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Abstract. We consider the problem of hedging the loss of a given portfolio of derivatives using a set of
more liquid derivative instruments. We illustrate why the typical mathematical formulation for this hedging
problem is ill-posed. We propose to determine a hedging portfolio by minimizing a proportional cost subject
to an upper bound on the hedge risk; this bound is typically slightly larger than the optimal hedge risk
achievable without cost consideration. We illustrate that the optimal hedging portfolio obtained by the
proposed method is attractive since it consists of fewer instruments with a comparable risk. Finally we
illustrate the importance of modeling volatility uncertainty in hedge risk minimization.
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1 Introduction

Measuring and improving risk is important in risk management and it is of great interest to both practioners
as well as academics. Hedging is a key approach to reduce the risk of a single instrument as well as a
portfolio of derivatives. Carr and Wu [2] recently compare the dynamic delta hedging with a static hedging
of a single European option of a long term maturity, using European options of different strikes of a shorter
maturity. In this paper, we focus on hedging a portfolio of a large number of derivatives with more liquid
derivative instruments.

In practice, hedging a portfolio of derivatives is typically done through matching of different sensitivities
between the given portfolio and the hedging portfolio. As an alternative, a hedging portfolio can be chosen
to minimize a measure of the hedge risk for a given time horizon, e.g., the expected quadratic difference
between the future loss of the target portfolio and the value of the hedging portfolio.

A potential problem with both sensitivity matching and hedge risk minimization is that it can lead to a
hedging portfolio consisting of a large number of instruments as well as large units of instrument holdings,
as illustrated in [4]. Assume, for example, that we want to hedge a short term at-the-money call with a deep
in-the-money midterm call and the underlying. The result from matching the delta and gamma sensitivities
yields a hedging portfolio of a large long position of the deep in-the-money call and a large short position of
the underlying asset. The risk minimization approach encounters a similar problem; it essentially searches
for the optimal replicating portfolio that matches the future values in distribution. Assume that the underlying
has a lognormal distribution. The distribution of the future values of the at-the-money option is far from
lognormal while the distribution of the deep in-the-money midterm maturity call is closer to lognormal.
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Thus the hedge risk minimization model also leads to a portfolio of large long and short holdings of the
in-the-money call and the underlying respectively. This problem is generic when hedging a portfolio of a
large number of derivative instruments and underlyings [4].

Tompaidis [4] proposes to overcome the above difficulty by identifying a subset of the most important
instruments in hedging the loss of a target portfolio by adding hedging instruments sequentially to reduce the
hedge risk; the iterative search process is terminated when the hedge risk is no longer significantly improved
with the addition of a new instrument.

In this paper, we illustrate that the difficulty in hedging the portfolio loss through sensitivity matching and
hedge risk minimization often arises from the fact that the total number of risk factors in the assumed model
for the underlying of the hedging instruments is small relative to the total number of hedging instruments.
We propose a risk minimization model to account for hedging cost, transaction cost, and management cost;
a hedging portfolio is determined by minimizing a proportional cost subject to an upper bound on the hedge
risk which is typically slightly larger than the optimal hedge risk achievable without cost consideration. The
relaxation of the hedge risk is reasonable and prudent in light of the inevitable model error. The proposed
hedge risk minimization model produces a more desirable hedging strategy; the optimal hedging portfolio
incurs a smaller cost and often has a smaller number of instruments. Finally, we illustrate why modeling
volatility uncertainty in hedge risk minimization is important even though the exact distribution for the future
(implied) volatility is unknowable.

2 An Ill-posed Problem

Suppose that we have a portfolio of vanilla and exotic options on a single stock; the exotic options include
binary, barrier, and Asian options. We want to hedge the potential future loss of the existing portfolio
using the underlying stock and a set of liquid vanilla options on the same stock. For example, the hedging
instruments are the underlying stock, at-the-money and near the money call options with maturity one, two,
three and six months. Which portfolio is best in hedging against the future loss of our existing portfolio?

