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IMPLIED VOLATILITY FUNCTIONS:
EMPIRICAL TESTS

Claims that the Black and Scholes (1973) valuation formula no longer holds in financial
markets are appearing with increasing frequency. When the Black/Scholes formula is
inverted to imply volatilities from reported option prices, the volatility estimates differ
across exercise prices and times to expiration.! For S&P 500 index option prices prior to
the October 1987 market crash, for example, the implied volatilities form a “smile”
pattern. Options that are deep in-the-money or out-of-the-money have higher implied
volatilities than at-the-money options. After the crash, a “sneer”? appears—implied
volatilities of S&P 500 options decrease monotonically as the option exercise price rises
relative to the current index level, with the rate of decrease increasing for options with
shorter time to expiration.

The failure of the Black/Scholes model to describe the structure of reported option
prices is thought to arise from its constant variance assumption.3 Casual empiricism
suggests that when stock prices go up volatility goes down, and vice versa. Accounting
for nonconstant volatility within an option valuation framework, however, is no easy task.
With stochastic volatility, option valuation generally requires a market price of risk
parameter, which, among other things, is difficult to estimate. An exception occurs where
the volatility of the underlying asset’s return is a deterministic function of asset price
and/or time. In this case, option valuation based on the Black/Scholes partial differential
equation remains possible although not by means of the Black/Scholes formula itself.

Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) develop variations
of the deterministic volatility function (DVF) option valuation model. Rather than positing

a structural form for the volatility function, these authors search for a binomial or

! Rubinstein (1994) examines the S&P 500 index option market. Similar investigations have also been
performed for the Philadelphia Exchange’s foreign currency option market (e.g., Taylor and Xu (1993)),
and for stock options traded at the LIFFE (e.g., Duque and Paxson (1993)) and the European Options
Exchange (e.g., Heynen (1993)).

2 Webster (1994, p. 1100) defines a sneer as “a scornful facial expression marked by the a slight raising of
one corner of the upper lip.”

3 Putting it succinctly, Black (1976, p. 177) says that “... if the volatility of a stock changes over time, the
option formulas that assume a constant volatility are wrong.”



trinomial lattice that achieves an exact cross-sectional fit of reported option prices.
Rubinstein, for example, uses an “implied binomial tree” whose branches at each node are
designed (either by choice of up-and-down increment sizes or probabilities) to reflect the
time-variation of volatility. An exact fit is ensured since there are as many degrees of
freedom in their approaches as there are reported option prices.

With so much freedom in parameter selection, the chance of overfitting reported
option price structure is high. While Derman and Kani, Dupire, and Rubinstein provide
procedures for estimating (implicitly) the volatility function in-sample, none of the studies
go out-of-sample to determine the stability of the function through time. If the estimated
volatility function is stable, the DVF option valuation model offers an important new way
for setting hedge ratios and valuing exotic options. On the other hand, if the estimated
function is not stable, valuation and risk management using the DVF methodology will be
unreliable, and other explanations for the Black/Scholes implied volatility patterns must be
sought.

The purpose of this paper is to assess the stability of the implied deterministic
volatility function for the S&P 500 index. Since valuation and risk management are
measured in dollars and cents, we evaluate the stability of the estimated volatility function
by examining how well it predicts future option prices. We estimate the volatility function
based on the cross-section of reported option prices one week, and then we examine the
price deviations from theoretical values one week later. An alternative, albeit inferior,
approach would be to examine whether the coefficients of the volatility function change
significantly through time.4

The paper is organized as follows. In Section I, we outline our empirical procedure
and review option valuation under deterministic volatility. In Section II, we describe our
sample of S&P 500 index option prices and document typical Black/Scholes implied
volatility patterns. In Section III, we estimate the implied volatility functions using the
DVF option valuation model and a cross-section of reported index option prices, and

describe the model’s goodness-of-fit. In Sections I'V and V, we assess the stability of the

4 In Section IV-B, we discuss the weakness of evaluating the DVF methodology by examining the
volatility function coefficients directly.



implied volatility functions for the S&P 500 index. The tests in Section IV examine how
well the volatility function estimated at time ¢ predicts option prices one week later, and
the tests in Section V assess whether the DVF approach improves hedging performance.
The study concludes in Section VI with a summary of the main results and some

suggestions for future research.

L. Empirical Procedure and Option Valuation Under Deterministic Volatility

The procedure used in this study to evaluate the economic significance of the
deterministic volatility option valuation model has two steps. The first step, called
“estimation,” involves fitting the deterministic volatility option valuation model (using
different specifications for the local volatility rate) by minimizing the sum of squared
deviations of theoretical option values from reported option prices.® The volatility
functions are sufficiently descriptive so as to fit the cross-section of reported option prices
almost exactly. The second step, called “prediction,” involves moving forward one week
in time and evaluating the model’s prediction errors, defined as the difference between the
theoretical DVF option values computed using the previous week’s estimated volatility
function and reported option prices. In this section, we outline our procedure for valuing
options under deterministic volatility and describe our assumed volatility function

specifications.

A. Option valuation under deterministic volatility

Option valuation under deterministic volatility is relatively straightforward.
Assuming that the local volatility rate of the underlying asset is a deterministic function of
asset price and time, the partial differential equation describing the option price dynamics

is the familiar Black/Scholes (1973) equation,

3 The algorithm used for the minimization is “AMOEBA” from Press, Teukolsky, Vetterling, and
Flannery (1992). The routine is based on the downhill simplex method of Nelder and Mead (1965).

6 The direct evaluation of the DVF model’s prediction errors is more efficient statistically than is the
alternative procedure of testing the estimated volatility function on subsequent asset price behavior. To
estimate the stochastic process directly requires a time series of observations during which the process
functional specification remains unchanged. Our approach requires only a cross-section of option prices.
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where F is the asset price for forward delivery on the expiration date of the option, ¢ is the

—%o’(F,r)Fz

forward option price, o(F,?) is the local volatility of the price F, and ¢ is current time.”
Forward prices, rather than spot prices, for the option and its underlying asset to avoid the
issue of randomly fluctuating interest rates.

Equation (1) applies to the valuation of both calls and puts and both European-
and American-style options. What distinguishes the valuation problems are the boundary
conditions. For a European-style call option, for example, the boundary condition,
o(F,T)= max(F — X,0), is applied at the option’s expiration. In the special case where the
volatility rate is constant (i.e., o(F,))= o), the value of a European-style call can be
obtained analytically, with the resulting formula being known as the “Black/Scholes
formula.” For more complex volatility functions, analytical formulas are generally not
possible although option valuation remains possible using numerical procedures.
Rubinstein (1994), for example, uses a binomial lattice approach, while Dupire (1994)
uses a trinomial lattice.

Equation (1) is called the backward equation of the Black/Scholes model
(expressed in terms of forward prices). The call option value is a function of ¥ and ¢ for a
fixed exercise price X and date of expiration 7. At time ¢ when F is known, however, the
cross-section of option prices (with different exercise prices and dates of expiration) can
also be considered to be functionally related to X and 7. For European-style options,
Dupire (1994) shows that the forward option value, c¢(X,7), must be a solution of the
Jorward partial differential equation,?

