italy
Email: vitsca@dia.unisa.it

Abstract—In this work, we present an interactive visual clus-
tering approach for the exploration and analysis of vast volumes
of data. Our proposed approach is a bio-inspired collective behav-
ioral model to be used in a 3D graphics environment. Our paper
illustrates an extension of the behavioral model for clustering
and a parallel implementation, using Compute Unified Device
Architecture to exploit the computational power of Graphics
Processor Units (GPUs). The advantage of our approach is that,
as data enters the environment, the user is directly involved in the
data mining process. Our experiments illustrate the effectiveness
and efficiency provided by our approach when applied to a
number of real and synthetic data sets.

I. INTRODUCTION

Today, data-intensive science consists of the analysis of
scientific data captured by instruments or generated by sim-
ulations and resulting in vast volumes of data with high
dimensionality. For instance, CERNs Large Hadron Collider
and astronomy’s Pan-STARRS5 array of celestial telescopes
are capable of generating several petabytes of data per day,
while gene sequencing machines are capable of producing
thousands or millions of genome sequences. The amount of
data produced by today’s technologies is so vast that in order to
verify and validate underlying models, data must be visualized
and analyzed. Both visualization and data analysis require
new approaches that enable us to conduct high-performance
processing and intuitive representation when dealing with large
amounts of data.

Visual data mining allows us to gain insight into data-
intensive science through new approaches to visual data anal-
ysis and knowledge discovery. The detection and validation
of expected results is facilitated by interactive interfaces that
improve the interpretation of data. Scientists can use visual
data analysis systems to explore multiple scenarios and ex-
amine data using multiple perspectives and assumptions. A
number of visualization techniques have developed to support
data mining tasks that rely on such types of visualization as
clustering, for example.

Clustering is essentially a data mining approach that ad-
dresses the problems of growing data and the scarcity of

Video of this work is available only for this review at http://isis.dia.unisa.
it/projects/behavert/cidm2011.wmv

human attention by discovering groups of similar objects.
Each group, called a ”cluster“, consists of objects that are
similar to one another and dissimilar to objects of other
groups. The meaning and measure of similarity is referred to
as the ”distance metric,” a term used to define the closeness
between two objects in a pair. Based on given similarities,
data is organized into clusters using an unsupervised learning
approach that starts with an unlabeled dataset, from which
we want to discover how the objects within that set are
organized [1]. Clustering is a common operation that, in
addition to discovering groups in data mining applications,
has numerous applications. For instance, it may assist in the
study of social networks by recognizing communities, in image
processing by recognizing objects, and in grouping genes by
performing functions similar to the bioinformatics functions
genes perform.

There are many clustering techniques . The most widely
used are: Hierarchical clustering [2], 𝑘-means clustering [3],
and self-organized maps [4]. It is impossible to say whether
any of these techniques is better than the others because each
algorithm has its advantages and disadvantages and performs
differently for different problems. For instance, 𝑘-means is
simple and has good time complexity, but is unstable due
to its initial seeds assignment; what is more, the user must
decide, a priori, the number of clusters. On the other hand,
hierarchical clustering does not require that the number of
clusters be determined a priori, but has a complexity that is at
least quadratic, in terms of the number of inputs compared to
the linear complexity of 𝑘-means. Moreover, these algorithms
are useful for organizing static data but do not do well with
the analysis of extremely large datasets that cannot be held, in
their entirety, by a single system’s memory. They also do not
do well in situations where the time delay before new data is
arranged into clusters is essential to refreshing the organization
of data. With two- or three-dimensional data, the results
of different algorithms can be easily explored using simple
visualizations, but data with high dimensionality are much
more difficult to visualize and understand. Several techniques
try to project the data into two- or three-dimensional space, in
order to show the properties of high-dimensional clusters [5].

Thanks to their good price/performance ratio and hardware

978-1-4244-9927-4/11/$26.00 ©2011 IEEE

programmability, Graphics Processor Units (GPUs) are used
today not only for 3D graphics rendering, but for general-
purpose computing. In this paper, we present a clustering
algorithm inspired by a flocking behavioral model that exploits
the parallel architecture of GPUs. High-dimensional data are
mapped as agents’ features. Each agent is assigned a local
behavioral model and moves by coordinating with the motion
of other agents in a 3D environment. The effectiveness of
our approach relies on the natural organization that arises
when a group of agents interacts using a local behavioral
model. It enables the organization into clusters of agents with
similar features. Using NVIDIA’s Compute Unified Device
Architecture (CUDA) as our programming environment, we il-
lustrate the model and an efficient implementation that exploits
the parallel architecture of GPUs. The proposed clustering
does not require the number of clusters as input, and data
can be introduced interactively, on the fly. Generally, our
approach enables high-performance processing in data analysis
and visualization based on an intuitive representation that
avoids the projection of high-dimensional data in two- or
three-dimensional space. Experimental results show that the
quality of clustering that results from using our algorithm is
guaranteed, while GPU implementation performs merely well.

The remainder of this paper is organized as follows: In
section II, we review previous clustering approaches that are
based on GPUs. In section III, we describe the behavioral
model that inspired our clustering approach. In section IV, we
illustrate our clustering algorithm. In section V, we present
its implementation on a GPU. In section VI, we present a
brief description of the application. Section VII illustrates the
efficiency and performance scalability of some experiments.
Finally, section VIII concludes and discusses directions for
future work.

