
Complex Stock Trading Strategy Based on Particle Swarm
Optimization

Fei Wang, Philip L.H. Yu and David W. Cheung

Abstract— Trading rules have been utilized in the stock
market to make profit for more than a century. However, only
using a single trading rule may not be sufficient to predict the
stock price trend accurately. Although some complex trading
strategies combining various classes of trading rules have been
proposed in the literature, they often pick only one rule for each
class, which may lose valuable information from other rules in
the same class. In this paper, a complex stock trading strategy,
namely weight reward strategy (WRS), is proposed. WRS
combines the two most popular classes of trading rules−moving
average (MA) and trading range break-out (TRB). For both
MA and TRB, WRS includes different combinations of the
rule parameters to get a universe of 140 component trading
rules in all. Each component rule is assigned a start weight
and a reward/penalty mechanism based on profit is proposed
to update these rules’ weights over time. To determine the
best parameter values of WRS, we employ an improved time
variant Particle Swarm Optimization (PSO) algorithm with the
objective of maximizing the annual net profit generated by
WRS. The experiments show that our proposed WRS optimized
by PSO outperforms the best moving average and trading range
break-out rules.

I. INTRODUCTION

TRADING rules are widely used in financial market as
a technical analysis tool for security trading. Typically,

they predict the future price trend by analyzing historical
price movement and initiates buy/sell signals accordingly.
Trading rules have developed for more than a century
and many empirical studies provided supporting evidence
to the significant profitability of different trading rules
[1][2][3][4][5]. Until nowadays trading rules are commonly
used by practitioners to make trading decisions in many
financial markets.

Pring [6], however, argued that no single trading rule
can ever be expected to forecast all price trend and it is
important to combine these simple rules together to get a
complex trading strategy. Hsu and Kuan [7] first examined
the profitability of three classes of complex trading strategies:
learning strategies (LS), vote strategies (VS) and fractional
position strategies (FPS). Their results showed that the three
classes of complex trading strategies did not provide signif-
icant improvement as compared with simple trading rules.
However, the failure of these complex trading strategies is
because they are relatively primitive. For example, LS picked

Fei Wang is with the Department of Computer Science, The University
of Hong Kong, Pokfulam, Hong Kong (email: fwang@cs.hku.hk).

Philip L.H. Yu is with the Department of Statistics and Actuarial
Science, The University of Hong Kong, Pokfulam, Hong Kong (email:
plhyu@hku.hk).

David W. Cheung is with the Department of Computer Science, The Uni-
versity of Hong Kong, Pokfulam, Hong Kong (email: dcheung@cs.hku.hk).

the best simple trading rule for trading decision making each
time instead of combining all rules in an appropriate manner.
For VS and FPS, both of them regarded all simple trading
rules as equally important without considering their relative
performances.

To address the above problems, Subramanian et al. [8]
proposed a weighted combination of simple trading rules.
In their study, each component rule associated with a given
weight initiates its own signal and the signal to be implement-
ed is eventually determined by the sum of these weighted
signals. They created this combination by applying a Genetic
Algorithm (GA) to optimize the best set of weight vectors.
Thereafter Briza et al. [9] proposed a similar stock trading
strategy whose weight vector was optimized by Particle
Swarm Optimization (PSO). Both combined strategies are
found to outperform the best component trading rules in
terms of profit of the test set. However, they only consid-
ered a common used rule for each class of trading rule
in their studies. This may not guarantee that the trading
rules under consideration always perform better than those
not considered. Therefore it is important to include various
combinations of parameters for each class of rule as many
as possible to get a comprehensive coverage of component
rules. Note that the weights of component rules were held
fixed during the whole trading period in their approaches.
Given such a complex and dynamic market, a trading strategy
with a static choice of component weights is hard to perform
well consistently over time. In this regard, an objective of
this paper is to consider a dynamic updating scheme for
component weights.