! Fe_&
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"Bergman, Grundy and Wiener (1995) examine the implications of specifying volatility as a function of
the underlying spot or forward asset price. They also illustrate a number of reasons for which volatility
may be a (possibly non-monotonic) function of the asset price.

% The option price, c, and the underlying asset price, F, being forward prices (forward to the maturity date
of the option), equations (1) and (2) ignore interest and dividends, which are taken into account in the
definition of forward prices. See below Section II-A.



with the associated initial condition, c(X,0)= max(F — X,0). In equation (2), the same
local volatility function,o(e,e), appears as in equation (1). The arguments, F and ¢,

however, are replaced by the arguments X and T because equation (1) uses the local
volatility that prevails at the present time when the calendar date is 7 and the index level is
F, while equation (2) uses the future local volatility that will prevail on the expiration date,
7, assuming that the underlying index is then at level X.

The advantage of using the forward equation to value European-style options (like
those listed on the S&P 500 index) is that all option series with a common time to
expiration can be valued simultaneously—a considerable computational cost saving when
using numerical procedures.® To infer volatility functions from American-style option

prices, however, would require solving the backward equation (2) for each option series.

B. Specifying the volatility function
To estimate the volatility function o(X,T), the DVF option valuation model is
fitted to the reported option prices at time 7. Since o(X,7) is an arbitrary function, we

posit a number of different structural forms including:!°

Model 0: o =a,
Model 1: o=a, +a, X +a,X?
Model 2: o=a, +a,X +a,X* +a,T +a,XT

Model 3: 0 =a, +a, X +a,X* +a,T+a,T* +a,XT

3

Model 0 is the volatility function of the Black/Scholes constant volatility model. Model 1
attempts to capture variation in volatility attributable to asset price, and Models 2 and 3
capture additional variation attributable to time.

In using parsimonious volatility structures such as Models 1 through 3, our

approach does not guarantee that the fitted theoretical values match the reported option

2 We solve equation (2) using the Crank-Nicholson finite-difference method.
10 1f, in the course of the estimation, the value of o becomes negative, it is replaced by a small positive
number (i.e., one percent annually). Typically, this occurs only for extremely high index levels.



prices, as did the lattice approaches of Derman and Kani (1994), Dupire (1994) and
Rubinstein (1994). Among other reasons, we choose to specify the functional form of the
local volatility rate directly to avoid the problems of using the tree-based approaches to
predict option values. Had we built a binomial tree at date ¢, the likelihood that the actual
S&P500 index level falling on a node of the tree one week later is remote. Indeed, the
future index level is virtually certain to fall between nodes or outside the span of the tree
entirely, in which case interpolation or extrapolation techniques must be applied. By
estimating an approximate quadratic function at time #, we can proceed to value options at
the prediction stage without further complication. In addition, while our restricted
functional forms do not deliver an absolutely perfect fit of the cross-section of reported
option prices, models as parsimonious as Model 3 achieve an “almost” perfect fit.
Consequently, using more elaborate models such as those embedded in the lattice-based
approaches presents a significant danger of overfitting reported prices and deteriorating
the quality of prediction.

Finally, we choose quadratic forms to model the local volatility rate. This decision
is based, in part, on the casual empiricism that Black-Scholes implied volatility patterns for
S&P 500 index options have a parabolic shape. (See, for example, Section II-B below.)
The volatility function could also be estimated using more flexible nonparametric methods
such as kernel regressions!! or splines. As noted above, however, we wish to avoid

overparametrization of the volatility function.

IL. S&P 500 Option Prices and Implied Volatility Smiles
S&P 500 index option prices serve as the basis of our empirical analysis. In this
section, we describe the data used in our analyses and document the commonly-observed

pattern in Black/Scholes implied volatilities.

A. Data Selection
Our sample contains reported prices of S&P 500 index options traded on the
Chicago Board Options Exchange (CBOE) during the period June 1988 through

11 See Ait-Sahalia and Lo (1995).



December 1993.12 S&P 500 index options are European-style and expire on the third
Friday of the contract month. Originally, S&P 500 options traded at the CBOE expired
only at the close of trading on the expiration day and were denoted by the ticker symbol
SPX. When the Chicago Mercantile Exchange (CME) changed the expiration of their S&P
500 futures contract from the close to the open in June 1987, the CBOE introduced a
second set of S&P 500 options with the ticker symbol NSX that expired at the open along
with the futures. At the outset, the trading volume of the S&P 500 “open-expiry” option
series was considerably lower than the “close-expiry” options. Over time, however, the
trading volume grew and eventually exceeded that of the close-expiry options. On August
24, 1992, the CBOE reversed the ticker symbols of the two sets of options. Our sample
contains SPX options throughout: close-expiry options until August 24, 1992 and open-
expiry options thereafter. During thé first subperiod, the option’s time to expiration is
measured as the number of calendar days between the trade date and the expiration date;
during the second, the number of days to expiration is the number of calendar days
remaining less one.

During the sample period, we estimate each of the volatility functions once each
week (as was noted earlier). Wednesdays are used because fewer holidays fall on
Wednesday than any other trading day. Where a Wednesday was a holiday during the
sample period, the trading day immediately preceding Wednesday was used.

In order to estimate the volatility functions, the S&P 500 index level and S&P 500
index option prices are expressed as forward prices. Constructing a forward price for the
S&P 500 index requires both the term structure of default-free interest rates as well as the
daily cash dividends for the S&P 500 portfolio over the life of the option. To proxy for
riskless interest rates, we use the T-bill rates implied by the average of the bid and ask
discounts. The history of these discounts was collected from the Wall Street Journal. The
entire term structure was collected for each day. The riskless rate corresponding to a given

future dividend payment date or option maturity date is the rate obtained by interpolating

12 The sample begins in June 1988 because it was the first month for which Standard and Poors began
reporting daily cash dividends for the S&P 500 index portfolio. See Harvey and Whaley (1992b) regarding
the importance of incorporating discrete daily cash dividends in index option valuation.



the rates of the two T-bills whose maturities straddle the date in question. The daily cash
dividends for the S&P 500 index portfolio were collected from the S&P 500 Information
Bulletin. To compute the present value of the dividends paid during the option’s life,
PVD, the daily dividends are discounted at the rates corresponding to the ex-dividend

dates and summed over the life of the option, that is,
PVD=) De™™ 4)
i=1

where D, is the i-th cash dividend payment, ¢, is the time to ex-dividend from the current
date, r, is the interest rate corresponding to the time to ex-dividend (interpolated from the
current term structure of interest rates), and » is the number of dividend payments during
the option’s life.!3 The implied forward price of the S&P 500 index is therefore
F=(S-PVD)e", ()

where S is the reported index level and T is the time to expiration of the option. To create
a forward option price, we multiply the average of the option’s bid and ask price quotes!*
by the interest accumulation factor appropriate to the option’s expiration, e .

Three exclusionary criteria are applied to the data. First, options with less than six
and with more than one hundred days to expiration are eliminated. Options with less than
six days to expiration have relatively small time premia, hence the estimation of volatility is
extremely sensitive to nonsynchronous option prices and other possible measurement
errors. Options with more than a hundred days to expiration, on the other hand, are
unnecessary since our objective is only to determine whether the volatility function
remains valid over a span of one week. Including longer-term options would only serve to

deteriorate the cross-sectional fit.