II. RELATED WORKS

An example of a system that uses visualization techniques
for high-dimensional clustering is OPTICS [6]. The authors
of OPTICS created a one-dimensional ordering of databases,
representing the density of clustering structures. Cluster points
are close in the one-dimensional ordering generated by OP-
TICS, and their reachability is provided using a distance plot.
This visualization system is valuable for understanding and
guiding the clustering process. Another approach to high-
dimensional clustering is the HD-Eye system [7]. HD-Eye
considers clustering a partitioning problem and allows the user
to be directly involved in the clustering process - that is, in
choosing the dimensions to be considered, in selecting the
clustering paradigms, and in partitioning the data sets.

With regards to clustering, GPUs have demonstrated inter-
esting results. The 𝑘-means clustering is probably the most
studied clustering algorithm on GPUs. The first implementa-
tions to show how GPUs can be used to significantly accelerate
𝑘-means are [8] [9]. Using an obsolete approach, based on
shader languages, the authors of these studies exploited the
computational capabilities of GPUs. Today, general purpose

Fig. 1. From left to the right, the steering behaviors: separation, cohesion
and alignment. In all cases, the agent’s has a local perception of the other
agents is limited by its field of view.

languages, like CUDA, offer better support to GPU architec-
tures. The authors of [10] [11] tried to improve the efficiency
of 𝑘-means using CUDA and optimizations directly targeted
at parallel architectures. They obtained a speed that is 14 and
13 times greater, respectively, than that of a CPU’s sequential
computation.

The authors of [12] used a shader language to implement
hierarchical clustering. Their implementation speed was 2-
4 times greater than that of a CPU. [13] explored parallel
computation of hierarchical clustering with CUDA and obtains
a speed that is 48 times greater.

In [14], authors analyze and group documents based on a
flocking clustering model implemented on the GPU. In this
implementation, each document is a bird and flies toward other
documents that are similar to it. As the authors recognize,
the limitation of this approach is its complexity 𝑂(𝑛2). This
inefficiency results from the fact that in each step of the
simulation, the authors created a thread for each agent pair
(𝑛2 thread in total), in order to compare their locations in 2D
virtual space and then compute the distance between them.

Our approach tackles the problem of 𝑂(𝑛2) complexity
using a static grid that subdivides 3D space into cubic cells of
the same size. This approach enable us to identify, in parallel,
all agents within the same cell or within a given region,
considering which agents within the cells overlap a region
of interest. Experiments showed that this approach can speed
up the implementation of a clustering algorithm, allowing for
faster exploration of data sets that contain thousands of items.

III. THE BEHAVIORAL MODEL

Our clustering approach is inspired by the original be-
havioral models proposed by Reynolds [15]. In Reynold’s
model, each agent has a strictly local perception of the space
it occupies. None of the creatures that compose the group
has full knowledge of the entire group. Hence, agents must
base their decisions on what they know of the neighbors
that their fields of view allow them to perceive. Based on
each agent’s visibility, the synchronized aggregated motion
of the group is achieved by performing a weighted sum of
steering behaviors. Reynolds defined three steering behaviors,
illustrated in Figure 1. The first, separation, tends to keep
distance from other neighbors. This is necessary to prevent
the collision of agents. A repulsive force 𝑓𝑠 is calculated as
the difference vector between an agent’s current position and
the position of each of its neighbors, while the steering force

is calculated as the average vectors between all the repulsive
forces. The cohesion moves the agent toward the center of his
local neighborhood. This gives the flock an aggregated aspect.
The cohesion force 𝑓𝑐 is obtained by computing the average
position of neighbors. The alignment tends to align the agent
with other neighbors through group computing. The alignment
force 𝑓𝑎 is calculated as the difference between the average of
the neighbors’ forward vectors and the forward vector of the
agent itself.

The overall steering force 𝑓𝑟 of the Reynolds model, for the
agent 𝑖, is achieved by adding the steering forces produced by
behaviors

𝑓𝑟 = 𝑤𝑠𝑓𝑠 + 𝑤𝑐𝑓𝑐 + 𝑤𝑎𝑓𝑎

where, 𝑤𝑠, 𝑤𝑐, and 𝑤𝑎 are weights that manage the behavioral
impact on the whole steering force.

According to the steering model proposed by Reynolds, the
3D movement of each agent 𝑖 is defined using the following
equations:

𝑎⃗𝑖 = 𝑎⃗𝑖 + 𝑠𝑚𝑜𝑜𝑡ℎ𝑅𝑎𝑡𝑒(𝑓𝑟 − 𝑎⃗𝑖)

𝑣⃗𝑖 = 𝑣⃗𝑖 + 𝑎⃗𝑖

𝑑𝑖 =
(
𝑑𝑖 + 𝑎⃗𝑖

)
/
∣∣∣∣𝑑𝑖 + 𝑎⃗𝑖

∣∣∣∣
𝑝𝑖 = 𝑝𝑖 + 𝑣⃗𝑖

where, 𝑎⃗𝑖 is the agent’s acceleration vector, 𝑣⃗𝑖 is the velocity
vector, 𝑝𝑖 is the position vector, and 𝑑𝑖 is the direction
unit vector. The parameter 𝑠𝑚𝑜𝑜𝑡ℎ𝑅𝑎𝑡𝑒 indicates how much
steering force influences the agent’s acceleration. Both the
lengths of 𝑣⃗𝑖 and 𝑓𝑟 are truncated to a maximum speed.