To form this problem mathematically, let us assume more generally that the underlying risk factors
� � �� of the hedging instruments ���� ��� � � � � ��� is a square integrable process on a probability space
������ � � with a filtration ��. Let ����� �� denote a derivative instrument value at time � when underlying

risk is �. Let ������ �� ���
�
��

��� ������� �� denote the value of the hedging portfolio at time � and ����� ��
denote the loss of the target portfolio at time �. Given a hedge horizon�� � �, the loss �� is the initial value of
the target portfolio minus the time �� value of the target portfolio. We want to determine a portfolio � so that
a measure of the hedge risk is minimized when the portfolio ��������� is used to hedge the loss ����� ���.

Let the row vector �
���
� ���� � � � � ��	 denote the hedging instrument values at � � � (������ �� ���

��� ������� �� � � �) with their sensitivities as below:
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	� . For simplicity of presen-

tation, we assume here that each hedging instrument �� depends on at most one risk factor.
Assume that one is to hedge the loss �� of a derivative portfolio by matching delta, gamma, and theta
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sensitivities. To accomplish this, solve �
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where the column vector 
��
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� ��

���

���

�

� � � � � ����

���
�
	� represents gamma sensitivities of the loss of the target

portfolio. Note that the coefficient matrix has dimension ��� � 
� � �. If � � �� � 
, the linear system
(1) is underdetermined. Hence there are an infinite number of portfolios matching these sensitivities. It is
difficult to determine which �� � 
 hedging instruments to use to best hedge a given portfolio; a portfolio
with large positions can occur if hedging instruments are not chosen appropriately. For example, if a short
term at-the-money call is matched in sensitivity by the underlying and a midterm at-the-money call, the
hedging instrument positions are much smaller, compared to using the underlying and a midterm deep-in-
the money call considered previously. In addition, matching sensitivities to control hedging risk is limited in
its effectiveness unless the hedge horizon is sufficiently small.

Minimizing a measure of the hedge risk is an alternative to sensitivity matching. In this paper, we
measure the hedge risk as the expected quadratic replicating error; hence the minimization problem is
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(2)

where � denote the expectation with respect to a probability measure � conditional on � � �� at � � �.
The optimal hedging portfolio depends on the chosen risk measure; a comparison of hedging cost and risk
between the choice of quadratic and piecewise risk measures, for discrete hedging a single vanilla instrument
with the underlying and bond, can be found in [3].

To analyze the conditioning of the risk minimization formulation (2), let us assume for now that the
change in the hedging instrument value is specified by the delta-gamma approximation:
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(3)

Here the column vector Æ� � ��, �Æ��� � �� is the vector with each component of Æ� squared, and ����
���

is the �-by-� Hessian matrix. Note the assumption that each hedging instrument �� depends on at most one
risk factor is used to obtain the last equality above.

We show next that, if � � �� � 
 and (3) holds, then there are an infinite number of portfolios which
give the same hedge risk. To see this, we first note that if portfolios ���	, ���	 � �� satisfy

�����	��� �� � �����	��� ��� for all possible ��

then these two portfolios have the same hedge risk at time �.
Let 
� � ������
�	 denote the matrix below:
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The proof is straightforward from the observation that, under the assumption (3),
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Assuming � � �� � 
, there exists a nonzero vector � � �� satisfying 
� � �	 Then ��� � 
���� �� �
������ �� for any � and 
.

Note that if a hedging instrument �� depends on more than one risk factor a similar analysis can be done
with relevant cross partial derivative terms accounted for; it can be shown that the solution to (2) is not
unique when
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� (5)

where � is a �-by-� indicator matrix with ��	 � 
 if
��


�� 	 ����
������

	 � � and ��	 � � otherwise. Note
that, the inequality (5) typically holds in practice since the number of hedging instrument � is usually much
larger than the number of risk factors � and each hedging instrument value typically depends only on a small
number of risk factors. In [1], the ill-posedness of VaR and CVaR minimization for a derivative portfolio is
similarly analyzed.