13 The convention introduces an inconsistency, with small consequences, between option prices of
different maturities. The inconsistency takes two forms. First, in constructing the forward version of the
S&P 500 index level, one assumes that the dividends to be paid during the option’s life are certain which
means that, during that time, the value of the equity cannot fall below the promised amount of dividends.
But that barrier is set differently for different horizon points. Secondly, the volatility function that we are
estimating is truly a volatility of the forward price to the maturity date of the option. To be rigorous, we
should be estimating a different volatility function for each maturity.

14 Using bid/ask midpoints rather than trade prices reduces noise in the cross-sectional estimation of the
volatility function.



Second, options whose absolute “moneyness,” [— — 1, is greater than ten percent

are eliminated. Like in the case of extremely short-term options, deep in- and out-of-the-
money options have little time premia and hence contain little information about the
volatility function. In addition, these options have little trading activity and price quotes
are generally not supported by actual trades.

Finally, only options with bid/ask price quotes during the last half hour of trading
(i.e., 2:45 to 3:15 PM (CST)) are used. Fearing imperfect synchronization between the
option market and other markets,!> we use neither the reported S&P index nor the S&P
500 futures price from the CME!S in the estimation procedure. Instead, we infer the
current index level simultaneously, together with the parameters of the volatility function,
from the cross-section of option prices. In this way, our empirical procedure relies only on
observations from a single market, and no auxiliary assumption of market integration is
necessary.!7 Using this procedure, however, requires that the option prices are reasonably
synchronous—hence the need for a tight time window. The cost of imposing this criterion
is that we reduce the number of available option quotes. The cost is not too onerous,
however, since we find quotes for an average of 44 option series during the last half-hour
each Wednesday.!® Seventeen of the 292 Wednesday cross-sections had only one contract

expiration available; 141 had two; 129 had three; and five had four.

B. Black/Scholes impliéd volatility patterns
To illustrate a typical pattern of Black/Scholes implied volatilities, we use bid and

ask price quotes for call options!? during the 2:45-3:15 PM window on April 1, 1992 (a

15 See Fleming, Ostdiek and Whaley (1995).

16 For a detailed description of the problems of using a reported index level in computing implied
volatility, see Whaley (1994, Appendix).

17 This is not quite true since we use Treasury bill rates in computing forward prices.

18 To assess the reasonableness of using the 2:45-3:15 PM window for estimation, we computed the mean
absolute return and the standard deviation of return of the nearby S&P 500 futures (with at least six days
to expiration) by fifieen-minute interval throughout the trading day across the days of the sample period.
The results indicated that the lowest mean absolute return and standard deviation of return occur just prior
to noon. The end-of-day window is only slightly higher, while the beginning-of-day window is nearly
double. We chose to stay with the end-of-day window for ease in interpretation of the results.

19 For this exercise only, we use the reported stock index level in the estimation of volatility. Since the
reported index is always stale, we use only call options. While a stale index causes the implied volatilities



typical day) and compute implied volatilities?® based on the Black/Scholes call option
valuation formula,
c=FN(d)-XN(d,), ©)

where d, =[In(F/X)+50*(T-0)]/oJT—t, d,=d -oJT—1, and N() is the
cumulative normal density function. The pattern of implied volatilities is displayed in
Figure 1. Note that these are the Black/Scholes implied volatilities and not a graph of the
local volatility rates from the DVF option valuation model. The fact that the Black/Scholes
implied volatilities do not fall on an horizontal line is “the evidence” that the Black/Scholes
formula does not hold.

Several features in Figure 1 deserve comment. First, observe that implied
volatilities corresponding to bid and ask quoted prices are closest together for at-the-
money options. The divergence between bid and ask implied volatilities increases as
moneyness moves away from 0, particularly to the left of the figure where the call options
are deep in the money. This pattern arises for two reasons. First, although spreads are
competitively determined, they tend to vary systematically with option moneyness. In part,
this may be caused by the CBOE’s rules governing the maximum spreads for options with
different premia. The rules state that the maximum bid/ask spread is (a) 1/4 for options
whose bid price is less than $2, (b) 3/8 for bid prices between $2 and $5, (c) 1/2 for bid
prices between $5 and $10, (d) 3/4 for bid prices between $10 and $20, and (e) 1 for bid
prices above $20.2! Second, the sensitivity of option price to the volatility parameter is
highest for at-the-money options, with in-the-money and out-of-the-money having much
lower sensitivity. This means that, for a given spread between the bid and ask price
quotes, the range of Black/Scholes implied volatilities will be lowest for at-the-money

options and will become larger as the options move deeper in or out of the money.22

of the calls to be biased downward or upward depending on whether the reported index is above or below
its true level, the bias for all calls will be in the same direction. With puts, the bias is opposite.

20 For this illustration only, we do not enforce the moneyness criterion.

21 See Obligations of Market-Makers, Rule 8.7 in Chicago Board Options Exchange (1995, pp. 2123-4).
22To illustrate, consider the Black/Scholes implied volatilities of 30-day call options with different
exercise prices, where all calls have a bid/ask spread of 1/4. Assume the index level is 400, the volatility
rate of the index returns is 20 percent, and the interest rate is 5 percent. The spread between the implied
volatilities based on bid and ask prices is 319 basis points for a call that is 10 percent in-the-money, 55
basis points for an at-the-money call, and 210 basis points for a call that is 10 percent out-of-the-money.

10



Second, the so-called “smile” has given way to a “sneer.” The smile label arose
prior to the October 1987 market crash when, in general, the Black/Scholes implied
volatilities were symmetric around zero moneyness, with in-the-money and out-of-the-
money options having higher implied volatilities than at-the-money options. The sneer
pattern displayed in Figure 1, however, is more indicative of the pattern that has existed
since the market crash, with call (put) option implied volatilities decreasing monotonically
as the call (put) goes deeper out of the money (in the money).

Third, the sneer gets worse as the option’s time to expiration grows small. For the
calls with 45 and 80 days to expiration, the implied volatilities range between 10 and 22
percent. The 17-day calls, on the other hand, range up to nearly 30 percent. Indeed, this
behavior provides the motivation for considering local volatility functions that are a
function of time, particularly Models 2 and 3 in which time interacts with the level of asset

price.

IIL. Estimation Results

Using the S&P 500 index option data described in the previous section, the four
volatility functions specified in (3) are estimated. As noted earlier, Model 0 is the
Black/Scholes constant volatility model. Model 1 allows the volatility rate to vary with
index level but not with time. Models 2 and 3 attempt to capture additional variation due
to time. A fifth volatility function, denoted Model S, is also estimated. Model S switches
between the volatility functions given by Models 1, 2 and 3, depending on whether the
number of different option expirations in a given cross-section is one, two, or three,
respectively. Model S is introduced because a few cross-sections have little or no time-to-
expiration variation, undermining our ability to estimate precisely the relation between the
local volatility rate and time.

This section focuses on identifying the “best” volatility function given the structure
of S&P 500 index option prices. First, each local volatility function is estimated by
minimizing the sum of squared errors between the reported option prices and their DVF

model values. Summary statistics on the goodness-of-fit are provided. Next, we examine

11



the surface implied by the best-fitting volatility function and the implied probability

functions for options of different times to expiration.