In this paper, we present a complex stock trading s-
trategy called weight reward strategy (WRS) which com-
bines two classes of the simplest and most popular trading
rules−moving average and trading range break-out [2][5].
For moving average, we get 119 rules by considering differ-
ent values of its two parameters. For trading range break-
out, we get 21 rules by taking 21 different values of its
single parameter. Therefore there are 140 simple rules in
all. All parameters are well selected to represent each class’s
performance in a wide range [10]. Each component rule is
assigned a start weight, and a reward/penalty mechanism
based on component rules’ performance is proposed to
update their weights over time. The trading signal of WRS is
determined by the weighted sum of component rules’ signals
and two additional signal threshold parameters.

Together with component rules’ start weight and other five
parameters of WRS to be discussed later, there are altogether
145 parameters for WRS. We use an improved time variant

Particle Swarm Optimization (PSO) [11] to optimize the best
set of the 145 parameters. In the literature, GA and PSO are
the most popular optimization algorithms used to optimize
trading rules [4][8][9][12]. We choose PSO rather than GA
because PSO is not only easy to be implemented, but also it
has higher computation efficiency and can achieve the same
performance as compared with GA [13][14].

The rest of this paper is organized as follows: Section
II briefly introduces PSO algorithm. Section III describes
proposed WRS in detail and the optimization of WRS is
presented in Section IV. Section V discusses the experimental
results and conclusion is given in Section VI.

II. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a stochastic evolu-
tion algorithm based on swarm intelligence, which was first
inrtoduced by Kennedy and Eberhart in 1995 [15]. Since its
inception, PSO has shown great success in solving function
optimization problems and has been widely applied in a
variety of engineering applications [9][16].

PSO is motivated by the behavior of bird flocks in finding
food. Suppose a flock of birds want to find food, but they
do not know where the food is before they find it. However,
this bird flock can always find their food at last. PSO uses
a swarm of particles to simulate these birds. Each particle
is a possible solution of the optimization problem and has
a random initial position X and velocity V . The objective
function targeted to be optimized is used to evaluate each
particle position’s fitness. Higher fitness means a better
position. For each particle, PSO uses pbest to record the
best position this particle has arrived. For the whole swarm,
gbest is used to record the global best position achieved by
all particles. At time t, PSO updates each particle’s velocity
using the following equation:

Vt+1 = wVt + c1r1(pbest−Xt) + c2r2(gbest−Xt) (1)

where w is the inertia weight, c1, c2 are the acceleration
coefficients and r1, r2 are two random numbers in the range
between 0 and 1 [17].

The first term of equation (1) indicates an inertia for a
particle wondering in the search space. The second term
represents self-cognition of past experience of a particle,
i.e., the particle tends to move towards its past best position.
Similarly, the third term indicates that particles have social
cognition to the whole swarm and are attracted by the
global best position. For PSO, inertia weight w controls
the influence of previous velocity on a particle. A large w
allows particles to explore more search space for the optimal
position, while small w helps swarm to search in a local
area for the exact solution. Coefficients c1 and c2 control
the influence of pbest and gbest on particles’ movement. A
higher value of c1 means each particle is more likely to be
attracted to a different position, so the whole swarm is more
widespread in the search space. Its effect is similar to w. In
contrast a high value of c2 leads all particles converge to the
current global best position.

After updating the velocity, each particle will move to a
new position according to:

Xt+1 = Xt + Vt+1 (2)

This particle movement will repeat iteratively until all
particles converge to the optimal position at last, like when
birds find the food at the end of searching.

III. WEIGHT REWARD STRATEGY

In this section, we describes how weight reward strategy
(WRS) utilizes different simple trading rules to generate
trading signals and how it rewards and penalizes these rules
according to their trading performance.

A. Moving average and trading range break-out

WRS is based on moving average (MA) and trading range
break-out (TRB) because they are the two of simplest and
most popular simple trading rules [2].

In MA, there are two averages of stock prices over two
moving windows of nl days and ns days respectively, where
nl > ns so the former average is long-period average
and the later one is short-period average. Both averages
are recalculated and updated each trading day. The signal
generation of MA is simple. Consider a trading day, MA
initiates buy (sell) signal if the short-period moving average
is above (below) the long-period moving average.