The model illustrated requires that within a large environ-
ment, neighbors be identified - neighbors being all agents that
fall inside the field of view of an agent. This is fundamental
because each agent must make decisions only according to
its neighbors, and so it must be able to pick out these agents
efficiently. A brute force approach requires 𝑂(𝑛2) steps for
a proximity screening, i.e., compares each agent to all others
and gathers all agents within a given range. This approach
is sufficient for a hundred agents, but it is clear that is
computationally inefficient for generating interactive results
for thousands of agents.

IV. THE CLUSTERING MODEL APPROACH

In addition to the model proposed by Reynolds, we de-
fined two new behaviors called Cluster-Cohesion and Cluster-
Alignment. These behaviors implement the agent-based clus-
tering algorithm.

The cluster-cohesion force 𝑓𝑐𝑐, for a specific agent 𝑖, is
computed as

𝑓𝑐𝑐 =
∑

𝑗∈𝑁𝑒𝑖𝑔ℎ𝑠(𝑖)

𝑠𝑖𝑚𝑖𝑗𝑠𝑖𝑗 + (1− 𝑠𝑖𝑚𝑖𝑗)𝑓𝑖𝑗

where, 𝑁𝑒𝑖𝑔ℎ𝑠(𝑖) are the nearest neighbors of the agent
𝑖. The vector 𝑠𝑖𝑗 = (𝑝𝑗 − 𝑝𝑖) − 𝑣⃗𝑖 is the seeking force
between agents 𝑖 and 𝑗, while 𝑓𝑖𝑗 = −𝑠𝑖𝑗 is the fleeing force.
The function 𝑠𝑖𝑚𝑖𝑗 computes a similarity factor between the
features vectors associated with agents 𝑖 and 𝑗 and must be

between 0 and 1. The cluster-alignment force 𝑓𝑐𝑎, for a specific
agent 𝑖, is computed as

𝑓𝑐𝑎 =
∑

𝑗∈𝑁𝑒𝑖𝑔ℎ𝑠(𝑖)

𝑠𝑖𝑚𝑖𝑗𝑑𝑗

The steering force 𝑓 used in the flocking clustering algo-
rithm is achieved by adding Reyndol’s steering forces and
these new forces

𝑓 = 𝑓𝑟 + 𝑤𝑐𝑐𝑓𝑐𝑐 + 𝑤𝑐𝑎𝑓𝑐𝑎

Also, in this case, we use two weights 𝑤𝑐𝑐, and 𝑤𝑐𝑎 to
manage the impact of the clustering algorithm’s behaviors.

A. Similarity

In our model, each agent represents an object of the data
set, while the features vector associated with each object
defines an agent’s character. The agents move in the 3D
environment within which the most similar agents will be
found and grouped. The overall effect is that when an agent
finds an agent similar to itself, it stays near this agent but
continues to explore the 3D environment, looking for groups
of agents that are similar to its group. The purpose of using
the 3D environment as search space is twofold. First, the
3D environment enables clustering of high-dimensional data
sets without loss of features. Second, the clustering process is
visualized in an intuitive and natural fashion, without regards
to data set dimensionality.

The similarity between two agents is computed using the
values of their associated features. The implementation de-
scribed in this paper recognizes the angular separation between
agent 𝑖 and 𝑗 as

𝑠𝑖𝑚𝑖𝑗 =
𝑐⃗𝑖 ⋅ 𝑐⃗𝑗√
∥𝑐⃗𝑖∥ ∥𝑐⃗𝑗∥

where, 𝑐⃗ is the agent’s features vector. The resulting factor is
between -1 and 1 and must be between 0 and 1. To achieve
this value, the similarity is recalculated as

𝑠𝑖𝑚𝑖𝑗 = (𝑠𝑖𝑚𝑖𝑗 + 1)/2

This similarity factor yields poor results when features
vectors are not normalized, which is possible taking into
account the mean value and variance of all the features vectors.
This kind of normalization is unfeasible when data represent
continuous streams. For this reason, we adopted a dynamic ad-
justment of the similarity value, using the similarities between
statistics for agents’ neighbors.

At each step of our simulation, each agent collects informa-
tion about the minimum value (𝑠𝑚𝑖𝑛), maximum value (𝑠𝑚𝑎𝑥)
and average value (𝑠𝑎𝑣𝑔) of its neighbors’ similarities. The
adaptive similarity 𝑎𝑠𝑖𝑚 is then computed as follows:

𝑎𝑠𝑖𝑚𝑖𝑗 =

{
𝑙𝑒𝑟𝑝(𝑠𝑖𝑚𝑖𝑗 , 𝑠𝑚𝑖𝑛, 0.0, 𝑠𝑎𝑣𝑔, 0.5) if 𝑠𝑖𝑚𝑖𝑗 ≤ 𝑠𝑎𝑣𝑔
𝑙𝑒𝑟𝑝(𝑠𝑖𝑚𝑖𝑗 , 𝑠𝑎𝑣𝑔, 0.5, 𝑠𝑚𝑎𝑥, 1.0) else

where, 𝑙𝑒𝑟𝑝(𝑣𝑎𝑙, 𝑥𝑎, 𝑦𝑎, 𝑥𝑏, 𝑦𝑏) gets the linear interpolation of
𝑣𝑎𝑙 on the line whose vertexes are (𝑥𝑎, 𝑦𝑎) and (𝑥𝑏, 𝑦𝑏). Figure
2 shows the relationship between 𝑠𝑖𝑚 and 𝑎𝑠𝑖𝑚.