A. Goodness-of-fit

To assess the quality of the fitted models, two measurements are made each week.
The root mean squared valuation error (RMSVE) is the square root of the average
squared deviations of the reported option prices from the model’s theoretical values. The
average error (AVERR) is the average error outside the bid/ask spread. If the theoretical
value is below (exceeds) the option’s bid (ask) price, the error is defined as the difference
between the theoretical value and the bid (ask) price, and, if the theoretical value is within
the spread, the error is set equal to zero. A positive value of AVERR, therefore, means
that the model value is too high on average, and a negative value means the model value is
too low.

Table 1 contains the average RMSVE’s and average AVERR’s across the 292
days (one day each week) during the sample period June 1988 through December 1993.
Also reported is the frequency with which the specified model has a lower RMSVE than
Model S (FREQ). The average RMSVE results indicate that there is a strong relation
between the local volatility rate and the asset price. Where the volatility rate is a quadratic
function asset price (Model 1), the average RMSVE of the DVF model is less than half of
that of the Black/Scholes constant volatility model (Model 0), .301 vs. .650, for all options
in the sample. Time variation also appears important. In moving from Model 1 to Model
2, the average RMSVE in the full sample is reduced further (i.e., from .301 to .230), albeit
not as dramatically. The addition of the time variable to the volatility function appears to
be important, although most of the incremental explanatory power appears to come from
the cross-product term, X7.22 Adding a quadratic time to expiration term (Model 3)
reduces the average RMSVE to its lowest level of the assumed specifications, .226. Model
S’s RMSVE is virtually the same. The average AVERR measurement criterion leads to

the same conclusions for the overall sample.

23 Model 2 was also estimated without the time variable with little difference in explanatory power.

12



The AVERR values reported for the Black/Scholes model (Model 0) show that the
theoretical value exceeds the ask price on average for call options and is below the bid
price for put options. This behavior arises from the character of our sample (i.e., the
number of calls versus the number of puts, and the number of in-the-money options versus
the number of out-of-the-money options). When the options are stratified by option type
and moneyness, the Black/Scholes model value appears to be too low (relative to the bid
price) for in-the-money calls and for out-of-the-money puts. This is consistent with the
implied volatility sneer shown in Figure 1. With all options forced to have the same
volatility in the estimation of Model 0, the variation in implied volatility translates into
valuation errors. Options with Black/Scholes implied volatilities higher (lower) than
average are valued too low (high).

Figure 2 shows the valuation errors (i.e., model values less bid/ask midpoints) of
Model 0 for call options with 40 to 70 days to expiration. Also shown are normalized
bid/ask spreads (i.e., the bid/ask prices less the bid/ask midpoint). Note first that the
bid/ask spreads are as high as one dollar for deep in-the-money calls on the left of the
figure. As we move right along the horizontal axis, the maximum bid/ask spread stays at a
dollar until the moneyness variable is about -2.5 percent, and then the maximum spread
begins to decrease as the calls move further out-of-the-money. This spread behavior is
consistent with the CBOE’s maximum spread rules described earlier. The average bid/ask
spread across all option series used in our estimation is approximately 47 cents.

Figure 3 shows the valuation errors of Model 3 for calls with 40 to 70 days to
expiration. The DVF model improves the cross-sectional fit. Where the valuation errors
are outside the bid/ask spread, they appear randomly, with a slight tendency for the DVF
option valuation model to undervalue deep in-the-money and deep out-of-the-money calls
and to overvalue at-the-money calls. Overall, however, Model 3’s fit appears quite good.
The AVERR across the moneyness categories is —.026 across all of the calls in this
category, in contrast to an AVERR of more than .250 for the Black/Scholes model.

Model 3 also appears to eliminate the relation between valuation error and the
option’s days to expiration. For the Black/Scholes model, the valuation errors generally

increase with days to expiration. For deep in-the-money calls with less than 40 days to
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expiration, for example, the RMSVE is .313; .644 for calls between 40 and 70 days to
expiration; and 1.051 for calls with more than 70 days to expiration. For the same call
options, the RMSVE’s for Model 3 are .259, .223 and .220, respectively.

All in all, the evidence reported in Table 1 supports the notion that the more
complex is the volatility function the better the DVF option valuation model fits the cross-
section of reported option prices. Of the functions considered, Model 3 and Model S
appear to be the “best” fitting.24

B. Average parameter estimates and the implied local volatility surface

The average parameters estimated for each of the volatility function are also
interesting. Model 0 is, of course, the constant volatility model of Black/Scholes. When
this model was fitted each week during our 292-week sample period, the mean estimated
coefficient, 50, was 15.72 percent. Figure 4 shows the level of the Black/Scholes implied
volatility on a week-by-week basis. Over the sample period, implied market volatility fell
from above 20 percent to below 10 percent. Volatility reached a maximum of 27.16
percent on January 16, 1991, the height of the Gulf War. The minimum implied volatility,
9.43 percent, occurred on December 29, 1993, the last date of the sample period.

Model 3 has six parameters in total, and the averages (standard deviations) of the

model’s six parameter estimates across the 292 cross-sections are as follows:

a, = 131824 a, = -352941
(69.5) (.447)

a, =.0000861056 a, = -226000
(.000768) (1.94)

a, = —.000166645 a, =.0527528
(.00237) (.0593)

The average implied index level over the period was about 370. To illustrate what these

average values imply in terms of a volatility surface, we plot in Figure 5 the estimated

24 To test if the estimation results were driven by the presence of outliers, we examined the valuation
errors of the various models. We identified usually large errors in three days during the sample period.
When we eliminated these days from the summary results, the magnitudes of the average errors reported
in Table 1 were reduced, but the ordering of the average errors was the same. Consequently, we report the
results for the full sample.
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function for a range of index levels and days to expiration. For a given number of days to
expiration, the local volatility rate displays the sneer-like pattern that appeared for the
Black/Scholes implied volatilities in Figure 1. As the index level rises, the volatility rate
falls. With few days to expiration and high index levels, the volatility rate appears to reach
its constrained minimum level of one percent. For a given index level, on the other hand,
the local volatility rate increases slowly and linearly with days to expiration. At an index
level of 320, for example, the local volatility rate rises from about 28 percent to 32 percent
over the 100 day interval. The time variation, however, pales by comparison to the
variation attributable to the index level.

