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Testing Implications of the Adaptive Market Hypothesis via

Computational Intelligence

Matthew Butler and Dimitar Kazakov

Abstract—This study analyzes two implications of the Adaptive
Market Hypothesis: variable efficiency and cyclical profitability.
These implications are, inter alia, in conflict with the Efficient
Market Hypothesis. Variable efficiency has been a popular topic
amongst econometric researchers, where a variety of studies have
shown that variable efficiency does exist in financial markets
based on the metrics utilized. To determine if non-linear de-
pendence increases the accuracy of supervised trading models
a GARCH process is simulated and using a sliding window ap-
proach the series is tested for non-linear dependence. The results
clearly demonstrate that during sub-periods where non-linear
dependence is detected the algorithms experience a statistically
significant increase in classification accuracy. As for the cyclical
profitability of trading rules, the assumption that effectiveness
waxes and wanes with the current market environment, is tested
using a popular technical indicator, Bollinger Bands (BB), that
are converted from static to dynamic using particle swarm
optimization (PSO). For a given time period the parameters of
the BB are fitted to optimize profitability and then tested in
several out-of-sample time periods. The results indicate that on
average a particular optimized BB is profitable, active and able
to outperform the market index up to 35% of the time. These
results clearly indicate the cyclical nature of the effectiveness of a
particular trading model and that a technical indicator derived
from historical prices can be profitable outside of its training
period.

I. INTRODUCTION

The Adaptive Market Hypothesis (AMH) of Lo [14][15]

offers an alternative market theory to Fama’s Efficient Mar-

ket Hypothesis (EMH) [5] that has several conflicting as-

sumptions. These include the issues of bounded rationality

of individual investors, path dependence of the equity-risk

premium and variable market efficiency. The last assumption,

that of variable efficiency, has been a popular topic amongst

econometric researchers, where a variety of studies have

shown that it does exist [2] [13] [20] in the financial markets

for the metrics considered. These studies have also revealed

that market efficiency is not a convergence but is in fact

cyclical. This evidence supports the AMH and implies that

a non-zero probability exists for creating trading strategies

that outperform the market. Given that markets appear to

exhibit non-linear correlations there still remains the question

whether or not active trading strategies or technical analysis

can take advantage of these inefficient market periods. The

observation that market efficiency is cyclical is dependent on

the robustness of the statistical test. From a forecasting point of
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view the most important question, assuming a cyclical nature

to market efficiency, is whether or not these periods of non-

linear dependence can be used to improve forecasting accuracy

and therefore lead to more profitable trading models. The

previous work on market efficiency was mainly concerned

with demonstrating that efficiency was episodic and that a

relationship existed between the maturity of the market and

its degree of market efficiency. The results from each of the

studies [20] [13] revealed that emerging markets tended to be

less efficient than mature markets. In 2009, Todea et al. [18]

analyzed if the profitability of an optimal moving average

(MA) strategy was contingent on the market period. The

results were obtained for six Asia-Pacific financial markets and

in five of the markets the MA strategy was more profitable in

periods that exhibited non-linear dependencies. These results

however do not reflect any out-of-sample testing as an optimal

strategy was determined a priori for a particular market and

the results do not reveal if any advantages exist for forecasting

future price trends. This is the motivation behind this research,

to determine if the presence of non-linear dependencies in a

time series offers any benefits to forecasting models devel-

oped from machine learning techniques. The word presence

is emphasized as the actual data generating process is not

known and any dependencies identified are contingent on the

robustness of the statistical test.

In relation to the cyclical nature of market efficiency this

study also assesses the validity of cyclical profitability. Due

to the non-stationary nature of the stock market it is a valid

assumption that trading models have to continually adapt

to new environments. Though this may be true it does not

necessarily imply that previously effective models do not

contain any useful information. If trading models exhibit

cyclical effectiveness then maintaining and consulting previous

models may improve forecasting performance. In essence this

would be a passing on of knowledge from older generations

to new ones. This positive impact of older generations is seen

in the natural world where the emergence of grandparents in

human society led to an explosion of sophisticated tools and

art [3]. There are various methods which could be explored to

test the validity of cyclical profitability of technical analysis.