When the derivative values are not computed by delta-gamma approximation, hedging by minimizing
the hedge risk measure remains ill-posed. To illustrate, let us consider the single underlying asset derivative
portfolio example described in the beginning of this section. Assume that the stock price �� follows a
geometric Brownian motion

���
��

� ���� ���� (6)

where � � � is the expected rate of return, � � � is the volatility, and �� is a standard Brownian motion. Let
the initial stock price �� � 
��, the implied volatility � � �	�, the expected rate of return � � �	
, and the
risk free interest rate � � �	��. For simplicity, we assume that the stock pays no dividend. Assume further
that the hedging instrument universe consists of the stock, and vanilla calls with the maturities of one, two,
three, and six months and strikes � � ���� ��� 
��� 
��� 

�	.

Let ��� � � 
� � � � ��, be independent samples of the underlying stock price according to (6). The
continuous minimization (2) is approximated by:
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where � is defined as �
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and
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������ ��
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�� (9)

and �	��
�� ��� and ������ ��� are the ��� hedging instrument value and the loss of the given portfolio under

scenario � respectively.
The ill-posedness of problem (7) is reflected by the condition number of the matrix � . For our example,

the condition number of the matrix � is of order 
��� for a short hedge horizon up to a month (computed
using � � ����� independent price samples ��� based on (6) with the parameters specified). The condition
of� improves slightly as �� increases (the delta-gamma approximation becomes less accurate).

To examine the properties of the optimal hedging portfolio from the risk minimization (7), we consider
four randomly generated target portfolios: a portfolio �v of vanilla options, a portfolio �bi of binary options,
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Table 1: Properties of the Optimal Portfolios

�v �bi �ba �m�
risk� 7.27e-4 3.05e-3 8.04e-3 7.05e-2

��
� 1.93e+6 3.08e+6 7.47e+7 1.87e+7

a portfolio �ba of barrier options, and a portfolio �m, consisting of a mix of the three options plus Asian
options. The strikes and maturities of the options in each target portfolios are � � ���� ��� � � � � 
��� and
� � �	
� �	�� � � � � 
� � ��
� with the positions (a ��% probability of being long and ��% probability of
being short) of the options sampled from a lognormal distribution.

Table 1 displays the risk, as defined by (7), and the total number of positions of the optimal portfolios.
Here 
��
� � �

� 	��� 	 is the total number of instrument positions in a portfolio. Firstly, we note that all the
optimal portfolios have impractically large positions with the total number of hedging position 
��
� of a
portfolio up to ��
�
�. Secondly, under the assumption that the implied volatility at�� is the same as that at
� � �, optimal portfolios produced by the risk minimization model (7) has a relatively small risk.

3 Hedging Under Cost

In the last section, we have shown that the hedge risk minimization (2) typically produces a hedging portfolio
with unrealistically large positions. This requires us to re-examine what characteristics we desire from the
hedging portfolio. The ill-posedness of the hedge risk minimization model (2) indicates that risk minimiza-
tion by itself is an insufficient criterion for choosing a hedging portfolio; there are many portfolios having
the same or similar hedge risk. We discuss a few additional properties that can be introduced in the risk
minimization to obtain a more attractive hedging portfolio.

Firstly, to avoid a hedging portfolio with unrealistically large positions, simple bound constraints can
easily be included in the risk minimization formulation:

���
����

risk���

subject to �� � � � ��	 (10)

Here �� and �� denote the lower and upper bounds on the units of the positions for the instruments respec-
tively.

Secondly, in addition to risk, cost is another important factor to consider. This cost usually includes
the cost of forming the portfolio initially, transaction cost, as well as the portfolio management cost. Note
that bounds on the initial cost of forming a hedging portfolio can be specified by �
 � � �� � �
 where
� � � ������� ��� ������ ��� � � � � ������ ��	, �
 and �
 denote the lower and upper bounds on the initial
cost. In this paper, we have not imposed any bound on the initial cost in order to analyze the minimal risk
achievable.

The cost for management of a portfolio is much harder to model. It is reasonable to regard the manage-
ment cost of a portfolio as proportional to the total number of distinct instruments in the portfolio, which
leads to the problem

���
����

risk��� � 

�

���

���	�

subject to �� � � � �� � (11)
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where ���	� � 
 if �� 
� � and � otherwise. Another (equivalent) model accounting for management
cost is the following: minimize the hedge risk using �� instruments among a universe of � instruments,
with �� � � a given integer. This is similar to the index tracking portfolio problem in equity portfolio
management. It is an instance of portfolio compression problem and can potentially have many applications
in risk management.