The standard deviation of the parameter estimates indicates that there is
considerable variation in the coefficient estimates from week to week, implying perhaps
that the volatility function is not stable through time. On the other hand, if the parameter
estimates are highly correlated, the errors affecting them may cancel out when looking at
option prices. To check this possibility, we computed the correlation among the parameter

estimates across the 292 weeks in the sample period and report them below. As the values

a, a, 4, 4
4 0969  0.59 0811  -0.291
a, -0.589 0.853 0.182
a, 0114  -0.232
4, 0.093

show, the correlations are generally quite large. The correlation between the linear and

quadratic terms in Model 3, for example, is —.969, indicating that in weeks where 4, is
high &, is low and vice versa. What this evidence implies is that the economic significance

of the DVF model should be measured in terms of valuation prediction errors, which is

exactly the procedure applied in Section IV,
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C. Implied probability distribution

The estimated coefficients of the volatility functions can also be used to deduce the
shape of the risk-neutral probability distribution at the end of the options’ lives.?* To
illustrate, we first use the estimated coefficients of Model 3 on April 1, 1992. On April 1,
1992, the S&P 500 options had three different expiration months, April, May, and June
1992, with 17, 45 and 80 days to expiration, respectively. Based upon these expirations,
the estimated volatility function implies the three probability distributions shown in Figure
6. All distributions are skewed to the left, exactly the opposite of the right-skewness that
one normally associates with the Black/Scholes assumption of lognormally-distributed
asset prices. The wider variances for the May and then June expirations merely reflects the
fact that the longer is the option’s time to expiration, the greater is the probability of large
asset price moves. Our implied distributions do not exhibit the bimodality that appeared in
Rubinstein (1994). This likely results from the fact that our volatility functions are more

parsimonious than that implicitly used within his binomial lattice framework.

IV, Prediction Results
The estimation results reported in the last section indicate that as more parameters
are added to the volatility function the DVF model explains more of the variation in the
cross-section of reported S&P 500 index option prices. Indeed, with as many parameters
as cross-sectional option prices, the DVF model could describe the reported structure of
option prices exactly. A critical assumption of the model, however, is that the volatility
function is stable through time. In this section, we evaluate how well the volatility function

estimated one week values the same options one week later.

A. Goodness-of-fit
Table 2 provides the summary statistics of the prediction errors across all days in
the sample. The RMSVE and AVERR values shown in the table are computed in the same

manner as in the previous section. The prediction errors are generally quite large, at least

25 The identification of state price densities from option prices has been the goal of much of David Bates'
work: see Bates (1995a, b). See also Ait-Sahalia and Lo (1995).
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relative to the estimation errors reported in Table 1. The average RMSVE is about 56
cents out-of-sample across all days for all DVF models except Model 0, while the in-
sample error for these models is about 23 cents. The magnitude of the prediction error
should not be surprising, however, in the sense that new market information presumably
induces a shift in the level of overall market volatility from week to week.

The prediction errors for calls and puts are about the same size. Like in the case of
the estimation errors, the average AVERR for Model 0 is positive for calls and negative
for puts. As noted earlier, this arises from the character of the sample. When the options
are stratified by option type and moneyness, we see that the Black/Scholes model value is
too low (relative to the bid price) for in-the-money calls and out-of-the-money puts and is
too high (relative to the ask price) for out-of-the-money calls and in-the-money puts. This
pattern is particularly clear in Figure 7, which is the analogue at the prediction stage, of
Figure 2 at the estimation stage.

Interestingly, the average AVERR is smaller for Model 1 than for Models 2, 3, and
S. This means that the time variable in the more elaborate volatility functions is
unnecessary. Apparently, the time variable serves only to overfit the data at the estimation
stage. The fact that the valuation prediction errors for the models that include the time
variable are more negative than those of Model 1 indicates that the implied volatility
functions predict more of a decrease in volatility over the week than actually transpires.

At-the-money options have the largest valuation prediction errors for all times to
expiration. This arises because at-the-money options are the most sensitive to volatility
(where time premium is highest). For a given error in the estimated volatility rate, the
dollar valuation error is larger for at-the-money options than for either in-the-money or
out-of-the-money options. Figure 8, which is the analogue of Figure 3, makes it plain that
the prediction pricing errors of Model 3 do not display the characteristic patterns across

the spectrum of moneyness that we identified above for Model 0.
B. An “ad hoc” strawman

What is most troubling about the analysis thus far is that, although the RMSVE’s

seem large for all practical purposes, we have no real means for evaluating what size of
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prediction error should be considered “large.” One way to gauge the prediction errors is to
measure them against a benchmark. To account for the sneer patterns in Black/Scholes
implied volatilities, many market ‘makers simply smooth the implied volatility relation
across exercise prices (and days to expiration) and value options using the smoothed
relation. To operationalize this practice, we fit the Black/Scholes model to the reported
structure of option prices each week using Model S to describe Black/Scholes implied
volatility. Obviously, applying the Black/Scholes formula in this context is internally
inconsistent since the Black/Scholes formula is based on an assumption of constant
volatility. Nonetheless, the procedure is used in practice as a mean of predicting option
prices.?6 The DVF option valuation model, which is based on an internally consistent
specification, should dominate this “ad hoc” approach.

To create our strawman, we use a two-step procedure similar to the one we used
for the DVF models. On day ¢, we fit Model S to the Black/Scholes implied volatilities,
and then, on day #+7, we apply the Black/Scholes formula using the volatility levels from
estimated regression. The valuation prediction errors computed in this fashion are also
summarized in Table 2. As the table shows, the errors using the Ad Hoc Model are almost
uniformly smaller than those of the DVF approach. The average RMSVE across the entire
sample period is 49 cents for the ad hoc Black/Scholes procedure, where it is nearly 56
cents for the DVF (Model 1) option valuation model. In viewing the various option
categories, the greatest pricing improvement appears to be for at-the-money options,
whose average RMSVE’s are reduced by 10 cents or more. Put simply, the deterministic
volatility approach does not appear to be an improvement over the ad hoc, albeit

theoretically inconsistent, procedure used in practice.

V. Hedging Results
A key motivation for developing the DVF option valuation model is to provide
better risk management. If volatility is a deterministic function of asset price and time,

setting hedge ratios based on the DVF option valuation model should present an

26 The Black/Scholes procedure could not serve to predict American or exotic option prices from
European option prices, which is the major benefit claimed for the implied volatility tree approach.
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improvement over the constant volatility model. In this section, we evaluate hedging
performance. To focus exclusively on valuation, we assume that the hedge portfolio is
continuously rebalanced through time.?” The hedge portfolio is formed on day 7 and then
unwound one week later.

Under the continuous-rebalancing assumption, the hedging error is defined as:28
€ = Acrwted.l = ACpiers > @)

where Ac,...q, is the change in the reported option price from day ¢ until day /+7 and
Ac_ .., is the change in the model’s theoretical value. The proof is straightforward. The

hedging error that results from the continuous rebalancing using the wrong model for the

hedge ratio, A, is:

t+7

AC, oo ~ j h(S,,u)dS, . ®)

If we had the correct model, the two quantities in (8) would be equal to one another, not
as a real number equality, but with probability one or at the very least in the sense that
their difference would have an expected value of zero and zero variance. Therefore, it

must be the case that the integral term equals Ac,.,,,. In other words, when the hedge is

continuously rebalanced, the hedging error is simply equal to the time increment in the
valuation error.

Table 3 contains a summary of the hedging error results. Across the overall sample
period, Model 0—the Black-Scholes constant-volatility model—performs best of all the
deterministic volatility function specifications! Its average root mean squared hedging
error (RMSHE) is .455, compared with .489, .506, .506, and .505 for Models 1 through 3
and Model S, respectively. The results indicate that, the more parsimonious is the volatility

function, the better the hedging performance.

27 Here, we are not interested in the issues raised by discrete-time hedges.
28 Recall that ¢ refers to option premium payable at maturity. When terminal currency units are used, as is
the case here, we need not incorporate interest earnings on the riskless asset.
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The ad hoc Black/Scholes procedure described in the last section also performs
well from a hedging standpoint. The average RMSHE is only .449. Consistent with the
prediction results reported in Table 2, the DVF option valuation model does not appear to
be an improvement. Better risk management results can be obtained using the ad hoc

procedure.

