
Strategies for Improving a Java-based, First Year Programming Course

Michael Blumenstein

School of Information Technology, Griffith University-Gold Coast
PMB 50, Gold Coast Mail Centre, QLD 9726, Australia

E-mail: m.blumenstein@mailbox.gu.edu.au

Abstract

This paper describes the evolution of a first year Java
course at Griffith University - Gold Coast since Semester
1, 2000 to the present day. The course was updated to
emphasise program design and to implement and evaluate
an "objects-as-needed" approach to first year
programming. A number of strategies were tested to
increase consistency amongst teaching staff, improve
delivery of course resources, successfully cater to a wide
variety of students and to enhance the learning experience
in general. The success of the revised course has been
measured by evaluating student feedback and
performance. Currently, a focus group-based strategy of
evaluation is being adopted to determine students'
attitudes to the most recently implemented changes.

1. Introduction

In the last few years, the literature has been inundated
with papers describing the difficult transition from the use
of procedural to object-oriented languages in the teaching
curriculum [3]. Many institutions have favoured the
adoption of Java as their language of choice for their first
year programming course. At this stage, some universities
are still pre-occupied with the question: "Not whether Java
but how Java" [14]. There are a number of contentious,
and some say unresolved issues that have plagued the
minds of educators across the globe when dealing with the
above question. Some of these issues have been tackled in
the last two years whilst revising the first year Java course
at Griffith University.

In particular, one of the major issues that presented
itself during the revision of the Programming 1 course was
the choice of methodology for teaching object-oriented
programming. This paper discusses the dramatic changes
and resulting experience obtained in revising the
Programming 1 course. Particular attention is paid to the
areas of: 1) Teaching resources, 2) Delivery of teaching
materials, 3) Teaching methodology and 4) Assessment.

The remainder of this paper is divided into 4 Sections.
Section 2 addresses the challenges that were considered
whilst evaluating the Programming 1 course. Section 3

deals with the various strategies that were used to modify
the course and Section 4 gives a description of the
effectiveness of the newly revised curriculum. Finally,
Section 5 offers conclusions and discusses future
developments relating to Programming 1.

2. Background of the Course and Challenges
Faced

This section addresses challenges that were tackled
whilst revising the Programming 1 curriculum. In
particular, factors that were specific to the Gold Coast
campus will be addressed as well as general issues that are
faced by all educators dealing with Java as a first
language.

2.1 Campus Demographics

The first year programming course at the Gold Coast
campus attracts a wide variety of students from different
disciplines and backgrounds. For Multimedia and
Information Technology students, Programming 1 is a
core course in the first year of their degree. In Semester 1,
the majority of students (80-90%) are Information
Technology students. However, in Semester 2, the
Multimedia students dominate the Programming 1 course's
demographics. In both semesters the remainder of students
enrolled are from other disciplines.

Whilst reviewing the course, the previous convenor
indicated that there was a peculiar trend with regards to
the performance of students over the two semesters.
Specifically, the students enrolled in Semester 1 usually
outperformed the students in Semester 2 in terms of
academic achievement. It seemed that this trend might
have correlated with the fact that the majority of students
enrolled in Semester 2 were Multimedia students. Through
their own experiences Allen and Bluff [1] note that
disparities between these two groups arise due to the
different expectations that each has. Specifically they
mention that many Multimedia students are led to believe
that their degree will be centred on more visual aspects of
interface and application design rather than the more
technical aspects of application development.

Proceedings of the International Conference on Computers in Education (ICCE’02)
0-7695-1509-6/02 $17.00 © 2002 IEEE

2.2 General Challenges

A more common issue that was addressed included
whether to teach Java "objects first" or to continue along
the lines that it had been taught in 1999 i.e. "structured
programming-first" in a console-based environment.

Finally, an on-going challenge faced by the previous
course convenor was to determine the best assessment
strategies for the Java course. There were many problems
with the assessment pieces that were set in 1999 including
the sheer number of deliverables and a lack of individual
assessment under "exam conditions".

3. Revision of the P1 Course

This section details the evolution of the Programming
1 course with particular attention to four areas: 1)
Teaching Resources, 2) Delivery of Teaching Materials, 3)
Tutor Support and Communication and finally 4)
Assessment.