D; 0.7

C; 0.4

E; 0.9
B; 0.9

F; 1.0

A

a) b)

sim(A, F)

.0

s

0.5

0 0.4

0.5

1

10 0.4 100 44 0.90.78
Linear similarity (sim)

Ad
ap

tiv
e

sim
ila

rit
y

(a
si
m

)

Repulsion Attraction

Fig. 2. a) A group of 6 agents (little triangles). Step I: Agent A computes
the linear similarity (𝑠𝑖𝑚) of each neighbor. It also computes the minimum
(0.4), maximum (0.9) and average (0.78) 𝑠𝑖𝑚 among them. Step II: Agent A
computes the value of 𝑎𝑠𝑖𝑚 for each of its neighbors, taking into account the
minimum, maximum and average 𝑠𝑖𝑚 computed during the previous step. b)
Adaptive similarity vs. linear similarity. Agent A is repulsed by agents with
𝑎𝑠𝑖𝑚 < 0.5 (agents C and D) and attracted by those with 𝑎𝑠𝑖𝑚 > 0.5
(agents B, E and F).

B. Cluster Identification

We implemented a simple local label propagation algorithm
for cluster identification. The algorithm consists of two steps:

I. Assign a unique label to each agent.
II. Each agent looks to each of its neighbors, in turn. If

its neighbor’s label is smaller than its own label, then it
replaces its label with that of its neighbor. Repeat this
step LPIterations times.

The value of LPIterations can be set at run-time using one
of the slides of the user interface. Figure 3 shows an example
of local label propagation.

2 4

1

85
7

10

6
12

3

13

9

11

2 1

1

15
5

2

6
3

3

3

5

1

1 1

1

11
1

1

3
3

3

3

1

1

a) b) c)

C1

C3

Fig. 3. Example of local label propagation for cluster identification (with
LPIterations equal to 2). a) Step I: Assign a unique label to each agent. b) Step
II, iteration 1: Propagate minimum values using neighborhood connections. c)
Step II, iteration 2: Again, propagate minimum values. Agents with the same
labels represent clusters.

V. IMPLEMENTATION

Recently, GPUs have evolved to program general-purpose
computations using such programming models as CUDA [16].
CUDA is a minimal extension to C language and permits the
writing of a serial program called kernel. A kernel executes
in parallel across a set of parallel threads. Each thread has a
private local memory. The programmer organizes these threads
into a hierarchy of thread blocks and grids. A thread block
is a set of concurrent threads that can cooperate amongst
themselves, through barrier synchronization, and that have

access to the shared memory, with latency comparable to
registers. The grid is a set of thread blocks, each of which
may be executed independently. All threads have access to the
same global, constant or texture memory. These three memory
spaces are optimized for different memory usages and, thus,
have different time access. For example, the read-only constant
cache and texture cache are shared by all scalar processor
cores, and this speeds up reads from the texture memory space
and constant memory space.

Grid and block sizes must be defined for every kernel
invocation. Each block is mapped to one multiprocessor,
and then multiple thread blocks can be mapped onto the
same multiprocessor and executed concurrently. Multiproces-
sor resources (registers and shared memory) are split amongst
the mapped thread block. This limits the number of thread
blocks that can be mapped onto the same multiprocessor.
In order to maximize the number of threads supported by a
multiprocessor, the resources required by each kernel must be
taken into account.

In order to avoid the 𝑂(𝑛2) complexity of the search for
neighbors, we adopt a strategy based on the assumption that
the interaction of steering behaviors drops off with distance
[17]. Then, we are interested only in efficiently computing a
limited number of neighbors. This biologically-based assump-
tion alleviates the computational effort required by the search
for neighbors, as well as the difficulty of managing dynamic
data structures, which is not trivial when it comes to GPU
implementation.

Then, to accomplish this task, a static grid subdivides the
3D environment into cubic cells of the same size. For each
agent, we assign a hash value based on its cell. Based on the
hash values, a radix sort is performed on the GPU. At the end
of this step, groups of agents belonging to the same cell will
be located in continuous regions of the GPU’s memory. This
process quickly results in a list of neighbors. A range query is
performed, with each agent looking for neighbors in its own
and adjacent cells. A simple linear search that starts from a
proper index and is based on cell hash function is then suf-
ficient. Further information, including implementation details,
performance and scalability evaluations of this approach are
discussed in more detail in our previous works [18] [19].

Neighborhoohs

Separation

Adaptive-
Similarities

Cohesion

Cluster-
Cohesion

Alignment

Cluster-
Alignment

Simulation -
Update

NeigLists

Similarities

fca

f

fcc

fa

fs

fc

NeigLists

c Neighbors-
Similarities

Adaptive similarities

Fig. 4. Implementation schema. Rectangles are kernels, and arrows are data
streams. Neighborhoods represents a set of kernels.