V1. Summary and Conclusions

Claims that the Black and Scholes (1973) valuation formula no longer holds in financial
markets are appearing with increasing frequency. When the Black/Scholes formula is used
to imply volatilities from reported option prices, the volatility estimates vary systematically
across exercise prices and times to expiration. Derman and Kani (1994), Dupire (1994),
and Rubinstein (1994) argue that this systematic behavior is driven by the fact that the
volatility rate of asset return varies with the level of asset price and time. They hypothesize
that volatility is a deterministic function of asset price and volatility and provide
appropriate binomial or trinomial option valuation procedures.

In this paper, we apply the deterministic volatility option valuation approach to
S&P 500 index option prices during the period June 1988 through December 1993 and
reach the following conclusions. First, the more flexible is the volatility function’s
specification, the better the DVF model fits in-sample. Indeed, because of the unlimited
flexibility in specifying the volatility function, it is always possible to describe the reported
structure of option prices exactly. Second, when the fitted volatility function is used to
value options one week later, the DVF model’s prediction errors grow larger as the
volatility function specification becomes less parsimonious. In particular, specifications
that include a time parameter do worst of all, indicating that the time variable is an
important cause of the overfitting at the estimation stage. Third, hedge ratios determined
by the Black/Scholes model appear more reliable than those obtained from the DVF
option valuation model. In sum, “simpler is better.”

Overall, our results suggest at least three possible lines for future investigation.
First, the deterministic volatility framework could be generalized. The volatility surface,

for example, may be related to past changes in the index level. Such a generalized
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volatility surface is probably the last candidate model that can be considered before
resorting to fully stochastic volatility processes—processes which are difficult to estimate
and do not permit option valuation by the absence of arbitrage.

Second, the “smile” problem may not be a deficiency of the Black/Scholes model.
After the October 1987 crash, portfolio insurers began buying exchange-traded index
options to replace dynamic portfolio insurance schemes. Buying out-of-the-money index
puts will surely drive Black/Scholes implied volatilities higher if no one is actively
arbitraging according to the Black/Scholes model. With institutional buying pressure on
out-of-the-money puts and no naturally offsetting selling pressure, index put prices rise to
a level where market makers are eventually willing to step in and accept the bet that the
index level will not fall below the exercise price before the option’s expiration (i.e., they
sell naked puts). So, even if the Black/Scholes model is correct, trading costs combined
with option series clienteles may induce patterns in implied volatilities, with these patterns
implying little in terms of the distributional properties of the underlying index.

Finally, thought should be given to appropriate statistical test designs for
competing volatility structures. The “null hypothesis” being investigated is that volatility is
an exact function of asset price and time, so that options can be valued exactly by the no-
arbitrage condition. Any deviation from such a strict theory, no matter how small, should
cause a test statistic to reject it.2? If a source of error had been introduced, some
restriction on the sampling distribution of the error could be deduced and could provide a

basis for a testing procedure 30

29 The same difficulty arises in any empirical verification of an exact theory. See MacBeth and Merville
(1979), Whaley (1982) and Rubinstein (1985).

30 Jacquier and Jarrow (1995) introduce two kinds of errors in the Black/Scholes model: model error and
market error, which they distinguish by assuming that market errors occur rarely. Other approaches to the
problem include Lo (1986) who introduces parameter uncertainty, Clément, Gouriéroux and Montfort
(1993) who randomize the martingale pricing measure to account for an incomplete market and Bossaerts
and Hillion (1994) whose error is due to discreteness in hedging.
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Table 1: Average S&P 500 Index Option Valuation Errors Using the Deterministic Volatility Function (DVF) Model.' RMSVE is the root mean
squared valuation error computed each day, and then averaged across all days in the sample period from June 1988 through December 1993. AVERR is the
average valuation error outside the observed bid/ask quotes computed each day, and then averaged across all days in the sample (positive value indicates
theoretical value exceeds ask price on average; negative value indicates theoretical value is below bid price). FREQ is the frequency of days, expressed as a
ratio of the total number of days, on which a particular model has a lower daily RMSVE than Model S.

DVF ALL OPTIONS CALL OPTIONS PUT OPTIONS

model RMSVE AVERR RMSVE AVERR RMSVE AVERR

0 0.650 -0.034 0.651 0.166 0.643 -0.239

1 0301 0.022 0300 0.036 0296 0.009

2 0230 -0.009 0222 0.000 0233 -0.020

3 0226 <0.011 0218 -0.002 0230 -0.020

S 0227 -0.010 0.218 -0.002 0.230 -0.020

CALL OPTIONS PUT OPTIONS
Days to expiration Days to expiration
Moneyness (%)  DVF Less than 40 40t0 70 More than 70 Less than 40 401070 More than 70
Lower Upper model RMSVE AVERR FREQ RMSVE AVERR FREQ RMSVE AVERR FREQ RMSVE AVERR FREQ RMSVE AVERR FREQ RMSVE AVERR FREQ

-10 -5 0 0313 0000 0429 0644 0290 0042 1051 -0623 0.016 0608 -0.524 0000 1.193 -1073 0000 1660 -1.521 0.000
1 0236 -0.012 0593 0246 -0.021 0491 0342 -0.035 0210 0.188 -0.114 0.792 0216 -0.108 0473 0308 -0.176 0.177
2 0257 <0026 0271 0224 0014 0241 0234 -0.002 0306 0237 0.163 0242 0201 -0096 0234 0161 -0049 0.365
3 0259 -0.027 0214 0221 0013 0264 0220 0003 0.073 0237 -0.164 0273 0.194 -0088 0228 0.152 -0.035 007

S 0.259 -0.027 0223 -0.014 0220 0.003 0.238 -0.165 0.196 -0.091 0.152 -0.035
-5 0 0 0401 0143 0133 0403 0075 0.124 0583 -0227 0.091 0446 -0.287 0.054 0753 -0.546 0010 1018 -0.769 0.024
1 0352 0136 0179 0228 0.023 0434 0255 0029 0.462 0291 0.323 0200 0.197 0006 0406 0218 -0.047 0435
2 0205 0020 0218 0.192 0014 0239 0210 0022 039% 0166 -0.020 0275 0.154 -0.003 0238 0.182 0.026 0347
3 0.197 0014 0267 0.187 0012 0248 0205 0026 0.053 0162 -0.026 0279 0.152 -0001 0.218 0.181 0037 0.081

S 0.198 0.014 0.187 0.012 0205 0.026 0.162 -0.026 0.151 -0.002 0.181 0.037
0 5 0 0.721 0607 0014 0836 0661 0000 0850 0627 0016 0299 0046 0268 0335 0080 0231 0435 0.103 0.190
1 0384 0251 0087 0234 0037 0347 0260 009 0315 0353 0.29 0137 0235 0016 0330 0284 -0.057 0254
2 0.177 0058 0225 0180 0014 0216 0.198 0027 0.386 0206 0012 0243 0192 0.002 0245 0224 -0.003 0397
3 0166 0047 0293 0.171 0007 0266 0.189 -0.021 0.087 0.203 0010 0289 0190 0000 0208 0225 -0.001 0.071

