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Abstract—The clinical management of brain tumors is very 

sensitive; thus, their non-invasive characterization is often 

preferred. Non-negative Matrix Factorization techniques have 

been successfully applied in the context of neuro-oncology to 

extract the underlying source signals that explain different tissue 

tumor types, for which knowing the number of sources to 

calculate was always required. In the current study we estimate 

the number of relevant sources for a set of discrimination 

problems involving brain tumors and normal brain. For this, we 

propose to start by calculating a high number of sources using 

Bayesian NMF and automatically discarding the irrelevant ones 

during the iterative process of matrices decomposition, hence 

obtaining a reduced range of interpretable solutions. The real 

data used in this study come from a widely tested human brain 

tumor database. Simulated data that resembled the real data was 

also generated to validate the hypothesis against ground truth. 

The results obtained suggest that the proposed approach is able 

to provide a small range of meaningful solutions to the problem 

of source extraction in human brain tumors. 

Keywords—non-negative matrix factorization; Bayesian NMF; 

brain tumors; ideal number of sources 

I. INTRODUCTION 

Brain tumors have a relatively low incidence amongst 
humans as compared to other more widespread cancer 
pathologies. Their clinical management is sensitive and 
difficult, though: the physical location of the tumor makes its 
direct removal a complex clinical procedure that entails a non-
negligible risk of causing cognitive impairment. This also 
limits the availability of biopsy samples, whose 
histopathological analysis is the gold standard for tumor 

diagnosis and prognosis [1], [2]. As a result, the medical expert 
is often forced to rely on non-invasive indirect measurements 
of the tumor characteristics and growth. 

In current radiological practice, these data measurements 
require technologies that belong to the modalities of either 
imaging or spectroscopy (or combinations of both) [3]–[5]. In 
this study, we approached this problem by using Non-negative 
Matrix Factorization (NMF) [6], [7], a group of unsupervised 
techniques in which a data matrix is approximately factorized 
into (usually) two matrices, namely the sources and the mixing 
matrix. Different variants of NMF have previously been 
applied in the context of neuro-oncology to distinguish normal 
from abnormal masses [8]–[11], and between different tumor 
types [12]–[14]. To different extents, they all have succeeded 
on identifying the underlying source signals, for which it was 
always necessary to know in advance the number of sources to 
calculate. 

Over the last decade, full Bayesian approaches to modeling 
have become predominant in statistical machine learning. The 
most important advantage of a Bayesian approach is that the 
model complexity is explicitly incorporated into the 
optimization function. Thus, as excess complexity will be 
automatically penalized, the risk of overfitting the data is 
controlled. 

Most NMF variants can be explained as constrained 
Bayesian models, whose non-negative factorizing matrices are 
estimated using maximum likelihood or maximum a posteriori 
under some assumptions on the distribution of the data and the 
factors. Bayesian modeling therefore provides not only an 
estimate of the factors, but also an estimate of their marginal 



posterior density, which is valuable for interpreting the 
factorization, computing uncertainty estimates, etc. From the 
different approaches that can be found in the literature, we will 
consider in the current study the Bayesian inference for NMF 
models [15]. 

The aim of the current study is not only to extract the 
underlying source signals using a Bayesian approach to NMF, 
but also to address one of the open questions in the use of NMF 
techniques in the context of neuro-oncology, which is 
estimating the number of sources that provides a meaningful 
characterization of the problem at hand. For this, we propose to 
start by calculating a high number of sources and automatically 
discarding the irrelevant ones during the iterative process of 
matrices decomposition of NMF, obtaining a reduced range of 
interpretable solutions in human brain tumors. 

II. MATERIALS 

A. Real data 

The empirical data used in this study were extracted from 
an international multi-center database [16] compiled by the 
INTERPRET European research project [17]. Class labeling 
was performed according to the World Health Organization 
(WHO) system for diagnosing brain tumors by 
histopathological analysis of a biopsy sample. 