Figure 4 shows the main kernels and data streams used to
implement the proposed clustering method. ”Neighborhoods”
is composed of several kernels and generates neighbors lists

Fig. 5. Left: Agents introduced on the fly in any place in a 3D environment.
Agents are rendered with a 3D model of fish. Right: 3D representation of a
cluster. Agents are rendered with billboards. Each agent is connected to the
agent with the lowest label value amongst the agents that belong to the same
cluster.

as described above. Given the neighbors list of each agent,
the kernel NeighborhsSimilarities generates a simi-
larity value for each agent’s neighbor. It, therefore, launches
one thread for each agent’s neighbor. Let maxNeighs be the
maximum number of neighbors for each agent. One agent is
associated with the maxNeighs thread, with each agent sharing
its features vector and neighbors list. These data are read
in parallel and put in the shared memory. Other kernels -
Separation, Cohesion, and Alignment - compute the
three steering forces of Reynolds’ flocking behavior, while
kernels ClusterCohesion and ClusterAlignement
turn similarities and neighbors lists into steering forces, re-
spectively, 𝑓𝑐𝑐 and 𝑓𝑐𝑎. These kernels launch a thread for
each agent. The steering forces yielded by each behavior
are blended in a common accumulator (𝑓), taking into ac-
count the force weights associated with each behavior. The
SimulationUpdate kernel applies the resulting steering
force to the 3D motion of agents, as described by equations
in Sect. IV. Each thread computes and stores similarities and
similarities statistics (useful for the adaptive similarity method,
described in Sect. IV-A)) of only one neighbor agent.

VI. THE APPLICATION

Efficient implementation of the proposed model enables the
introduction of agents into the 3D environment in any place,
on the fly, using a sort of agents fountain that eliminates the
need to restart the algorithm when new data are available
(Fig. 5 left). The objective is to maintain a consistently
good clustering of the sequences observed so far, in a small
amount of time. After the data stream of agents has entered
the environment, it immediately seeks similar clusters, in a
natural fashion. This feature is implemented by pre-allocating
buffering spaces in the GPU’s memory and using these buffers
whenever new data is available.

During the simulation, agents belonging to the same cluster
may move together and form flocks. These flocks explore the
3D environment, looking for similar groups to join up with.
When flocks representing well-defined clusters collide, they

a) b) d)c)

t0

t1

Fig. 6. Some common situations occurred during our experimentation: Impact
between flocks representing well-defined clusters (a) and similar clusters (b).
Individual exchanges between flocks (c). Flocks mixing (d).

bounce off of each other and follow different paths (Fig. 6a).
Flocks representing similar clusters move close but do not mix.
Some agents act as cluster bridges, moving between two flocks
(Fig. 6b. These agents change flock membership, depending
on whether the cluster of one flock matches its own features
vector better than the cluster of its current flock (Fig. 6c).
Flocks representing the same cluster (according to the metric
used as the similarity function) merge in a big flock (Fig. 6d).
In our experiments, we observed that 2000 iterations were
sufficient to reach a stable state, even for thousands of agents.

Several parameters influence the formation of clusters.
Aside from the weights of the model illustrated in Sect.
IV, we have 𝑤𝑜𝑟𝑙𝑑𝑅𝑎𝑑𝑖𝑢𝑠, which is the size of the world;
𝑠𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑𝑖𝑢𝑠, which is the size of the range query;
𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑑𝑖𝑢𝑠, which represents the distance of sepa-
ration between agents; and 𝑚𝑎𝑥𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠, which is the
maximum number of neighbors an agent can have.

The visual interface (Fig 7) supports the user in the classi-
fication and verification process of output clusters, using the
Visual Information Seeking Mantra ”Overview first, zoom and
filter, then details-on-demand” [20], as described below:

∙ Overview first. During the creation of clusters, the appli-
cation supports the visualization of the flocking approach.
The overview provides the user with a visual summary
of clustering results and allows a first evaluation of the
number of clusters and relations between clusters. As
described in Sect. IV-B, each agent is connected to the
agent with the lowest unique index in its cluster. The
name of the cluster is the label of the lowest unique index
in that cluster. During clustering, the user can modify
the simulation parameters during run time, using several
sliders and changing point of view in the 3D environment,
so as to explore one or more clusters from multiple
angles.

∙ Zoom and filter. Because our approach can also handle
vast volumes of data, the visual interface allows the user
to zoom in, from the initial overview, and filter infor-
mation, refining the current view. If the user identifies
clusters of interest in the overview, these clusters can
be selected individually or removed from the clustering
process.

∙ Details-on-demand. The user can select one or more
agents and show their properties (position, class mem-
bership, etc.). Each input data is labeled with actual

class membership, and the application shows detailed
information about clusters, using the confusion matrix.
Each matrix row represents the instances in a predicted
class, while each column represents the instances in an
actual class.

Sliders

Flocking environment
bounding box

Cluster Label

Confusion matrix

l

Fig. 7. The software Graphical User Interface (GUI).

VII. EXPERIMENTAL RESULTS

In this section, we show the results of two types of ex-
periments. The first experiment demonstrates the quality of
our approach. The second is related to the efficiency of GPU,
versus CPU, implementation. All tests were performed on an
AMD Athlon 2800+ CPU, 2GB RAM and a NVIDIA GTX
470 1280Mb RAM (CUDA compute capability 2.0). Software
configuration: CUDA SDK v3.1, Windows 7. The rendering
of clusters was done with OpenGL [21].