S 0.167 0.048 0.173  0.008 0.189 -0.021 0.203 0.010 0.190 0.001 0.225 -0.001
5 10 0 0441 0367 0228 0905 0804 0028 1.09% 0975 0.014 0409 -0063 0224 0369 0076 0405 0610 0233 0230
1 0.154 0020 0574 0203 -0094 0491 0317 -0.205 0.108 0.247 0.021 0513 0294 -0035 038 0367 -0.058 0.19
2 0.150 -0081 0277 0204 -0.102 0.245 0.241 -0.130 0.297 0244 0016 0.194 0291 -003 0203 0314 -0038 0330
3 0.151 -0082 0287 0205 -0.108 0236 0245 -0.135 0.068 0243 0016 0259 0291 <0037 0.229 0309 -0.037 0.060

s 0.151 -0.082 0.207 -0.107 0.246 -0.135 0243  0.016 0291 -0.036 0310 -0.037

' Model 0 is the Black/Scholes constant volatility model. Models 1, 2, and 3 specify that the local volatility rate is linear in (a) Xand X*, (b) X, X%, T and XT , and

©X, X 2 , I, T ? and XT, respectively. Model S switches between Models 1, 2, and 3 depending upon whether the number of option maturities in the cross-section is
one, two or three, respectively.
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Table 2: Average S&P 500 Index Option Prediction Errors-Using the Deterministic Volatility Function (DVF) Model.'! RMSVE is the root mean
squared valuation error computed each day, and then averaged across all days in the sample period from June 1988 through December 1993. AVERR is the
- average valuation error outside the observed bid/ask quotes computed each day, and then averaged across all days in the sample (positive value indicates
theoretical value exceeds ask price on average; negative value indicates theoretical value is below bid price). FREQ is the frequency of days, expressed as a
ratio of the total number of days, on which a particular model has a lower daily RMSVE than the Ad Hoc Model.

DVF ALL OPTIONS CALL OPTIONS PUT OPTIONS

model RMSVE AVERR RMSVE AVERR RMSVE AVERR

0 0.784 -0.017 0.790 0.180 0762 -0.219

1 0.557 -0.043 0.556 -0.022 0.551 -0.064

2 0.559 -0.067 0.551 -0.045 0.562 -0.091

3 0.556 -0.065 0.549 -0.044 0.557 -0.088

S 0.555 -0.066 0.548 -0.045 0.557 -0.090

AH 0491 -0.055 0486 -0.015 0.486 -0.094

CALL OPTIONS PUT OPTIONS
Days to expiration Days to expiration
Moneyness (%) DVF Less than 40 4010 70 More than 70 Less than 40 4010 70 More than 70

Lower Upper model RMSVE AVERR FREQ RMSVE AVERR FREQ RMSVE AVERR FREQ RMSVE AVERR FREQ RMSVE AVERR FREQ RMSVE AVERR FREQ
-10 -5 0 0348 0004 0477 0640 -029 0294 1.106 -0.688 0.08] 0591 0502 0.039 1176 -1.051 0024 1742 -1602 0.010
1 0310 0024 0588 0436 -0082 0469 0602 -0.180 0419 0276 -0.127 0.602 0440 -0.200 0440 0623 -0362 0292
2 0324 0045 0534 0458 0096 0455 0607 -0.057 0452 0309 -0.176 0424 0479 -0.232 0392 0532 -0215 0365
3 0330 -0.045 0520 0461 -0098 0445 0604 -0.049 044 0313 0.173 0429 0475 -0.225 0404 0520 -0.189 0.406
S 0328 -0047 0527 0459 0098 0460 0603 -0051 0435 0310 -0.177 0433 0477 -0.227 0392 0522 -0.1%89 039

AH 0339 -0.028 0434 -0.064 0522 -0.120 0302 -0.186 0406 -0.219 0490 -0.276
-5 0 0 0524 0.179 0359 0625 -0063 0351 0794 0325 0220 0540 -0281 0276 0849 -0551 0.174 1.135 -0.867 0.113
1 0472 0.136 0454 0547 0014 0413 0691 0252 0.348 0446 0.109 0412 0540 0061 0363 0654 -0232 0.387
2 0425 0015 0500 0577 -0067 0413 0713 -0.057 0386 0430 -0040 0427 0581 <0.122 0353 0711 -0.018 0.347
3 0428 0010 0518 0583 0069 0409 0706 -0.036 0371 0431 0042 0416 0580 -0.121 0358 0698 0016 0363
S 0426 0.009 0514 0581 -0.069 0404 0707 -0040 0379 0429 0044 0427 0581 -0.122 0358 0699 0010 0355

AH 0426 0.070 0475 -0.016 0.531 -0.120 0.380 -0.028 0.441 -0.090 0.482 -0.116
0 5 0 0799 0656 0116 0989 0743 0.149 0930 0599 0.220 0443 0081 0431 0611 0.5 0408 0691 0077 0365
1 0504 0234 0360 0571 -0.025 0376 0664 0313 0409 0484 0117 0399 0579 0066 0403 0714 0293 0437
2 0428 0.062 0462 0589 -0.108 0357 0710 -0.100 0354 0446 -0002 0424 0615 -0.132 0389 0775 -0.135 0389
3 0424 0054 0469 0592 -0.114 0353 068 -0.080 0346 0443 0003 0431 0615 -0.133 0398 0751 -0.112 0397
S 0425 0054 0476 0593 -0.114 0357 0692 -0.082 0346 0444 -0004 0431 0616 -0133 0393 0754 -0.116 0397

AH 0406 0.146 0449 -0.023 0525 -0.187 0410 0.017 0489 -0.087 0.592 -0.193
5 10 0 0475 0397 0277 0981 0860 0.104 1042 0921 0.149 0444 0059 0329 0493 0116 0477 0634 0249 0410
1 0220 -0010 0574 0364 -0.105 0406 0461 0252 0.500 0277 0025 0.563 0400 -0071 0523 0520 -0.143 0470
2 0222 0066 0465 0389 -0.156 0368 0461 -0.088 0.541 0273 0015 0.537 0427 -0.094 0471 0562 -0055 0460
3 0221 -0.068 0455 0394 -0.162 0358 0469 -0.09 0514 0273 0015 0511 '~ 0424 -0.092 0458 0.551 -0.057 0470
S 0222 0067 0455 0394 -0.162 0358 0466 -0.095 0.514 0273 0015 0532 0425 0094 0458 0551 -0.05 0470

AH 0.219 -0.033 0336 -0.145 0.466 -0.247 0325 -0.018 0443 -0.111 0.524 -0.151

! Model 0 is the Black/Scholes constant volatility model

. Models 1, 2, and 3 specify that the local volatility rate is linear in (a) X and X 2 ®X,X* Tand XT, and

©X,X*,T,T and XT, respectively. Model S switches between Models 1, 2, and 3 depending upon whether the number of option maturities in the cross-section is
one, two or three, respectively. Model AH is an ad hoc Black/Scholes model with variable implied volatilities.
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Table 3: Average S&P 500 Index Option Hedging Errors Using the Deterministic Volatility Function (DVF) Model.'
RMSHE is the root mean squared hedging error computed each day, and then averaged across all days in the sample period from
June 1988 through December 1993. FREQ is the frequency of days, expressed as a ratio of the total number of days, on which a
particular model has a lower daily RMSHE than the Ad Hoc Model.