The data consist of single-voxel proton MR spectra (SV-
1
H-MRS) acquired from brain tumor patients at a magnetic 

field intensity of 1.5T and with parameter settings at short echo 
time, 20-32 ms (STE). The acquired spectra comprise 
measurements from 22 tumor masses labeled astrocytoma 
grade II (A2), 86 glioblastomas (GL), 58 meningiomas (MM) 
and 22 normal brain controls (NO). Raw data were processed 
as described in [18]. A total of 195 clinically-relevant 
frequency intensity values measured in parts per million (ppm), 
a dimensionless unit of measurement, were sampled from each 
spectrum in the [4.24-0.50] ppm interval. Figure 1 shows the 
mean spectra of the analyzed tumor and tissue types across 
spectral ranges, which follow acceptable clinical practice. 

 
Fig. 1. Mean spectra of the unit length normalized (UL2) tumor and 

tissue types identified by their labels as described in the Materials 

section. Frequencies in the horizontal axes measured in ppm; 

magnitudes in the vertical axes in arbitrary units. 

The label A2 indicates low-grade (grade II on a scale I-IV 
of the WHO) glial tumors, which grow by infiltrating normal 

brain tissue. This class of tumor masses may evolve to become 
highly malignant, WHO grade IV tumors, indicated by the 
label GL. Grade IV tumors usually have a necrotic pattern 
where infiltrating tissue has died through lack of blood 
perfusion leaving behind strong lipid signals that are most 
evident when obtaining MRS data at STE. However, not all GL 
have this necrotic pattern and some of them retain a spectral 
pattern, which is visually not too different from their low-grade 
glial counterparts, the A2. These cases might be considered as 
class outliers [19]. The label MM indicates low-grade 
meningiomas (WHO grade I and II) and they have a 
completely different origin, namely cells in the tissue that 
envelops the brain, called the meninges. Their spectral pattern 
is easy to recognize at STE, without necrosis, and different 
from the glial, metastatic or normal pattern. 

B. Simulated data 

The simulated data used in this study was modeled from 
samples extracted from the INTERPRET database (explained 
before). The selected cases were I0104, I0096, I0174, and 
I1474; which correspond to A2, GL, MM, and NO 
respectively. These cases were considered then the true 
sources, and were multiplied by a set of mixing matrices to 
form the simulated datasets. Two types of mixing matrices 
were randomly generated, slightly (20% variability) and highly 
(35% variability) mixed, to test these two levels of mixing of 
the sources. We created then 50 datasets per discrimination 
problem and level of mixing, and added Gaussian noise to all 
them resembling the typical height of the noise in this type of 
data (signal to noise ratio, SNR=66), as reported in [20]. 

III. METHODS 

As mentioned in the introduction, different approaches to 
Bayesian models of NMF can be found in the literature, 
including Bayesian NMF [21], in which a Markov chain Monte 
Carlo (MCMC) method is derived for estimating the posterior 
density, based on a Gibbs sampling procedure; Bayesian 
spectral decomposition (BSD) [22], which uses an atomic 
point-mass prior and MCMC methods to sample the solution 
space; Bayesian non-negative source separation [23] that 
incorporates a hybrid Gibbs-Metropolis-Hastings sampling 
procedure; and Bayesian inference for NMF models [15], 
which minimizes a Kullback-Leibler (KL) divergence with a 
hierarchical generative model consisting of an observation and 
a prior component, in which a variational Bayes algorithm and 
a Gibbs sampler are used for inference. In the current study, we 
focus our attention in the variational Bayes implementation of 
the latter approach. 

A. Bayesian inference for Non-negative Matrix Factorization 

Standard NMF methods [6], [7] decompose the data matrix 
X into two non-negative matrices S (the sources) and A (the 
mixing matrix). The differences between X and SA is given by 
the different cost functions used for measuring the divergence 
between them. In the particular variant of Bayesian NMF used 
in this study, proposed in [15], the author uses the terms 
templates (T) and excitation matrix (V) to define the model, in 
which X≈TV. The joint probability distribution for the model 
is given by: 



 P(X,T,V |Θ) = P(X|T,V) P(T| Θ
t
) P(V| Θ

v
) 

Where P(X|T,V) is the likelihood, which is defined by a 
Poisson distribution since the model is minimizing the KL 
divergence between X and TV. P(T|Θ

t
) and P(V|Θ

v
) are the 

model priors and are defined as Gamma distributions to 
enforce real positive values. Θ

t 
and Θ

t 
are the hyperparameters 

of the prior distributions over T and V, respectively. In this 
study we use the variational variant proposed in [15], that 
defines a lower bound function over the evidence. For more 
details in the formulation, please refer to [15].  