3.1 Teaching Resources

3.1.1 Objects "gently" and Textbook Choice. Prior to
revising the Java course, a brand-new textbook [8] was
considered as a replacement for the one used previously.
Upon reviewing the text, it seemed that the question of
objects was handled in a "gentle" and hence favourable
manner. More specifically, it did not take the stance of
either of the radical methods i.e. "objects-first" [6] or
"structured programming-first" [4]. Instead, the text took
the approach of introducing object-oriented concepts "as
needed" [8].

The textbook was also attractive for another reason. It
facilitated a shift away from entirely console-based
applications and presented an opportunity to embrace GUI
ones. However, rather than plaguing the students with the
complexities of AWT, they were able to make use of the
BreezyGUI package that was included with the textbook.
The authors of the textbook, along with a number of other
educators, are convinced that students are far keener to
learn programming when they are able to produce
applications with easy to build interfaces [7], [10]. It was
also hypothesized that it would be appropriate for teaching
the Multimedia students in Semester 2, as they would be
able to develop applications more relevant to their field of
interest.

3.1.2 Console-based Applications. Although BreezyGUI
provided an excellent strategy for motivating students
from most disciplines to commence and enjoy
programming, it was felt that students would benefit from
obtaining a more balanced view of programming in Java.
It was therefore decided that students be introduced to
console-based programs in the first few weeks of the
course. The problems associated with Java and its

complicated I/O operations are well known [2], [11]. The
solutions to teaching these difficulties vary, however the
method chosen for Programming 1 was to share resources
from Griffith University's Nathan campus. Specifically,
custom-built classes for input and output were adopted:
SimpleReader() and SimpleWriter() [13]. Classes of this
nature have been adopted by a number of educators [2],
and have allowed students to focus on the task of
performing input and output rather than dealing with the
complexities of Java's stream classes.

3.1.3 Design Paradigm. Upon commencing the course
evaluation process, it was evident that emphasis on
application design had not been prevalent between 1998
and 1999. This was an area of concern and would need to
be investigated. As the proposed course structure would at
times follow the textbook closely, the design paradigm
would have to match this structure. It was therefore
decided to adopt the Structured Design Chart (SDC)
paradigm for teaching design. SDCs are based on Nassi-
Schneiderman diagrams [12] and have one distinct
advantage over other design techniques: not only do they
provide the student with the final algorithm, but they also
display the steps that were taken to get it.

3.2 Delivery of Teaching Materials

The method of material delivery chosen went along
similar lines to previous semesters. There were four hours
of contact time per week including one two-hour lecture
and a single two-hour computer laboratory. It was felt that
the class size, although reasonably large, could still benefit
from material delivery in a lecture situation. Outside of
these times, students were able to attend consultation times
with their tutors or the course convenor.

To complement the contact time described above, the
Programming 1 webpage and the School network became
the centre pieces of "after-hours" material delivery. In
previous years, little or no emphasis was placed on the
webpage as a teaching aid. It was the task of the convenor
to alter this state of affairs so that the focus could be
reassigned towards that of "flexible delivery". All lecture
material, tutorial exercises, assessment items, hints, course
outline, staff contact details and announcements were
hence placed on an easy to navigate, rapidly accessible
page.

3.3 Tutor Support and Communication

Tutor instruction and communication was of particular
importance with regards to the student numbers. It is for
this reason that a close rapport was maintained (in the
form of fortnightly meetings) between the convenor and
each tutor to ensure consistency and quality with regards

Proceedings of the International Conference on Computers in Education (ICCE’02)
0-7695-1509-6/02 $17.00 © 2002 IEEE

to delivery of weekly teaching material in computer
laboratory time.

3.4 Assessment

Student assessment prior to 2000 was in the form of 11
short, take home laboratory modules and one major
project. Upon reviewing the nature of these assessment
items more closely, it was clear that this method of student
performance evaluation had many disadvantages. Firstly,
the shear number of assessment items that needed to be
collected from students over the course of a semester was
overwhelming. As a result of this excessive assessment
load, many were lost, and it was then difficult to track
them down at a later time. The assessment load also
increased the marking load for the convenor and the tutors.
Finally, due to the fact that the assessment items were not
to be completed under "exam conditions", students had the
benefit of working with others, using code from the
textbook or notes and finally the possibility of plagiarism.