The second trading rule is TRB which is simpler than MA.
On trading day d, TRB initiates buy (sell) signal if current
day’s stock price is higher (lower) than the highest (lowest)
stock price during the past n days. The past n-day prices
form a trading range, and the buy or sell signal is invoked
when one day’s stock price breaks out the range.

For both MA and TRB, we can get different rules by taking
different parameter values. It is important to add as many as
rules to WRS’s rule pool because we cannot guarantee the
selected parameter value is always better than the others.
Therefore, we combine 119 MA rules and 21 TRB rules
together to get a comprehensive coverage of MA and TRB.

B. Signal generation

In WRS, each component rule ri is assigned a start weight
wti, which measures the influence of ri to the signal gener-
ated by WRS. Consider a trading day d, each component rule
initiates a signal si,d. This signal si,d takes value 1, 0 and
−1 if the signal is ‘buy’, ‘do nothing’ and ‘sell’ respectively.
The signal of WRS on trading day d is given by:

sd =
∑

wtisi,d (3)

where the sum of the all weights (
∑

wti) should be 1 so
that sd is between −1 and 1.

Note that sd summarizes all component rules’ views on
stock trend. If sd is close to 1, this means most of influential
component rules suggest buy signals. On the contrary, sd
nearing −1 means more influential rules suggest sell signals.
So we propose that WRS initiates a buy (sell) signal if sd is
greater (smaller) than a positive buy (negative sell) threshold,

bth (sth); otherwise WRS do not initiates any signal and
investors do nothing on that day. Higher threshold represents
the strategy is more strict in buy or sell and lower threshold
represents a more tolerant strategy. The signal generation of
WRS is shown in Fig. 1.

ma
1

(wt
1
)

ma
119

(wt
119

)

…

trb
120

(wt
120

)

…

d
s

,140

 ! diid
swts
,

bths
d

sths
d

buy

sell

d
s

,119

d
s

,120

d
s
,1

trb
140

(wt
140

)

Fig. 1. Signal generation of WRS

C. Reward and penalty of component rules

In WRS, each component rule ri is associated with a
start weight wti. It represents how much we believe this
rule. However, these rules’ performance may change during
trading, especially over a long time period. It is reasonable
to reward a good rule by adding more weight to it and to
penalize a bad rule by deducting some weight from it. The
good or bad is measured by the profitability of rules in recent
time, and the updating of weights should be conducted at
regular intervals. As a result, two time spans−memory span
ms and review span rs, which are introduced in the learning
strategy (LS), are used here. Memory span is a historical
period used for evaluating the rule performance. Review span
is the time interval over which the weights of component
rules should be updated. We set ms ≥ rs as suggested by
[7].

Suppose on trading day d, we evaluate all rule’s perfor-
mance and update their weights accordingly. Let profiti
denotes the profit of rule ri from day d−ms to day d− 1.
For those nonprofitable rules, we deduct their weights by a
constant:

wti = wti −
rf

ruleNum
, if profiti < 0 (4)

where ruleNum is the total number of component rules and
rf is a parameter called reward factor controlling the degree
for penalty and reward. It is noted that wti should not be
negative, so wti is set to zero if it is smaller than rf

ruleNum .
All the weights deducted from the nonprofitable rules are

summed to form a temporary variable reward. Then we
increase the weight of those profitable rules using following
equation:

wti = wti +
reward

profitNum
, if profiti > 0 (5)

where profitNum is the number of profitable rules found
in the memory span.

Note that the sum of weights remains unchanged after
the penalty and reward. However, if most of the rules are
nonprofitable and only a few rules are profitable, above
reward/penalty approach may add too much weight to those
few profitable rules. Imagine that there are 100 rules in
which only one rule is profitable in memory span, the weight
increment of the only profitable rule is 99 times of the weight
decrement of any other rule. The reward may be too much,
especially when the rule is just profitable in a short period of
time. To avoid a huge reward, we replace Equation (4) with:

wti = wti −
rf

ruleNum
× profitNum

ruleNum
, if profiti < 0

(6)
where term profitNum

ruleNum guarantees that the penalty weight of
any nonprofitable rule and the reward weight of any profitable
rule is capped at rf

ruleNum . It is noted that when all rules are
profitable or all of them are nonprofitable, our reward/penalty
mechanism would not be triggered as in the case there is no
need to reward or penalize any rule.