B. Relevant sources determination 

To determine the relevant sources, we take advantage of the 
ability of the model to favor sparse representations by 
controlling the hyperparameters of the priors. The Gamma 
distributions Ga(x; a, b/a) that define the priors have shape a 
and scale b/a. The benefit of this representation is that we can 
control the sparsity of the model. For small values of a, most of 
the coefficients will be very close to zero and only very few 
will be dominating, hence enforcing sparsity. The parameter b 
is adapted to give the expected magnitude of each component. 

By using a greedy strategy during the iterative process of 
matrices decomposition of NMF, we propose: i) to discard 
sources where the corresponding columns in the mixing matrix 
are zero (or a very small value) in all of their entries (which 
indicates that these sources are irrelevant or meaningless); and 
ii) where two sources are highly correlated (>0.98) between 
them (which suggests that both of them are representing the 
same kind of information), to discard one of these sources. 

C. Experimental settings 

Experiments were carried out for three different brain 
tumor diagnostic problems using simulated data and real world 
data from MRS acquired at STE. In each of these classification 
problems, we attempted to discriminate between two or three 
tumor types and healthy tissue, namely A2, GL, NO; A2, MM, 
NO; and A2, GL, MM, NO. All parameters used for the 
generation of the simulated data mirror the real data as closely 
as possible. The aim of using simulated data is to be able to test 
the proposed approach against known ground truth, that is, to 
evaluate to what extent the proposed method is able to estimate 
the correct number of sources. 

From a data analysis point of view, the choice of these 
specific problems is meant to assess the ability of the proposed 
method to calculate a meaningful and small range of sources in 
problems that involve: i) infiltrating tumors, high-grade 
malignant tumors, and normal brain (A2, GL, NO); ii) 
infiltrating and non-infiltrating tumors, and normal brain (A2, 
MM, NO); and iii) infiltrating tumors, high-grade malignant 
tumors, non-infiltrating tumors, and normal brain (A2, GL, 
MM, NO). 

As mentioned before, the Bayesian NMF variant used in 
this study formulates the decomposition of the dataset in terms 
of template and excitation matrices. These two matrices are 
interpreted in the current study as the sources and mixing 
matrix, respectively. The values of the hyperparameters were 
tied to a common Gamma distribution for each prior of the 

model, to reduce model complexity; and the values of the 
shape hyperparameters were chosen to be small, to encourage 
sparsity. 

For the simulated data, we made 100 tests for each of the 
50 datasets generated per discrimination problem and level of 
mixing, for a total of 10,000 tests. In each test, we set the 
method to calculate the sources starting from k=10 (k: number 
of sources), and to discard the irrelevant ones according to the 
criteria explained before. For the real data, we also made 100 
tests for each discrimination problem and started from k=10. 

For each discrimination problem (and level of mixing in the 
case of the simulated data) we determined the solution that 
approximates best the dataset for each value of k. For this, we 
quantified the accuracy of data reconstruction using the 
normalized root mean squared error (nRMSE) between the 
original data matrix and the reconstructed data.  

IV. RESULTS 

Figure 2 groups the results obtained from the tests with 
simulated data. These histograms show the distributions of the 
solutions obtained per final number of sources, after discarding 
the irrelevant ones, for each discrimination problem and level 
of mixing. 

 
Fig. 2. Histograms showing the distribution of solutions per final number 

of sources corresponding to the simulated data, for each 

discrimination problem and level of mixing. Vertical axes represent 

the number of tests, while horizontal axes the number of final 

sources. 

Similarly, Figure 3 shows the distribution of solutions per 
final number of sources when using the real data from the 
INTERPRET database. 



 
Fig. 3. Histograms showing the distribution of solutions per final number 

of sources corresponding to the real data, for the three 

discrimination problems. Axes are represented as in Figure 2. 

Figures 4-9 show the set of sources obtained for the two 
most likely values of k (according to the histograms, see Figure 
3) in the three discrimination problems studied with real data.   

 
Fig. 4. A2, GL, NO. Sources from the k=3 solution that approximates 

best the dataset using real data. Axes are represented as in Figure 1. 

 
Fig. 5. A2, GL, NO. Sources from the k=4 solution that approximates 

best the dataset using real data. Axes are represented as in Figure 1. 