There are several technical trading rules, such as the moving

average convergence divergence (MACD) or momentum indi-

cators (MOM), which could be easily implemented and their

effectiveness monitored through time. A potential drawback

is that the trading rule may never be desirable and although

its profitability varies in time, the overall effectiveness may be

sub-par to that of the market index and therefore rendering the



experimental results moot. This conclusion, of course, is based

on the fact that an active technical trading rule that cannot

outperform the passive buy and hold approach is irrelevant

and is evidence against the AMH. Alternatively, we could use

an active learning approach where an optimal trading strategy

can be constructed for the majority of market environments.

This approach would ensure that each trading model tested

was at one time profitable and able to outperform the passive

buy-and-hold approach. In section III-A we discuss the exact

methodology used for choosing BBs fitted using PSO and how

the results are evaluated.

II. VARIABLE EFFICIENCY

To analyze the effect of non-linear dependence in a time-

series, on the forecasting accuracy of Supervised Learning,

a generalized autoregressive conditional heteroskedasticity

(GARCH) model is used to simulate a financial time-series. A

GARCH model, as the name suggests, allows for conditional

variance that is not constant through time (a characteristic that

is commonly observed in financial time series). The form of

a GARCH(1,1) process for a series of discrete observations

{Yt} is given below:

Yt = σtǫt (1)

σ2
t = α0 + α1Y

2
t−1 + β1σ

2
t−1 (2)

where ǫt is standard Gaussian white noise and the condition

that α1 + β1 < 1. Equations 1 and 2 return a white noise

process with non-constant conditional variance, where the

variance depends on the previous return. Equation 2 can be

easily extended to include more lags. For the purpose of

this study a GARCH(2,2) model was chosen. In the next

section the methodology for identifying episodic non-linear

dependence is explained.

A. Non-linear Dependence

The methodology for this study is based on [13] [2] where

a sliding window approach is used to partition the time

series into subsamples that exhibit random walk behaviour

and non-linear dependence. For a time series {Yt}
T
1 and a

window of size d an initial sub-sample is created consisting

of observations {Yt}
d
1, the appropriate tests are run and then

the window shifts by one day to cover {Yt}
d+1

2 and so forth

until the end of the sample {Yt}
T
T−d. The window size used

in this study is the same as [18] which is 200 observations.

Within each sliding window the sample is tested for non-

linear dependence using the Hinich Portmanteau bi-correlation

(H) test [6]. Prior to applying the Portmanteau tests the

data within the sliding window undergoes two stages of pre-

processing. First, the series {Yt}
T
1 is considered to be a non-

stationary stochastic process and to aid with the analysis the

series is transformed to stationary by converting the series to

continuously compounded percentage returns, as follows:

rt = log(yt/yt−1) ∗ 100 (3)

where rt is the daily percentage return for time t . The second

step is to standardize the data within each window to have a

sample mean of zero and a sample standard deviation of one,

as follows:

Z(t) =
R(t)−mR

σR
(4)

where Z(t) is the standardized series, mR is the sample mean

and σR is the sample standard deviation. The null hypothesis

of the test is that {Z(t)} is a realization of a white noise

process with null bi-correlations. The Portmanteau test for

non-linear correlations is calculated as follows:

H =
L
∑

s=2

s−1
∑

r=1

G2(r, s) (5)

where,

G(r, s) = (n− s)1/2CRRR(r, s) (6)

and,

CRRR(r, s) = (n− s)−1

n−s
∑

t=1

Z(t)Z(t+ r)Z(t+ s) (7)

where r and s satisfy 0 < r < s < L. The H statistic is

distributed according to a χ2 law of probability with (L-1)(L/2)

degrees of freedom. The number of lags (L) is specified as L

= nb, with 0 < b < 0.5 and n is the window size. Previous

work by Hinch and Patterson [6] recommend a value of 0.4

for b.

In addition to the pre-processing performed above; the

series {Z(t)} undergoes one additional step of pre-whitening

before being supplied to the H bi-correlation test. The pre-

whitening step entails filtering away the linear component and

therefore any autocorrelation structure of {Z(t)} by means of

an autoregressive AR(p) fit. The order p is chosen between

0-10 as the smallest value for which the Ljung-Box Q(10)

statistic is insignificant at the 10% level.