A. Quality

For the quality tests, we selected six of the most popular
datasets from UC Irvine’s Machine Learning Repository [22].
The selected datasets are Iris, Wine, Yeast, Breast Cancer
Wisconsin, Abalone and SPECT Heart. Below is a brief
description of these datasets:

∙ The Iris dataset contains information about Iris flowers.
There are three classes of Iris flowers - Iris Setosa, Iris
Versicolor and Iris Virginica. The Iris dataset consists of
150 examples of Irises that are classified according to 4
attributes. One class is clearly separable from the others,
which overlap in a lot of respects.

∙ The Wine dataset is the result of a chemical analysis of
wines grown in a region of Italy but derived from three

different cultivars. There are three classes of wines. The
dataset consists of 178 examples of wines, each with 13
continuous attributes. It contains 59 examples of class 1,
71 examples of class 2 and 48 examples of class 3.

∙ The yeast data set contains 1484 records. The cellular
localization sites of proteins are to be determined. There
are ten classes.

∙ The Breast Cancer Wisconsin (B.C.W.) dataset has 699
records of benign and malignant breast cancer tumors.
The goal of this dataset is to explain the difference
between the two diagnoses.

∙ The Abalone dataset has a total of 4177 records. Each
record represent an abalone instance. The goal of this
dataset is to decide the number of rings using various
measurements. The number of rings ranges from 1 to
29. A 3-class classification problem is defined for the
Abalone dataset, analogously to the Iris dataset, except
that here, class 1 has records with 1-8 rings, class 2 has
records with 9 or 10 rings, and class 3 has records with
11-29 rings.

∙ The SPECT Heart dataset has 267 records. In contrast to
the other datasets, all of its attributes are binary. The goal
of this dataset is to report diagnosis using 0 and 1.

In addition, we used synthetic datasets generated by a Gaus-
sian cluster generator proposed in [23]. We used three syn-
thetic datasets, each containing 4000 records. The first has 10
classes (Synth. 10C), the second has 20 classes (Synth. 20C)
and the third 40 classes (Synth. 40C). For each test, we split
the given data set 50/50 into training and testing data.

The parameters used for the quality tests are set to 𝑤𝑎 =
0, 𝑤𝑐 = 0, 𝑠𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑𝑖𝑢𝑠 = 4, 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑑𝑖𝑢𝑠 = 1.5,
𝑚𝑎𝑥𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 32. We used training data to empirically
find the values of 𝑤𝑠, 𝑤𝑐𝑐, and 𝑤𝑐𝑎 (showed in Table I). The
value of 𝑤𝑜𝑟𝑙𝑑𝑅𝑎𝑑𝑖𝑢𝑠 is computed such that agent density in
the 3D environment is always 0.05 world units per agent (in
order to ensure a good level of interaction among agents).

For each dataset, we evaluated the correctness of classifi-
cation results using 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) and 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑅). We also
used 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹), the harmonic mean of precision and
recall. These measures are defined as:

𝑃 =
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
𝑅 =

𝑡𝑝

𝑡𝑝+ 𝑓𝑛
𝐹 = 2 ⋅ 𝑃𝑅

𝑃 +𝑅

where, 𝑡𝑝 is the number of true positive patterns, 𝑓𝑝 the
number of false positive patterns, and 𝑓𝑛 the number of false
negative patterns.

Table II shows the averages and standard deviations of the
results of the proposed clustering algorithm of 500 iterations,
after the simulation reached a stable state (2000 iterations).
We compared our results with 𝑘-means clustering [3] and
hierarchical clustering (single-linkage) [2]. 𝑃𝐾𝑀 , 𝑅𝐾𝑀 , and
𝐹𝐾𝑀 are, respectively, precision, recall, and F-measure of
the 𝑘-means clustering results. 𝑃𝐻𝐶 , 𝑅𝐻𝐶 , and 𝐹𝐻𝐶 are,
respectively, precision, recall, and F-measure of the hierar-
chical clustering results. We executed the 𝑘-means clustering

TABLE I
VALUES OF PARAMETERS

Iris Wine Yeast B. C. W. Abalone SPECT H. Synth. 10C Synth. 20C Synth. 40C
𝑤𝑠 2.0 3.0 2.0 1.0 2.0 0.5 0.5 0.5 0.5
𝑤𝑐𝑐 3.0 4.0 4.8 2.0 4.0 1.0 3.0 3.0 3.0
𝑤𝑐𝑎 2.0 4.0 3.0 4.0 3.8 6.0 2.5 2.5 2.5

TABLE II
RESULTS OF QUALITY TESTS

Iris Wine Yeast B. C. W. Abalone SPECT H. Synth. 10C Synth. 20C Synth. 40C
𝑃 0.98±0.00 0.77±0.00 0.33±0.01 0.86±0.00 0.54±0.00 0.67±0.00 0.91±0.01 0.92±0.01 0.79±0.03
𝑃𝐾𝑀 0.83±0.15 0.75±0.01 0.33±0.04 0.96±0.00 0.51±0.00 0.56±0.02 0.85±0.06 0.79±0.06 0.77±0.05
𝑃𝐻𝐶 0.84 0.47 0.27 0.83 0.28 0.46 0.74 0.74 0.73
𝑅 0.97±0.00 0.72±0.00 0.33±0.01 0.87±0.00 0.50±0.00 0.70±0.00 0.90±0.00 0.91±0.01 0.77±0.05
𝑅𝐾𝑀 0.85±0.12 0.72±0.00 0.34±0.04 0.95±0.00 0.52±0.00 0.69±0.03 0.87±0.07 0.78±0.06 0.75±0.05
𝑅𝐻𝐶 0.68 0.36 0.22 0.50 0.41 0.48 0.71 0.70 0.72
𝐹 0.97±0.00 0.71±0.00 0.29±0.01 0.86±0.00 0.51±0.00 0.68±0.00 0.90±0.00 0.92±0.01 0.76±0.03
𝐹𝐾𝑀 0.84±0.13 0.70±0.01 0.30±0.03 0.95±0.00 0.51±0.01 0.43±0.02 0.85±0.06 0.77±0.07 0.75±0.05
𝐹𝐻𝐶 0.58 0.25 0.20 0.40 0.33 0.48 0.68 0.66 0.73