 
Fig. 6. A2, MM, NO. Sources from the k=3 solution that approximates 

best the dataset, using real data. Axes are represented as in Figure 1. 

 
Fig. 7. A2, MM, NO. Sources from the k=4 solution that approximates 

best the dataset using real data. Axes are represented as in Figure 1. 

 
Fig. 8. A2, GL, MM, NO. Sources from the k=5 solution that 

approximates best the dataset using real data. Axes are represented 

as in Figure 1. 



 
Fig. 9. A2, GL, MM, NO. Sources from the k=6 solution that 

approximates best the dataset using real data. Axes are represented 

as in Figure 1. 

V. DISCUSSION 

From the results with simulated data presented in Figure 2 
we can see that, empirically, the most likely solution for each 
discrimination problem (according to the number of sources 
with highest value in each histogram) matches the number of 
true sources from the corresponding dataset. That is, the 
solutions for the discrimination problems A2, GL, NO and A2, 
MM, NO, are more likely to have 3 sources; and the solution 
for A2, GL, MM, NO, is more likely to have 4 sources. Also, 
the quality of the sources obtained was as good as it can be 
with a standard version of NMF (see previous studies with 
standard NMF in [12]), and they resemble the representative 
examples (true sources) used to generate the datasets (the 
sources were not shown here for the lack of space). Hence, the 
simulated data provided us with the opportunity to corroborate 
that the proposed approach is able to retrieve the original, true 
sources. 

In the case of the real data, we know from previous studies 
(e.g. in [12]) that the number of underlying sources is not 
necessarily the same as the number of tissue types involved in 
each classification problem. Also, depending on the particular 
question to address, we may find different meaningful 
solutions that involve the same tissue types. Therefore, for 
discrimination problems involving GL we expected to obtain 
two sources that describe this tumor type (when using the real 
data), as we know that there are cases of this type with or 
without necrotic lipids. For this reason, when the goal is to 
discriminate between tissue types, the expected solution for a 
problem like A2, GL, NO would have 4 sources. In Figure 3 
we can see that the two most likely solutions for this problem 
are for k=3 and k=4. The solution for k=3 (Figure 4) is mainly 
separating the necrosis (S2 and S3) from non-necrosis (S1); 
and the solution for k=4 is the one that provides the separation 

from the tissue types involved (S2 and S3 explaining the GL, 
S1 the A2, and S4 the NO). The solution for k=2, not shown 
here, is interpreted similarly to the solution for k=3, as the 
sources look like S1 and S2. 

In the discrimination problem A2, MM, NO, the number of 
solutions for k=3 and k=4 are very close (Figure 3), indicating 
that both models are very likely to occur. The k=3 solution 
(Figure 6) provides sources that resemble the tissue types 
involved (S1: A2, S2: NO, S3: MM); and the k=4 solution 
(Figure 7) is fairly similar, but in the latter the MM is being 
represented by two sources (S3 and S4), indicating that source 
S3 intend to represent grade I MM, while source S4 would 
represent grade II (atypical meningioma) contribution, known 
to display some mobile lipid content at short echo time. The 
analysis of the results for the discrimination problem A2, GL, 
MM, NO is similar to the previous two. The most likely 
solutions (according to the histogram in Figure 3) are those 
having 5 or 6 sources (Figures 8 and 9, respectively), and both 
have a sensible interpretation in terms of spectroscopy. For 5 
sources S2 and S3 would originate from GL, S1 from A2, S4 
from NO, and S5 from MM. Furthermore, for 6 sources, the 
additional S6 would suggest the contribution of an additional 
normal brain source. In this respect, the k=5 solution would 
seem optimal for the discrimination problem tackled in Figures 
8 and 9. 

VI. CONCLUSIONS 

In this study we propose to take advantage of the ability of 
Bayesian NMF to favor sparse representation, to discard 
irrelevant sources during the iterative process of the training. 
This addresses one of the open questions in NMF, which is 
determining the ideal number of sources, for the particular 
problem of source extraction in brain tumors.  

The obtained results show that the proposed approach is 
able to provide a small range of meaningful solutions to the 
problem of source extraction in human brain tumors, 
specifically in discrimination problems that involve infiltrating 
tumors, high-grade malignant tumors, non-infiltrating tumors, 
and normal brain. 
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