Due to the problems discussed above, the assessment
methodology for the course was investigated. Although it
was agreed that the concept of frequently assessing the
students was beneficial, it was necessary to incorporate
assessment pieces that could evaluate students' individual
performance. This necessity led to the introduction of a
mid-semester exam and a final exam into the course in
addition to practical assessment such as laboratory
assessments and a project. It was later found that this
assessment structure was challenging for the students and
seemed to evaluate their performance well on all topics in
the course. However as will be seen in later sections, it
would not remain static throughout 2000 and 2001.

4. Outcomes and Discussion

The following sections will relate some of the
experience obtained from teaching students at the School
of Information Technology over four semesters. The sub-
sections presented below testify to the fact that the course
structure agreed with certain student groups but was
substantially more difficult for others. To dynamically
address the needs of students with different backgrounds,
minor changes to the course and assessment structure were
made to increase student learning and to evaluate student
performance more effectively.

4.1 Programming 1: Semester 1 & 2, 2000

Initially, the delivery of the course in Semester 1
proved to be quite challenging due to the added novelty
and embellishments already discussed. Regardless, the
new course structure proved to be reasonably successful.
The main evidence for the course's success was sourced
from student performance and student feedback. Both

were satisfactory in Semester 1 as may be seen in Table 1
& Figure 1.

Table 1. Profile of Grades (Gr.) for Programming 1
from Semester 1, 2000 up to and including Semester 2,

2001.The failure rate in brackets includes those
students that did not submit the majority of

assessment items.

Semester 1,
2000

Semester 2,
2000

Semester 1,
2001

Semester 2,
2001

Gr. % Gr. % Gr. % Gr. %
HD 11.8 HD 8.11 HD 18.1 HD 5.5
D 12.2 D 8.11 D 13.2 D 15.1
C 15.1 C 10.4 C 20.6 C 12.4
P 20.4 P 16.7 P 13.2 P 21.1
F 14.7

(28.2)
F 26.6

(37.8)
F 12.8

(23.5)
F 12.39

(26.1)

Programming 1: Student Feedback Over Four
Semesters

1.90

2.20

2.50

Sem. 1,
2000

Sem. 2,
2000

Sem. 1,
2001

Sem. 2,
2001

Semester

R
at

in
g

 (
B

et
w

ee
n

 1
 a

n
d

5)

Issues Relating to
the Subject

Staff Member's
Overall Effectiveness
in Teaching

Feedback on Specific
aspects of Teaching

Figure 1. Programming 1: Student Feedback. The y-
axis represents average student ratings on a scale

between 1 and 5 (1 signifies 'Outstanding' and 5
signifies 'Very Poor')

4.1.1 Student Performance in Semester 1. It might be
useful to look at the profile of grades obtained by students
at the end of Semester 1. Nearly 40% of students obtained
a grade of a Credit or above. The failure rate obtained
(whilst including only those students that submitted a
majority/all of the assessment items) was an acceptable
level: 14.69%. Unfortunately, the failure rate for students
that only submitted 1-3 pieces of assessment out of a
possible 6 was higher: 28.2%. This demonstrates the fact
that some students did not withdraw from the course at the
appropriate time and did not complete their studies. Others
simply did not attend lectures and laboratories or had fee
problems.

4.1.2 Student Feedback: Implications for Semester 2.
At the conclusion of Semester 1, there were a number of
issues brought up by students in their written feedback that
was helpful for the upcoming semester. The main issues
were with regards to assessment. It was generally felt that

Proceedings of the International Conference on Computers in Education (ICCE’02)
0-7695-1509-6/02 $17.00 © 2002 IEEE

the number of assessment items was excessive. It was for
this reason that the curriculum was altered in Semester 2,
2000 so that one set of lab assessments (practical
programming problems) was removed to enable students
to focus on their end of semester projects.

4.1.3 Evaluation of Student Performance in Semester
2. The minor improvements in the organisation of the
course, and many positive written statements and feedback
from students and tutors in Semester 1 attested to the
general level of satisfaction from students with respect to
teaching and learning in the course. To a large extent, the
profiles of student grades in Semester 2 seemed to be
similar to those in the previous semester (aside from a
small increase in the number of failures).