IV. OPTIMIZATION OF WRS

For WRS, there are 140 start weights (wt1 to wt140),
two time spans (ms, rs), two thresholds (bth, sth), and
a reward factor (rf) to be determined. Identifying such a
high dimensional parameter vector is a tough optimization
problem. To tackle it, an improved time variant Particle
Swarm Optimization (PSO) algorithm is used in this paper.

A. Time variant PSO

In PSO, the tradeoff between global exploration and local
exploitation of particles is the main influencing factor to
PSO’s performance [17]. Generally, exploration should be
enhanced at the early stage of searching so that more search
space can be explored by particles. While at the later stage
the algorithm should focus on exploitation to find the exact
and accurate optimum.

To achieve these goals, Shi and Eberhart [18] suggested
to reduce PSO’s inertia weight w linearly over the iterations
so as to help particles to find the optimal position more
efficiently. In later work, Ratnaweera et al. [11] proposed
a time-varying acceleration coefficients PSO which linearly
reduce the first acceleration coefficient c1, and increase the
second acceleration coefficient c2 over the iterations. Based
on these studies, in this paper we lineally updates w, c1 and
c2 according to the following iterative equations [11][18]:

wt = (wF − wI)
t

max t
+ wI , (7)

c1t = (c1F − c1I)
t

max t
+ c1I , (8)

c2t = (c2F − c2I)
t

max t
+ c2I , (9)

where wI , wt and wF denote the initial, current and final
value of w respectively (similar for c1 and c2), t is the
current iteration number and max t is the maximum number
of iterations.

B. Objective function

The ultimate goal of any stock trading strategy is to make
profit from the stock market, so the parameter optimization of
WRS is led by this goal. We use annual net profit generated
by the WRS as the objective function of the optimization. At
first, each stock in the market is assigned the same amount
of initial equity. During the trading, all the equity available
for a stock can only be used to invest in this stock. Because
we do not allow short selling, the equity for each stock is
always positive. On the last day of trading, we sell all stocks
in hand and sum their equities together to obtain the final
equity. Then the annual net profit (ANP) of WRS can be
calculated as follows:

ANP =

∑
ekF −

∑
ekI

y ×
∑

ekI
(10)

where ekI and ekF is the initial and final equity of stock k
respectively, and y is the length of trading period in years.

In (10), we have already included the consideration of
transaction cost so that ANP represents the average annual
profit net of the transaction cost. For each buy or sell, 0.1%
of the total turnover is cut from the equity as transaction cost
in our study.

C. Start weights optimization

Recall that the sum of component rules’ start weights
is restricted to be 1, i.e.,

∑
wti = 1. It is difficult to

satisfy this constraint if the weights are optimized directly
by PSO because of its stochastic nature. In this regard, a
new parameter vector α is introduced here and a one-to-one
transformation between wt and α is used in this study:

wti =
eαi

Σeαi
. (11)

As (11) guarantees that the sum of wt is 1 regardless of the
value of α, the new parameter vector α is optimized to get
the best set of start weights via (11).

V. EXPERIMENTS

A. Data

The constituent stocks of NASDAQ100, which are 100 of
the largest domestic and international nonfinancial stocks on
the Nasdaq Stock Market, are considered in our study. The
daily stock closing price data from 1994 to 2010 are collected
from Reuters 3000Xtra. Because not all stocks were issued
before 1994, only 52 stocks having data through the whole
period are considered in our experiments. The data from 1995
to 2002 is used for optimizing, in other words, training the
WRS. The data from 2003 to 2010 is used for testing the
profitability of the WRS and the simple trading rules. It is
noted that for some component rules such as MA with nl =
250, it needs data over the past 250 days to calculate current

day’s long-period moving average. Therefore, the data in
1994 has been reserved for data preparation in training.