DVF ALL OPTIONS CALL OPTIONS PUT OPTIONS
model RMSVE RMSVE RMSVE
0 0.455 0.445 0.443
1 0.489 0.491 0.472
2 0.505 0.500 0.496
3 0.506 0.505 0.492
S 0.505 0.503 0.492
AH 0.449 0.439 0.433
CALL OPTIONS PUT OPTIONS
Days to expiration Days to expiration
Moneyness (%) DVF Less than 40 4010 70 More than 70 Less than 40 4010 70 More than 70
Lower Upper model RMSVE FREQ RMSVE FREQ RMSVE FREQ RMSVE FREQ RMSVE FREQ RMSVE FREQ
-10 -5 0 0.367 0.485 0.349 0.506 0.454 0.455 0.277 0.365 0.292 0.440 0.421 0.469
1 0334 0.469 0.404 0.435 0.518 0.420 0.252 0.407 0.352 0.380 0.473 0.388
2 03158 0.500 0.433 0359 0.552 0.398 0.241 0.401 0.395 0.360 0.539 0.367
3 0319 0.492 0.441 0.359 0.568 0.386 0.240 0419 0.395 0370 0.540 0347
S 0.316 0.515 0.439 0359 0.568 0.386 0.239 0.419 0.396 0370 0.541 0.347
AH 0.343 0.365 0.482 0.205 0.257 0.413
-5 0 0 0.406 0.538 0.394 0.559 0.489 0.505 0.352 0.518 0.407 0.466 0.443 0.553
1 0.466 0.448 0.524 0.398 0.642 0344 0.437 0.369 0.521 0.345 0.565 0.421
2 0.452 0.462 0.560 0.339 0.673 0.344 0.434 0.388 0.580 0331 0.644 0.355
3 0.457 0.473 0.569 0333 0.686 0.333 0.433 0384 0579 0.338 0.642 0.368
s 0.454 0.469 0.567 0.333 0.686 0333 0.432 0.384 0579 0.331 0.643 0.368
AH 0.417 0.426 0.517 0.345 0.402 0.480
0 s 0 0.388 0371 0.367 0.552 0.422 0.464 0.420 0.476 0.443 0.503 0.479 0.573
1 0.359 0.460 0.459 0.425 0.536 0.405 0.388 0.487 0.515 0.453 0.544 0.517
2 0.364 0.472 0.483 0.379 0.552 0.417 0.408 0.454 0.551 0.404 0.596 0.461
3 0.364 0.476 0.486 0379 0.555 0.405 0.404 0.465 0.547 0.416 0.588 0.449
s 0.363 0476 0.485 0379 0.555 0.405 0.405 0472 0.547 0416 0.588 0.449
AH 0.327 0.381 0.448 0.401 0.451 0.528
5 10 0 0.431 0.224 0.381 0.327 0.363 0.303 0.358 0.483 0.442 0.464 0.453 0377
1 0.203 0.510 0.256 0.442 0.304 0.455 0272 0.562 0.370 0473 0.384 0.459
2 0.169 0.571 0.238 0.519 0.301 0.424 0.283 0.517 0377 0.464 0.401 0.492
3 0.168 0.571 0.238 0.519 0.306 0.424 0.279 0517 0.368 0.491 0.389 0.475
S 0.169 0.592 0.237 0.519 0.307 0.424 0.280 0.547 0.369 0.482 0.389 0.475
AH 0.220 0.242 0.284 0.333 0.400 0.382

! Model 0 is the Black/Scholes constant volatility model. Models 1, 2, and 3 specify that the local volatility rate is linear in (a) Xand X 2 ,
)X, X Tand XT, and () X, X 2 T,7% and XT, respectively. Model S switches between Models 1, 2, and 3 depending upon whether

the number of option maturities in the cross-section is one, two or three, respectively. Model AH is an ad hoc Black/Scholes model with
variable implied volatilities. ‘
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Volatility (%)

Figure 1: Black-Scholes implied volatilities on April 1, 1992. Implied volatilities are computed from S&P 500 index call option
prices for the April, May and June 1992 option expirations. Lower line of pair is based on the option’s bid price quote, and upper
line is based on the ask. Moneyness is definedas X/ F —1.
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Figure 2: Valuation estimation errors in dollars of Deterministic Volatility Function Model 0 (i.e., the Black/Scholes model)
for S&P 500 call options with between 40 and 70 days to expiration during the period June 1988 through December 1993,
The solid square dots correspond to normalized bid/ask price quotes (i.c., the bid and ask prices less the average of the bid and ask
prices). The circle dots correspond to valuation errors (i.e., the theoretical option value less the bid/ask midpoint). Moneyness is
definedas X/ F -1.

Valuation error (%)

4
i Valuation
3T error
&
Bid/ask
spread

_4 | A | L | ) | s J
-10 -5 0 5 10

Moneyness (%)

28



Figure 3: Valuation estimation errors in dollars of Deterministic Volatility Function Model 3 for S&P 500 call options with
between 40 and 70 days to expiration during the period June 1988 through December 1993. The solid square dots correspond
to normalized bid/ask price quotes (i.e., the bid and ask prices less the average of the bid and ask prices). The circle dots correspond
to valuation errors (i.c., the theoretical option value less the bid/ask midpoint). Moneyness is definedas X/ F ~1.
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Figure 4: Black/Scholes implied volatility estimated each week during the period June 1, 1988 through December 29, 1993
using S&P 500 index option price quotes. Implied volatility is computed by minimizing the sum of squared errors between the
reported bid/ask midpoints and theoretical option values.
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Figure 5: Volatility surface implied by the average of the coefficent estimates of Deterministic Volatility Function Model 3
during the sample period June 1988 through December 1993. Surface displays the local volatility rate for different index levels
and different days to expiration.
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Figure 6: Risk-neutral probability density functions for April, May and June 1992 S&P 500 option expirations on April 1,
1992. The probability distributions are based on the parameter estimates of Deterministic Volatility Function Model 3.
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Figure 7: Valuation prediction errors in dollars of Deterministic Volatility Function Model 0 (i.c., the Black/Scholes model)
for S&P 500 call options with between 40 and 70 days to expiration during the period June 1988 through December 1993.
The theoretical values are based on the implied volatility function from the previous week. The solid square dots correspond to
normalized bid/ask price quotes (i.c., the bid and ask prices less the average of the bid and ask prices). The circles correspond to
valuation errors (i.c., the theoretical option value less the bid/ask midpoint). Moneyness is definedas X/ F ~1.
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Figure 8: Valuation prediction errors in dollars of Deterministic Volatility Function Model 3 for S&P 500 call options with
between 40 and 70 days to expiration during the period June 1988 through December 1993The theoretical values are based on
the implied volatility function from the previous week. The solid square dots correspond to normalized bid/ask price quotes (i.e., the
bid and ask prices less the average of the bid and ask prices). The circles correspond to valuation errors (i.c., the theoretical option
value less the bid/ask midpoint). Moneyness is definedas X/ F —1.
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