Unfortunately, solving (11) or minimizing risk using a fixed number of instruments in a given universe,
is a very challenging computational problem. Tompaidis proposes [4] a matching projection pursuit method
to identify a subset of the most important instruments. It can be shown that, for the first � iterations, the
matching projection pursuit algorithm is simply an application of the Gauss-Seidel method to the normal
equations with a specific order for updating. Although the matching projection pursuit algorithm may be ap-
pealing due to its computational simplicity, it is a heuristic technique which can potentially yield a portfolio
with both large risk and a large number of instruments.

In this paper, we model a combination of transaction cost and management cost as proportional to the
units of instruments, yielding the problem

���
����

risk��� � 

�

���

��	��	

subject to �� � � � �� � (12)

where �� � � represents the cost for holding each unit of the �th instrument and 
 � � denotes the weight
between minimizing the risk and cost. We note that, for a fixed �, 
 � � � �,

���
����

risk��� � 
��	��	
subject to �� � � � �� � (13)

is the exact penalty formulation for the constrained problem

���
����

risk���

subject to �� � �� (14)

�� � � � ��	

When the penalty parameter 
�� � � is sufficiently large, the optimization problem (13) is equivalent to (14).
Thus, 
�� represents the importance of excluding the �th instrument in the hedging portfolio (in other words
the cost of managing the �th instrument). As we will illustrate subsequently, solving the risk minimization
model (12) with different �� (various degree of cost consideration), one is able to achieve the objective of
bounding the total number of replicating instruments (management cost).

We note that it is important to use the proportional cost function in order to account for management
cost. If we consider the quadratic cost model,

���
����

risk��� � 
���
�
�

subject to �� � � � �� (15)

(15) solves (14) only when 
 � �� � ��.
Next we use the same derivative portfolio example on the single stock to illustrate the properties of the

optimal portfolios from the various models discussed. For a given hedging horizon �� � �, we generate
the future value matrix � from the prices ������� ��� using Black-Scholes formula with ����� independent
samples of the stock price �� at ��. Similarly, the future loss ������� ��� of the target portfolio is computed at
the ��� with the same parameters for appropriate analytic formulae.
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For all the computational results in this paper, ���	� denotes the total number of nonzero instruments of

the portfolio �� calculated as the total number of instruments with 	��� 	 � 
���, i.e., ���	�
���
�
��

���  � where
 � � 
 if 	��� 	 � 
��� and  � � � otherwise.

In order to facilitate a direct control on the hedge risk, instead of (12), we solve an equivalent problem

���
����

�

���

��	��	

subject to �� � � � ��� (16)�
risk��� � ���

where �� can be interpreted as either the actual transaction cost per unit holding or the desirability of exclud-
ing the �th instrument from the hedging portfolio. Here �� is an upper bound on the risk.

We compare the properties of the optimal hedging portfolios from the following three models:

� Model 0: the risk minimization model (7) with no bound constraint on the hedging position or cost
consideration.

� Model 1: the risk minimization model (10) under the bound constraint:

������ ��
�
� �

� � � � ����� �� ����� 	

Here, for ! � �� � � ��, ! ��� is a vector with the �th component equal to !���. This constraint
specifies that the cost of each instrument cannot exceed the expected loss of the target portfolio.

� Model 2: the risk minimization model (16) under both a bound on the hedge risk and bound on the
positions as in Model 1. For the computational results in this paper, we set

�� � ���

�
�
 � "�

�
risk������� "

�

where " � � is a constant and ���� is the solution to Model 1. When �� � �
 � "�
�

risk������,
" specifies the accuracy of the risk compared to the optimal hedge risk obtained under only bound
constraints.