algorithm 500 times for each dataset. With all datasets, we
achieved results that were superior to the results we achieved
with hierarchical clustering. With Iris, Wine, and SPECT
Heart, we achieved better results than with 𝑘-means, while
with Yeast and Abalone, we achieved similar results and, with
Breast Cancer Wisconsin, slightly worse results. Tests with
synthetic data show that datasets with high numbers of classes
are properly classified.

B. Performances

For performance tests, we used datasets with different num-
ber of instances, features and classes, generated by Gaussian-
based synthetic datasets [23]. The parameters are set to 𝑤𝑠 =
0.8, 𝑤𝑎 = 0, 𝑤𝑐 = 0, 𝑤𝑐𝑐 = 3.0, 𝑤𝑐𝑎 = 2.5, 𝑠𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑𝑖𝑢𝑠 =
4, 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑑𝑖𝑢𝑠 = 1.5, 𝑚𝑎𝑥𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 32, and
𝑤𝑜𝑟𝑙𝑑𝑅𝑎𝑑𝑖𝑢𝑠 = 0.05.

For performance evaluation, we developed a serial version
executed on a CPU Opteron 252 2.6Ghz equipped with 2GB
RAM and based on the OpenSteer steering library [24]. Tests
were executed by comparing how many milliseconds it takes
for GPUs and CPUs to implement each algorithm iteration.
We also compared the results of our GPU implementation with
those of Matlab’s 𝑘-means serial implementation, in order to
give an idea of the results of a classical clustering approach.
We executed the 𝑘-means clustering algorithm 500 times with
each configuration and took the average elapsed time of a
single execution.

For the GPU, the CPU, and Matlab’s 𝑘-means, Figure
8 compares the results obtained with different numbers of
instances [NOTE: Please specify instances of what]. With
1000 instances, CPU implementation is more efficient than
GPU implementation (due to the data-reordering overhead, as
described in [18])), though the latter scales better than the
former. We achieved a speed of up to 30 with a dataset of
65000 agent instances (or size of dataset). Figure 8 also shows
that CPU implementation can run up to 2000 instances at
interactive frame rates, while GPU implementation can run
up to 32000 instances at interactive frame rates.

Figure 9 (left) compares the results of 𝑘-means with the

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1

2

4

8

16

32

64

128

256

512

1024

1K 2K 4K 8K 16K 32K 65K

Proposed approach (parallel)

Proposed approach (serial)

K-means (serial)

Speed-up

M
ill

ise
co

nd
s

#instances

Sp
ee

d-
up

Fig. 8. The speed-up is between our CPU implementation (proposed approach
- serial) and our GPU implementation (proposed approach - parallel). GPU
implementation scales better than CPU implementation. GPU implementation
is affected by an overhead that dominates in overall performance, with a low
number of instances (up to 1000).

1

2

4

8

16

32

64

128

256

512

1024

10 20 40 80 160

Proposed approach (parallel)

K-means (serial)

1

2

4

8

16

32

64

128

256

512

1024

5 10 20 40

Proposed approach (parallel)

K-means (serial)

M
ill

ise
co

nd
s

#features #classes

Fig. 9. Left: The GPU implementation (proposed approach - parallel) scales
worse than a classical clustering algorithm. This is due to the parallelization
scheme we chose. Scalability on #instances is advantaged, compared to
scalability on #features. Right: The performance of our GPU implementation
does not decrease with a high number of classes.

results of the proposed GPU implementation. The performance
of the proposed approach scales slightly worse than 𝑘-means.
This is due to the NeighborhsSimilarities kernel that
computes similarities amongst agents. This kernel launches a
thread for each agent’s neighbor, ensuring good performance,
with a high number of instances and a small number of features
(up to 40). In future works, a new version of this kernel will
address the problem of poor performance. A good solution to
this problem is to launch a thread for each feature of each

agent.
Figure 9 (right) illustrates an interesting point. The compu-

tation time of the classical 𝑘-means increases in proportion to
the number of classes. The computation time of GPU imple-
mentation decreases (indeed, it slightly decreases) because a
high number of classes leads to high fragmentation of agents
in the 3D environment (one flock for each class) leading to a
decrease in the average size of agents’ neighbors lists. Thus,
when the number of classes is high, the neighbors searching
phase is slightly more efficient.