B. Experiment setup

The swarm size is set to 250 and the maximum number of
iterations is set to 500. There is also a stoping criterion, that
is, if gbest keeps unchanged for at least 50 iterations, the
optimization will stop. Table I gives the parameter settings
of PSO and the search space boundary of WRS optimization.

TABLE I
PARAMETER SETTINGS OF PSO AND THE BOUNDARIES OF WRS

PARAMETERS

PSO Value WRS Boundary
wI 0.9 αi

1 [−1, 1]
wF 0.4 ms [150, 300]
c1I 2.5 rs [20, 150]
c1F 0.5 rf [0, 1]
c2I 0.5 bth [0, 0.9]
c2F 2.5 sth [−0.9, 0]
1 (i = 1..140)

In Table I, the parameter settings of PSO are based on the
suggestions of [11][18]. In order to avoid the data snooping
bias to any component rule in the training period, the range
of α is set as [−1, 1] so that the range of wt is approximately
[0.001, 0.05]. There are about 21 trading days in a month and
about 252 trading days in a year, so the minimum review span
rs is set to be shortly less than one month and the maximum
memory span ms is set to be a little bit longer than one year
in terms of trading days. Because ms ≥ rs, the minimum
value of ms and the maximum value of rs are both set to be
150 trading days. Reward and penalty for component rules
should not be too big each time, so the maximum value of
reward factor rf is set to be 1. The minimum value of rf is
0 means that there is no reward and penalty in this case. For
buy and sell threshold, [−0.9,0.9] is wide enough to cover
the threshold range, so they are set as the lower and upper
bound of sth and bth respectively.

C. Experimental results

After training, WRS is compared with the best MA (ns
= 125, nl = 150) and the best TRB (n = 125) in terms
of the annual net profit (ANP) in the testing period. In
addition to the annual net profit, the average return per trade
(Avg.return) is also compared. Suppose an investor buys
N shares of a stock at price p0 and sells them at the price
p1. The transaction cost per buy or sell is c. The investor
pays N × p0 × (1 + c) to buy the N shares and collects
N × p1 × (1− c) by selling them, so the return of this trade
is given by:

return =
N × p1 × (1− c)

N × p0 × (1 + c)
− 1 =

p1 × (1− c)

p0 × (1 + c)
− 1. (12)

Therefore the return per trade is independent of the invest-
ment. The results are shown in Table II. The number of
trades (No.trades) and the average holding day per trade

0

0.5

1

1.5

2

2.5

3

1 253 505 757 1009 1261 1513 1765 2014

Trading days

2003 2004 2005 2006 2007 2008 2009 2010

MA(125-150)

TRB(125)

E
q

u
it

y
/M

il
li

o
n

s

WRS

Year

Fig. 2. Equity curves of WRS, MA(125-150) and TRB(125) in the testing period. Suppose the initial equity for each stock is $0.01 million, so the initial
equity for the market is $0.52 million. There are altogether 2014 trading days from 2003 to 2010.

(Avg.hold day) for each trading rule in the testing period
are also given for statistic purpose. From Table II, we can
find that both the annual net profit and the average return
per trade of WRS is much higher than the best MA (ns
= 125, nl = 150) and the best TRB (n = 125) in the
testing period. This means WRS can take the advantage of
component rules and outperform all of them. Table III gives
more details about the 52 stocks’ profits. It shows that WRS
can generate significant profit from those profitable stocks
and recover from those few nonprofitable stocks. To get a
more comprehensive understanding to the performance of
these three trading strategies, their equity curves are given
in Fig. 2. It can be seen that the WRS keeps the highest
cumulative equity during the eight years of testing period.