To illustrate, we consider the same four different target portfolios examples. Table 2 compares the
properties of the three hedging strategies from Model 0, 1, and 2 for a given time horizon of approximately
three weeks with " � �	�. Here risk��� � �

�

�
��, which corresponds to the risk when no hedging is

performed, is also included for comparison. The following observations can be made from Table 2: First
we observe that Model 1, with the specified bounds, has only a slightly larger risk compared to that of
Model 0, with the exception of the portfolio �ba of barrier options. Note that the total number of the
hedging instrument positions from Model 1 is much smaller due to the bound constraints. With " � �	�,
the optimal risk achievable from Model 2 is slightly increased from that of Model 1. However, the number
of instruments in the optimal portfolio has been decreased roughly ��%. In addition, The initial hedging
cost, cost� � � ���, of the optimal portfolios from all the three models are roughly the same (so are the
cumulative hedging cost ����� ���� � �� � � ���). This is reasonable since the optimal hedge risk is small
and the initial cost of the hedging portfolio is roughly the expected future loss of the target portfolio.

Table 3 compares the properties of the optimal hedging portfolio from Model 2 but with " � 
�. We
note that each optimal portfolio now has a smaller number of instruments compared to the corresponding
portfolio with " � �	�; naturally the hedge risk is increased.
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Table 2: Comparisons of Optimal Portfolios: �=0.5

Model 0 Model 1 Model 2
���	� 19 21 9

�v
�

risk� 7.27e-4 1.26e-2 5.00e-1
cost� 5.19e+3 5.19e+3 5.19e+3

��
� 1.93e+6 3.84e+4 9.97e+2�

risk��� = 5.20e+3 E(��)= 5.20e+3

Model 0 Model 1 Model 2
���	� 19 21 5

�bi
�

risk� 3.05e-3 3.41e-2 5.00e-1
cost� 1.80e+2 1.80e+2 1.80e+2

��
� 3.08e+6 1.87e+3 7.63e+0�

risk��� = 1.80e+2 E���)= 1.80e+2

Model 0 Model 1 Model 2
���	� 19 21 9

�ba
�

risk� 8.04e-3 1.13e+0 1.70e+0
cost� 1.98e+3 1.98e+3 1.98e+3

��
� 7.47e+7 1.30e+4 2.72e+3�

risk��� = 1.98e+3 E(��)= 1.97e+3

Model 0 Model 1 Model 2
���	� 19 21 10

�m
�

risk� 7.05e-2 5.25e-1 1.11e+0
cost� 1.22e+4 1.22e+4 1.22e+4

��
� 1.87e+7 3.78e+4 1.68e+3�

risk��� = 1.22e+4 E(��)= 1.22e+4

4 Volatility Uncertainty

In the previous section, we have illustrated that the risk minimization model (16) with cost consideration and
bounds on the positions produces better hedging portfolios in that the instrument positions are smaller and
there are fewer instruments in the optimal portfolio. The previous risk analysis examples, however, are based
on the assumption that, at a future time �� � �, the implied volatility is the same as the implied volatility at
� � �. In practice, this is rarely the case; the future implied volatility is unobservable and uncertain.

In this section, we assume that the future derivative option values (and the loss of the target portfolio)
depend on the future implied volatility ��, which is random, via the Black-Scholes formula (and the corre-
sponding analytic formulae for the exotic options); let ����� �� �� denote the value of an instrument at time
� when the underlying has value � and implied volatility is �. (The future interest rate and dividend yield
are also uncertain but we ignore them in our discussion since their effect on option values is secondary
comparing to that of the implied volatility.)

Assume that the change in the implied volatility is independently normally distributed with mean zero
and a standard deviation of �vol, i.e.,

��� � � ���� �vol� (17)

where �� is the implied volatility at � � � and � ��� �� denote a normal distribution with mean of � and
standard deviation of �.
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Table 3: Properties of Optimal Portfolios from Model 2: �=10

�v �bi �ba �m
���	� 6 2 6 7�
risk� 1.00e+1 1.00e+1 1.25e+1 1.00e+1

cost� 5.19e+3 1.78e+2 1.98e+3 1.22e+4

��
� 3.33e+2 2.38e+0 2.19e+2 6.87e+2

Table 4:
�

risk at �� When ��� � � ����� ������: �= 0.5

Model 0 Model 1 Model 2
�v 6.28e+3 3.38e+2 3.46e+1
�bi 1.46e+4 8.54e+0 5.84e-1
�ba 1.73e+5 5.75e+1 7.57e+1
�m 2.77e+5 1.36e+2 3.24e+1