VIII. CONCLUSIONS AND FUTURE WORKS

We proposed a bio-inspired clustering model and presented
an efficient implementation that exploits the parallel archi-
tecture of GPUs. Each features vector is represented by
an agent that follows simple local rules while moving in
a 3D environment. By following such simple rules, agents
exhibit complex global behavior, while agents similar to each
other gradually merge together to form a cluster. Also, we
proposed an efficient implementation for GPUs, based on a
static grid that tackles the problem of identifying neighbors.
This implementation is a key aspect to obtain an interactive
visualization-based result on GPUs, enabling incoming data to
cluster without taking into account all of the data processed.
Our approach is able to diagnose changes in evolving input
data. It can also distinguish data that is introduced into a 3D
environment and must join old clusters or form new clusters.
One advantage of our approach is that it does not require
a priori knowledge of the number of clusters. Nor does it
require a priori knowledge of the amount of data that will
cluster. As the input data stream evolves during computation,
the number of natural clusters will change. This enables the
user to interactively introduce data streams into a user-defined
3D space, in a way that is similar to the ’in vitro’ procedure
used in biology. In addition, we implemented a local label
propagation approach to automatically identify clusters. The
detection and validation of our results was facilitated by the
use of a visualization technique that relies on interactive inter-
faces to improve data interpretation. Experimental results show
that our approach can improve the quality and performance of
clustering.

In the future, we would like to explore several improve-
ments to our approach. We would like to: (i) Perform further
experiments to validate the effectiveness of clustering. (ii) Au-
tomatically identify the best parameters setting. (iii) Evaluate
other similarity metrics that perform better as the number of
features increases. (iv) Add a new feature, called ”assisted
clustering“, that enables users to select, at runtime, two or
more clusters and try to merge them.

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. New York, NY, USA:
Springer New York Inc., 2001.

[3] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, L. M. L. Cam and J. Neyman,
Eds., vol. 1. University of California Press, 1967, pp. 281–297.

[4] T. Kohonen, M. R. Schroeder, and T. S. Huang, Eds., Self-Organizing
Maps. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2001.

[5] L. Yang, “Interactive exploration of very large relational datasets through
3D dynamic projections,” in KDD ’00: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data
mining. New York, NY, USA: ACM, 2000, pp. 236–243.

[6] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS
- Ordering points to identify the clustering structure,” SIGMOD Rec.,
vol. 28, no. 2, pp. 49–60, 1999.

[7] A. Hinneburg, D. A. Keim, and M. Wawryniuk, “HD-Eye - Visual clus-
tering of high dimensional data: A demonstration,” Data Engineering,
International Conference on, vol. 0, p. 753, 2003.

[8] J. D. Hall and J. C. Hart, “GPU acceleration of iterative clustering,” in
ACM Workshop on General Purpose Computing on Graphics Proces-
sors, August 2004.

[9] S. A. Shalom, M. Dash, and M. Tue, “Efficient k-means clustering
using accelerated graphics processors,” in DaWaK ’08: Proceedings of
the 10th international conference on Data Warehousing and Knowledge
Discovery. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 166–175.

[10] M. Zechner and M. Granitzer, “Accelerating k-means on the graphics
processor via CUDA,” Intensive Applications and Services, International
Conference on, vol. 0, pp. 7–15, 2009.

[11] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell, “A parallel
implementation of k-means clustering on GPUs,” in PDPTA, 2008, pp.
340–345.

[12] Q. Zhang and Y. Zhang, “Hierarchical clustering of gene expression
profiles with graphics hardware acceleration,” Pattern Recogn. Lett.,
vol. 27, no. 6, pp. 676–681, 2006.

[13] D.-J. Chang, M. M. Kantardzic, and M. Ouyang, “Hierarchical
clustering with CUDA/GPU.” in ISCA PDCCS, J. H. Graham and
A. Skjellum, Eds. ISCA, 2009, pp. 7–12. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ISCApdcs/pdccs2009.html#ChangKO09

[14] J. S. Charles, T. E. Potok, R. M. Patton, and X. Cui, “Flocking-based
document clustering on the graphics processing unit,” in NICSO, 2007,
pp. 27–37.

[15] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in SIGGRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques. New York, NY,
USA: ACM, 1987, pp. 25–34.

[16] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[17] I. D. Couzin and J. Krause, “Self-organization and collective behavior
in vertebrates,” Advances in the Study of Behavior, vol. Volume 32, pp.
1–75, 2003.

[18] U. Erra, B. Frola, V. Scarano, and I. Couzin, “An efficient GPU
implementation for large scale individual-based simulation of collective
behavior,” High Performance Computational Systems Biology, Interna-
tional Workshop on, vol. 0, pp. 51–58, 2009.

[19] U. Erra, B. Frola, and V. Scarano, “BehaveRT: A GPU-based library
for autonomous characters,” in Motion in Games, ser. Lecture Notes
in Computer Science, R. Boulic, Y. Chrysanthou, and T. Komura, Eds.
Springer Berlin Heidelberg, vol. 6459, pp. 194–205.

[20] B. Shneiderman, “The eyes have it: A task by data type taxonomy
for information visualizations,” in Proceedings of the 1996 IEEE
Symposium on Visual Languages. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 336–. [Online]. Available: http://portal.
acm.org/citation.cfm?id=832277.834354

[21] OpenGL ARB, D. Shreiner, M. Woo, J. Neider, and T. Davis,
OpenGL(R) Programming Guide : The Official Guide to Learning
OpenGL(R), Version 2 (5th Edition). Addison-Wesley Professional,
August 2005.

[22] http://archive.ics.uci.edu/ml/datasets.html.
[23] http://dbkgroup.org/handl/generators/.
[24] C. Reynolds, “OpenSteer - steering behaviors for autonomous charac-

ters,” 2004, http://opensteer.sourceforge.net/.