B. Supervised Learning

We are interested in the effect, if any, non-linear correlations

have on the forecasting abilities of trading models developed

from supervised learning (SL). There is no shortage of lit-

erature of SL techniques being developed and applied to the

financial domain. The dynamic and non-stationary nature of

the financial markets makes them a challenging and attractive

system to model using complex methods. This study focuses

on six well established learning paradigms that are widely

available for use. The algorithms considered are:

1) Multilayer Perceptron (MLP)

2) Support Vector Machine (SVM)

3) Artificial Immune System (AIS)

4) J48 Decision Tree (J48)

5) k -Nearest Neighbour (kNN)

6) Naı̈ve Bayes

The forecasting task for each of the algorithms is classification.

Each tuple of information supplied to the various SL tech-

niques will have a class attribute (Ci) where Ci ∈ {0, 1}. 0 sig-

nifies a market contraction and 1 signifies a market expansion.

Using the described above methodology two sub-samples are



TABLE I
THE RESULTS FROM TRAINING AND TESTING THE SL ALGORITHMS ON

THE GARCH SUBSAMPLE DATA. NLD REPRESENTS SAMPLES WITH

NON-LINEAR DEPENDENCE AND RW REPRESENTS SAMPLES ADHERING

TO A RANDOM WALK. *, ** SIGNIFIES THE INCREASE IN ACCURACY IS

STATISTICALLY SIGNIFICANT AT THE 5% AND 1% LEVELS RESPECTIVELY.

RW NLD

Algorithm Acc. Min. Max. Acc. Min. Max.

MLP 0.587 0.347 0.755 0.622** 0.367 0.796
SVM 0.625 0.510 0.796 0.656** 0.531 0.775
AIS 0.569 0.327 0.796 0.580* 0.388 0.755
J48 0.617 0.469 0.755 0.656** 0.429 0.755
kNN 0.629 0.428 0.775 0.633 0.367 0.861
NB 0.617 0.429 0.796 0.651** 0.490 0.775

created from the simulated GARCH process. One subsample

consists of data that contains non-linear dependencies and the

other contains data that adheres to a stochastic random walk.

The SL algorithms are then applied to the separate samples,

where 75% is allocated for training and 25% for testing.

C. Experiment Results

After applying the above methodology the GARCH process

which was 1000 data points long, yielded 799 samples using

a 200 data point sliding window. The class distribution within

the simulated series as a whole was a 34/64 split in favour of

class 0; meaning more market contractions. These samples

were then partitioned into 534 samples which adhered to

a random walk and 265 samples that exhibited non-linear

dependence. Figure 1 provides some example plots of the

GARCH subsamples that exhibited random walk behaviour

(right) and non-linear dependence (left). The results from

training and testing the algorithms are presented in table I

and figure 2.
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Fig. 1. Example plots of the GARCH process when it is exhibiting non-linear
dependence (NLD) (left) and random walk (RW) behaviour (right).

The results in table I show that all 6 algorithms achieved

a higher directional accuracy in the subsamples that exhibited

non-linear dependence and in 5 of the 6 cases the increase

was statistically significant based on a one-sided t-test. The

only exception was the kNN algorithm where only a small

incremental gain was realized, however the overall accuracy

was comparable to the other algorithms. These results indicate

that when non-linear dependence is present the SL algorithms

tested were able to take advantage of this deterministic com-

ponent of the signal.

III. CYCLICAL PROFITABILTIY

The area of computational intelligence (CI) offers several

algorithms that can learn and adapt to noisy and non-stationary
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Fig. 2. A Histogram of the testing accuracy results from the Random Walk
(RW) and non-linear dependent (NLD) subsamples.

environments. Concerning financial time-series analysis, sev-

eral studies have shown that CI algorithms have been effective

at learning and forecasting, producing results suggesting that

the markets are not perfectly efficient. From this we have to

decide what the primary objectives of the study are and which

algorithms can accommodate. The list of primary objectives

is provided below.

1) Optimal - able to outperform the market benchmark,

2) Flexible - adapt to changing market conditions, and

3) Interpretable - surmise what the agent is doing and

determine market conditions from agent structure

For the purpose of this study we are asserting that the

simple waxing and waning of a trading policy is not strict

enough to test this implication of the AMH and acquire a

meaningful result. Thus we are testing if whether an optimal

strategy formed in one time-period is ever effective again. A

strategy will be considered effective if the following criteria

are satisfied:

Rt(TM) > Rt(M), (8)

Rt(TM) > 0, and (9)

Tt > 0 (10)

where Rt(TM ) and Rt(M ) are the returns of the trading

model and the market in time period t respectively and Tt

is the corresponding number of trades in time period t . These

criteria state that a trading model is effective if it is able to

outperform the market index benchmark, while producing a

positive return and is active in the market.