For our previous examples, Model 0, 1, 2 are solved with risk��� � �
�

�� � �
�� where � and � are

computed according to (8) and (9), assuming the implied volatility at time�� is the same as the initial implied
volatility. Table 4 (" � �	�) & 5 (" � 
�) compare the risk produced by different models, when the future
implied volatility has the distribution specified in (17) with �vol � 	�%. From column 2 in Table 4, it can be
seen that hedging using the optimal portfolio computed by the risk minimization Model 0 actually increases
the risk significantly compared to simply not to hedge at all! It is surprising that such a small change of
the implied volatility gives rise to such a large change in the risk; this large increase is due to the fact that
the optimal risk minimization portfolio has large positions in the hedging instruments and this magnifies the
model error significantly. From columns 3 and 4 in Table 4 & 5, the risk from the minimization with bound
constraints (Model 1) and the minimization with bounds on both instrument positions and risk (Model 2) is
much smaller than that of Model 0. The results in Table 4 and 5 clearly illustrate that in hedging a portfolio,
it is not necessary (or even not desirable) to minimize the hedging error due to the inevitable existence of
model error. Rather it is important to limit the hedging error but also to consider other portfolio selection
criteria, e.g., cost.

Table 4 and 5 illustrate that the risk of a hedging portfolio is very sensitive to the implied volatility; in
fact the optimal hedging portfolios from Model 0 have increased the risk of the existing portfolio. In reality,
just as it is impossible to know the actual future implied volatility, it is also impossible to know the exact
model for the future implied volatility. Is it better to include a stochastic volatility model in risk minimization
even though there is inevitable error in any assumed implied volatility model? We provide evidence below
that the answer seems to be a definite yes.

We consider the same hedge risk minimization Model 0, 1, and 2 with risk��� � �
�

�� � �
�� except

now the future values of the hedging instruments � are computed as below

� �

�
��

����
����� �� � � � ����

�������
... � � � ...

����
������� � � � ����

�������

�
�� (18)
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Table 5:
�

risk at �� When ��� � � ����� ������: �=10

Model 0 Model 1 Model 2
�v 6.28e+3 3.38e+2 2.41e+1
�bi 1.46e+4 8.54e+0 1.00e+1
�ba 1.73e+5 5.75e+1 2.61e+1
�m 2.77e+5 1.36e+2 3.56e+1

and the loss of the target portfolio is given by

� �

�
��

������ ��� ��
...

������ ��� ��

�
�� 	 (19)

The condition number of � for a time horizon of a month is of the order of 
�� compared to 
���

when the implied volatility is assumed to be a constant. This is not surprising since the future values of
the hedging instruments are affected by more risk factors: a delta-gamma approximation to the change
����� �� �� � ������ ��� �� now has the form below:

�
���
��



Æ��

�
���
��


�
�Æ�� � �

�

�
����
���


�
�Æ���

�
�
���
��


�
�Æ�� � �

�

�
����
���


�
�Æ��� �

�
����
����



�Æ�� �Æ��

	

For our single asset derivative portfolio example, the risk minimization (2) has an infinite number of solution
if � � �, instead of � � �, when the hedging instrument value is given by a delta-gamma approximation.
Here we see that incorporating volatility risk adds more information in the risk minimization problem and
improves the condition of the problem.

Table 6 displays the properties of the optimal portfolios from the risk minimization Model 0, 1, and 2
except now � and � are computed from (18) and (19). We note that the optimal hedging portfolio without
cost consideration has smaller holdings compared to the case when we assume that the implied volatility is
a constant. T he optimal hedge risk is larger compared to when constant implied volatility is assumed in
the risk minimization models, This is reasonable since it is harder to hedge away the additional volatility
risk. In addition there seems to be a larger discrepancy between the initial cost and the expected future loss.
Furthermore, Model 2 produces a hedging portfolio with fewer instruments, compared to that from Model
1, with comparable hedge risks.