An investigation of student demographics and
performance found that a high proportion of students that
did not perform well in the course were undertaking a
Multimedia or Commercial computing (Business) degree.
Aside from the above evidence, written student feedback
correlated well with the poor performance of the groups
mentioned. Specifically, a number of comments from
Multimedia students were evaluated and reflected upon.
The comments were all along the same lines, focussing on
the fact that "…we (Multimedia students) will not need
programming for our prospective jobs and therefore do not
see the point of doing it". This particular view seems odd
as many Multimedia students will be required to develop
webpages that will in turn require knowledge of Java and
applets. Nevertheless, it seems that this attitude is not an
isolated view and it may be the reason for a lack of effort
and enthusiasm on the part of certain student groups
undertaking first year programming.

4.2 Programming 1: Semester 1 & 2, 2001

4.2.1 Student Motivation and the Importance of
Practicing Programming. With regards to motivation,
most tutors, found that in Semester 2, 2000 students were
not attending laboratories frequently and in many cases
were not completing their assigned programming
exercises. As an initiative to tackle the above problems, it
was decided that students would be asked to submit their
weekly exercises for marks. Students would therefore be
"obliged" to, at the very least, attempt the weekly
exercises and could work at a constant pace throughout the
semester. This is supported by Duke et al [3] who agree
that "…it is only through practice that a computer
language, like any language, can be mastered". As may be
seen in Table 1, the use of these exercises seemed to have
a positive affect on student performance in Semesters 1 &
2, 2001. To complement the above evidence, Figure 1
displays all time highs in positive student feedback for
both Semesters 1 and 2, 2001.

4.2.2 Issues Relating to Semester 2, 2001. In Semester 2,
a different approach for assessing students' practical
programming performance was tested. Rather than
completing the lab assessments as a solely take-home
exercise, it was decided that they be divided into two
parts. Part one would be an in-class assessment to take
place in laboratory time and the second part would remain
a take-home component to complement the former. This
assessment piece was executed very successfully with little
or no difficulties across all labs.

4.3 Programming 1: Semester 1, 2002

4.3.1 Teaching Objects Early. As may be seen from the
student performance and subject evaluations from 2000
and 2001, the newly instituted Programming 1 curriculum
proved to be quite successful. However, upon reflection
and a thorough evaluation of students' work, it was noted
that there were a large number of students who were still
finding the concepts of object-orientation difficult to
master. The objects-gently approach, although successful,
had its drawbacks. Specifically, students seemed to
struggle at project time whilst attempting to master user-
defined classes.

It was due to this observation that the Programming 1
course was guided through an extra evolutionary step. In
Semester 1 2002, the approach to teaching objects became
less "gentle" and slightly more inclined to the "objects-
first" approach [6]. At approximately the same time, the
2nd edition of the Lambert & Osborne text [9] was
released. It provided good support for this approach and
hence it was adopted for Semester 1, 2002.

With the advent of this less "gentle" approach to
teaching objects, the following were the main changes that
were implemented: 1) Basic concepts and terminology of
Object-Oriented programming were dealt with in lecture 1,
2) Object instantiation and message passing were cursively
covered in lecture 3, 3) The application object and other
O-O issues were covered in more detail in lecture 4.

4.3.2 Focus Groups and Programming 1. With the
advent of the course modifications described in Section
4.3.1, one of the initiatives considered important was to
undertake an evaluation of student opinions and attitudes
towards the course. The feedback obtained, would provide
a reasonable idea of how the new, less "gentle" approach
to teaching objects was being received by students.

The methodology chosen for evaluating the students’
attitudes was: The "focus group" approach [5]. In this
approach, groups of students representative of the
population are chosen to respond (in written form) and
reflect on issues pertaining to the course at various
intervals throughout the semester. The first set of focus
group "meetings" were convened during laboratory time in

Proceedings of the International Conference on Computers in Education (ICCE’02)
0-7695-1509-6/02 $17.00 © 2002 IEEE

week 6 of the semester. This coincided with the
completion of lectures dealing with the more assertive
object-related material. Three labs consisting of 20
students each were randomly chosen. The second
"meeting" is to take place in Week 12 to determine how
students are coping with advanced O-O concepts after
being exposed to objects early on in the semester.

The student demographics in each lab suggested an
even spread of IT students and those from other
disciplines. The following questions were given to
students:

1. What are your current feelings towards the
course?

2. What do you like about the course so far?
3. What do you dislike about the course?
4. What would you change about the course?

From the preliminary study, the feedback is very
positive. As would be expected, students that are not
undertaking an IT program have been finding it difficult,
however they have expressed their enjoyment. On the
other hand nearly all IT-based students are finding the
course challenging and informative.