TABLE II
PERFORMANCE OF WRS, THE BEST MA(125-150) AND THE BEST

TRB(125) IN THE TESTING PERIOD

WRS MA(125-150) TRB(125)
ANP 53.52% 37.86% 28.88%

No.trades 264 532 277
Avg.hold day 320 120 228
Avg.return 48.38% 11.30% 22.22%

TABLE III
STOCK PROFIT SUMMARY OF WRS, THE BEST MA(125-150) AND THE

BEST TRB(125) IN THE TESTING PERIOD

Strategy Summary Profitable Nonprofitable Total
stocks1 stocks1 stocks

WRS Number 35 17 52
ANP 80.49% -2.00% 53.52%

MA(125-150) Number 37 15 52
ANP 54.61% -3.46% 37.86%

TRB(125) Number 41 11 52
ANP 37.37% -2.77% 28.88%

1 Profitable stock means the stock whose final equity is more than its
initial equity and vice versa.

In the training period, the MA rule with ns = 200 and nl
= 250 generates the highest annual net profit among all of

the 119 MA rules, and the TRB rule with n = 200 generates
the highest annual net profit among all of the 21 TRB rules.
To demonstrate that the performance of simple trading rules
may fluctuate over time, we also test the performance of
these two rules in the testing period. The results are shown in
Table IV and Table V. The MA(200-250) makes the highest
profit among all MA rules in the training period, but its
performance drops a lot in the testing period, even is below
the average performance of MA. Although the TRB(200)
performs well in both of the training and testing period, it is
not the best TRB any more in the testing period. This result
gives support to our complex trading strategy with adequate
combination of simple trading rules.

TABLE IV
PERFORMANCE OF THE MA RULES IN THE TESTING PERIOD

MA Worst MA Best MA MA
(200-250) (1-5) (125-150) Average

ANP 19.03% 2.78% 37.86% 23.05%
No.trades 305 14331 532 1933

Avg.hold day 210 4 120 79

TABLE V
PERFORMANCE OF THE TRB RULES IN THE TESTING PERIOD

TRB Worst TRB Best TRB TRB
(200) (10) (125) Average

ANP 27,21% 6.02% 28.88% 20.84%
No.trades 186 3434 277 1116

Avg.hold day 344 17 228 137

If there is no reward and penalty to component rules
during trading, WRS becomes Weight Strategy (WS). We
also compare WRS and WS in the testing period to see the
influence of our reward/penalty mechanism. The results are
given in Table VI. Together with Table II, we can find that
WS also generates higher annual net profit than any of the
simple trading rules. However, both the highest ANP and
Avg.return are generated by WRS indicates that it worths
to conduct the reward/penalty mechanism. For WRS, because

there are reward and penalty, component rules’ weights may
fluctuate according to their recent performance as evidenced
by the profile plots of two selected weights in the testing
period as shown in Fig. 3.

TABLE VI
PERFORMANCE OF WRS AND WS IN THE TESTING PERIOD

WRS WS
ANP 53.52% 39.34%

No.trades 264 350
Avg.hold day 320 239
Avg.return 48.38% 22.56%

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 11 21 31 41 51 61

MA(20-25)

TRB(50)

No. of reward/penalty

W
e

ig
h

t

Fig. 3. The profile plots of the weights of MA (ns = 20, nl = 25) and
TRB (n = 50) in the testing period. WRS updates the weights for 61 times
during 8 years trading from 2003 to 2010. We observe that the weight of
MA(20-25) keeps low at the beginning and becomes high eventually. The
weight of TRB(50) keeps high for a long time and drops a lot at the end
of trading.

VI. CONCLUSION

This paper has proposed a complex stock trading strate-
gy, namely weight reward strategy (WRS), generated from
different combinations of moving average and trading range
break-out with their weights updated by a reward/penalty
mechanism. A time variant Particle Swarm Optimization is
used to optimize WRS. WRS outperforms the best moving
average and trading range break-out rules in NASDAQ100
market from 2003 to 2010. For our future research, more
simple trading rules could be included in the rule pool of
WRS. Besides, it is often required to strike a balance between
return and risk in investment, so multi-objective optimization
in terms of profit and some risk measures such as Sharpe ratio
and maximum drawdown could be studied in the future.