The optimal risk in Table 6 is computed with the assumption that the implied volatility ��� at time ��
is normal distributed with a mean of ��% and a standard deviation of 	�%; this model is likely to have
error. Now suppose that the implied volatility at �� is deterministic and equal to the implied volatility at
time � � � (the same assumption made in the examples in the previous sections). What is the risk of
th optimal portfolio computed with the assumption ��� � � �	��� �	����? Table 7 lists the risk for each
model. We see that, relative to not hedging, significant risk has been reduced. In addition, the risk is also
much smaller compared to the first column in Table 4 & 5 when the volatility uncertainty is not taken into
consideration in risk minimization model but the implied volatility at�� is uncertain with a small standard
deviation �vol � 	�% .

In addition to Table 7, we have also investigated the situation when the implied volatility at�� has a
slightly different distribution than what is assumed and found that incorporating volatility uncertainty leads
to a more robust hedging strategy against model error (in implied volatility). In order to appreciate why
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Table 6: Properties of Optimal Portfolios: ���
� � ����� ������ and �=0.05

Model 0 Model 1 Model 2
���	� 21 21 14

�v
�

risk� 2.63e-1 5.36e-1 9.52e-1
cost� 5.19e+3 5.19e+3 5.19e+3

��
� 1.29e+5 2.22e+4 6.81e+3�

risk��� = 5.20e+3 E(��)= 5.20e+3

Model 0 Model 1 Model 2
���	� 21 21 12

�bi
�

risk� 9.03e-2 1.07e-1 1.40e-1
cost� 1.80e+2 1.80e+2 1.80e+2

��
� 1.32e+4 1.78e+3 7.54e+1�
risk���= 1.80e+2 E(��)= 1.80e+2

Model 0 Model 1 Model 2
���	� 21 21 19

�ba
�

risk� 9.93e-1 2.83e+0 3.27e+0
cost� 1.98e+3 1.98e+3 1.98e+3

��
� 3.89e+5 2.28e+4 1.31e+4�

risk��� = 1.98e+3 E(��)= 1.97e+3

Model 0 Model 1 Model 2
���	� 21 21 8

�m
�

risk� 2.27e+1 2.27e+1 2.38e+1
cost� 1.22e+4 1.22e+4 1.22e+4

��
� 9.09e+4 7.02e+4 1.21e+3�

risk��� = 1.22e+4 E(��)= 1.22e+4

this is so, we graph in Figure 1 the difference ����� �� ��� � ����� �� ��� for the vanilla portfolio �v, where
����� �� ��� denotes the optimal hedging portfolio from Model 0 with � and � computed from (8) and (9)
(i.e., assuming the implied volatility ��� � �� � 	��). The difference ����� �� ��������� �� ��� with� and �
computed from (18) and (19), assuming (17) with �vol � 	�%, is graphed in Figure 2. Figure 1 shows that
����� �� ��������� �� ��� quickly becomes large when � deviates slightly from the initial implied volatility of
��% when the minimization model assumes that the implied volatility at�� is the same as the initial implied
volatility (even though the time horizon �� is quite small). When the minimization model assumes that the
future implied volatility has a slight error of 	�%, the hedging portfolio value is closer to the loss of the given
portfolio for different implied volatilities. This results in a more robust hedge.

5 Concluding Remarks

In this paper, we illustrate why the problem of hedging a portfolio of derivatives is often ill posed. We
propose to determine a hedging portfolio by minimizing a proportional cost subject to an upper bound on
the hedge risk; this bound is typically slightly larger than the optimal hedge risk achievable without cost
consideration. We illustrate that the optimal hedging portfolio obtained by the proposed method is more
attractive since it consists of fewer instruments with a comparable risk. Finally we explain why including
volatility uncertainty in hedge risk minimization results in a more robust hedging portfolio even though it is
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Table 7:
�

risk at �� for Optimal Portfolios of Table 6 When ���
� �� � ��� and �= 0.05

Model 0 Model 1 Model 2
�

risk���
�v 1.80e-1 3.46e-1 6.07e-1 5.20e+3
�bi 7.50e-2 9.66e-2 1.38e-1 1.80e+2
�ba 7.59e-1 1.93e+0 2.20e+0 1.97e+3
�m 1.36e+0 1.36e+0 4.06e+0 1.22e+4
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Figure 1: ����� �� ��������� �� ��� for ��� �� � �	�� 
���� ���
	� ����� (�vol � � in Model 0)

impossible to know the exact model for the future implied volatility.
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