As this is only the preliminary stage of the focus
group study, conclusions will be deferred until the end of
the course. However, from the evidence sourced, it may be
observed that in general, students find the less "gentle"
approach to learning objects challenging in the first few
weeks.

5. Conclusions and the Future of P1

This paper has described various challenges that were
faced prior to and during the re-design of the
Programming 1 course at Griffith University. Following
the implementation of various changes to the course, the
learning outcomes of students along with student feedback
were measured over four semesters. It was shown that the
learning outcomes for Semester 2, 2001 were the highest
of all four semesters. This may be attributed to initiatives
that were adopted to continually monitor student progress
by encouraging the completion of weekly exercises. The
amount of positive student feedback was at its highest in
Semesters 1 and 2, 2001 and had increased significantly
from the earlier semesters of the course.

Another adjustment to the course curriculum has been
implemented in Semester 1, 2002. In a preliminary focus
group study, written feedback suggests that students are
coping well with the new "objects early" approach to
programming. Further focus group meetings will be held
again at the conclusion of the semester. In future, it may
also be necessary to further investigate the applicability of
Programming 1 to Multimedia students. Student feedback

and performance (based solely on Semester 2, 2000 and
2001) suggests that the course might benefit from further
modifications to incorporate topics that are relevant to
Multimedia students as well as those of other disciplines.

6. References

[1] Allen, R. K. and Bluff, K., Jumping into Java: Object-
Oriented Software Development for the Masses, ACSE '98,
(1998), 165-172.

[2] Clark, D. and MacNish, C., Java as a teaching language-
opportunities, pitfalls and solutions, ACSE '98, (1998), 173-
179.

[3] Duke, R., Salzman, E., Burmeister, J., Poon, J., Murray, L.,
Teaching Programming to Beginners-choosing the language
is just the first step, ACSE '00, (2000), 79-86.

[4] Gibbons, J., Structured programming in Java, CTI
Computing - Monitor 9, Java in the Computing Curriculum
II, (Spring 1998),
http://www.ulst.ac.uk/cticomp/gibbons.html (downloaded
22/10/01).

[5] Goodrum, D., Hackling, M. and Rennie, L., The status and
quality of teaching and learning of science in Australian
schools, A Research Report prepared for the Department of
Education, Training and Youth Affairs, (2001).

[6] Kölling, M. and Rosenburg, J., Guidelines for Teaching
Object Orientation with Java, ITiCSE 2001, (2001), 33-36.

[7] Lambert, K., and Osborne, M., Easy GUIs with Java in the
Computer Science Curriculum, 30th Annual SIGCSE
Technical Symposium, New Orleans, (March 1999).

[8] Lambert, K. A., Osborne, M., JAVA: A Framework for
Programming and Problem Solving (1st Edition),
Brooks/Cole Publishing Company, Pacific Grove CA, 1999.

[9] Lambert, K. A., Osborne, M., JAVA: A Framework for
Programming and Problem Solving (2nd Edition),
Brooks/Cole Publishing Company, Pacific Grove CA, 2002.

[10] Martin, F. and Williams, P., Java: teaching and learning in
large classes within a modular scheme, CTI Computing -
Monitor 9, Java in the Computing Curriculum II, (Spring
1998), http://www.ulst.ac.uk/cticomp/fmartin.html
(downloaded 22/10/01).

[11] Martin, P., Java, the good, the bad and the ugly, CTI
Computing - Monitor 9, Java in the Computing Curriculum
II, (Spring 1998),
http://www.ulst.ac.uk/cticomp/pmartin.html (downloaded
22/10/01).

[12] Robertson, L. A., Simple Program Design (2nd Edition),
Thomas Nelson, Australia, 1993.

[13] Rock, A., SimpleReader and SimpleWriter I/O package
(abr.srw), (2001), http://www.cit.gu.edu.au/~arock/p1.01.2/
(downloaded 29/04/02).

[14] Wallace, C., Martin, P. and Lang, B., Not Whether Java but
how Java, CTI Computing - Monitor 8, Java in the
Computing Curriculum, (1997),
http://www.ulst.ac.uk/cticomp/not.html (downloaded
22/10/01).

Proceedings of the International Conference on Computers in Education (ICCE’02)
0-7695-1509-6/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