VII. APPENDIX

A. The parameter values of moving average

nl (number of days in a long-period moving average) = 5,
10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250 (14
values);

ns (number of days in a short-period moving average) =
1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200
(15 values).

Because ns should be less than nl, the total number of
MA rules generated is 119.

B. The parameter values of trading range break-out

n (number of days for a trading range) = 5, 10, 15, 20,
25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100, 125, 150,
175, 200, 250 (21 values).

Because there is only one parameter, the total number of
TRB rules generated is 21.

REFERENCES

[1] E. Fama and M. Blume, “Filter rules and stock-market trading,” The
Journal of Business, vol. 39, no. 1, pp. 226–241, 1966.

[2] W. Brock, J. Lakonishok, and B. LeBaron, “Simple technical trading
rules and the stochastic properties of stock returns,” Journal of
Finance, pp. 1731–1764, 1992.

[3] R. Gencay, “The predictability of security returns with simple technical
trading rules,” Journal of Empirical Finance, vol. 5, no. 4, pp. 347–
359, 1998.

[4] F. Allen and R. Karjalainen, “Using genetic algorithms to find technical
trading rules,” Journal of Financial Economics, vol. 51, pp. 245–271,
1999.

[5] L. Kestner, Quantitative trading strategies: harnessing the power
of quantitative techniques to create a winning trading program.
McGraw-Hill Professional, 2003.

[6] M. Pring, Technical analysis explained: The successful investor’s guide
to spotting investment trends and turning points. McGraw-Hill, 1991.

[7] P. Hsu and C. Kuan, “Reexamining the profitability of technical anal-
ysis with data snooping checks,” Journal of Financial Econometrics,
vol. 3, no. 4, pp. 606–628, 2005.

[8] H. Subramanian, S. Ramamoorthy, P. Stone, and B. Kuipers, “Design-
ing safe, profitable automated stock trading agents using evolutionary
algorithms,” in Proceedings of the 8th annual conference on Genetic
and evolutionary computation. ACM, 2006, pp. 1777–1784.

[9] A. Briza and P. Naval Jr, “Stock trading system based on the multi-
objective particle swarm optimization of technical indicators on end-
of-day market data,” Applied Soft Computing, vol. 11, no. 1, pp. 1191–
1201, 2011.

[10] R. Sullivan, A. Timmermann, and H. White, “Data-snooping, technical
trading rule performance, and the bootstrap,” Journal of Finance, pp.
1647–1691, 1999.

[11] A. Ratnaweera, S. Halgamuge, and H. Watson, “Self-organizing hi-
erarchical particle swarm optimizer with time-varying acceleration
coefficients,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 3, pp. 240–255, 2004.

[12] J. Nenortaite and R. Simutis, “Stocks’ trading system based on the
particle swarm optimization algorithm,” Computational Science-ICCS
2004, pp. 843–850, 2004.

[13] R. Hassan, B. Cohanim, O. De Weck, and G. Venter, “A comparison of
particle swarm optimization and the genetic algorithm,” in Proceedings
of the 1st AIAA Multidisciplinary Design Optimization Specialist
Conference, 2005.

[14] J. Lee, S. Lee, S. Chang, and B. Ahn, “A comparison of ga and pso
for excess return evaluation in stock markets,” Artificial Intelligence
and Knowledge Engineering Applications: A Bioinspired Approach,
pp. 45–55, 2005.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of IEEE International Conference on Neural Networks,
Piscataway, NJ, vol. 4. IEEE, 1995, pp. 1942–1948.

[16] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in
electromagnetics,” IEEE Transactions on Antennas and Propagation,
vol. 52, no. 2, pp. 397–407, 2004.

[17] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
Proceedings of 1998 IEEE International Conference on Evolutionary
Computation, vol. 1. IEEE, 1998, pp. 69–73.

[18] ——, “Empirical study of particle swarm optimization,” in Pro-
ceedings of 1999 IEEE International Conference on Evolutionary
Computation, vol. 3. IEEE, 1999, pp. 101–106.