The first of the primary objectives is to ensure that the

results are meaningful. Secondly, for a trading model to be

profitable in a range of market conditions that model needs

to be flexible. Rigid trading rules will not produce above

average returns at all times, which is precisely why technical

analysis is difficult. Thirdly, the model should be white box.

The results from the analysis would be more meaningful if we

could interpret what the agent has learned, and if we could

surmise what type of market conditions are suitable for a



particular agent. For example, can we determine if the market

was trending or more volatile based on the agent’s structure?

Let us start with one of the most popular learning paradigms

from CI for time-series analysis, Artificial Neural Networks

(ANN), where studies have shown that they are arguably

among the most robust [19] [9]. In the context of the three

primary objectives we can determine that ANNs are able to

outperform the market during training, that they are flexible

but represent a black-box model, and that it would be difficult

to extract domain knowledge from the topology and con-

nection weights. Support Vector Machines have also become

popular in the financial forecasting literature and offer a robust

and flexible modelling approach, however, they also suffer

from a lack of interpretability just as the ANNs. Evolutionary

Computation (EC) is also an active area of research in financial

forecasting and encompasses a variety of techniques from

genetic algorithms (GA), genetic programming (GP), Artificial

Immune Systems (AIS) and hybrid algorithms, to name a few.

Once again, in the canonical use of these techniques we can

easily accommodate the objectives of flexibility and optimality

but the models will generally be black box. Moving back

to traditional technical analysis, certain trading rules could

be more effective in trending markets (moving averages) and

others when the market is moving sideways (Bollinger Bands)

and although it is possible to interpret these rules, they are,

by construction, static.

With each of these techniques possessing weaknesses with

respect to the primary objectives, it is a natural succession

to entertain the combination of two or more of them. There

has been documented success in combining population based

optimization techniques with technical trading models, such as

GAs with moving averages [10]. This would entail determining

the length of windows for calculating the moving averages

via profitability based fitness functions. Another recent study

combined Bollinger Bands with Particle Swarm Optimization

(PSO) [1] to tune the parameters to current market conditions.

The experiments implied that the effectiveness of the indicator

could be enhanced beyond that of just using the default

parameters. In the context of the primary objectives the hybrid

models are the most suitable. Using an architecture from

traditional technical analysis allows for interpretable models;

additionally the benefit of flexibility from the CI algorithms

is retained, and finally the comparability between models is

possible as the technical trading rules have a finite set of

attributes, which allows for comparisons in a relatively small

n-dimensional space.

For this study the optimal trader for each market segment

will be determined using Adaptive Bollinger Bands (ABB) [1],

which are based on a technical indicator created by John

Bollinger in the 1980’s.

A. Adaptive Bollinger Bands

The ABBs were initially developed because, despite their

popularity, the recent academic literature had shown Bollinger

Bands (BB) to be ineffective [11] [12]. However, through PSO-

based parameter fine tuning the indicator could be improved

and outperform the market index under certain market condi-

tions. The three main components of BBs are:

1) An N-day moving average (MA) for a price series {Pi},

which creates the middle band, equation 11,

MAn(t) =

∑t
i=t−N+1

Pi

N
(11)

2) an upper band, which is the MA plus k times the standard

deviation of the middle band, and

3) a lower band, which is the MA minus k times the standard

deviation of the middle band.

The default settings for using BBs are a moving average

window of 20 days and a value of k equal to 2 for both the

upper and lower bands. When the price of the stock is trading

above the upper band, it is considered to be overbought, and

conversely, an asset which is trading under the lower band is

oversold. The trading rules that can be generated from using

this indicator are given by equations 12–13:

Buy : Pi(t− 1) < BBlow
n (t− 1)&Pi(t) > BBlow

n (t) (12)

Sell : Pi(t− 1) > BBup
n (t− 1)&Pi(t) < BBup

n (t) (13)

Essentially, the above rules state that a buy signal is initial-

ized when the price (Pi ) crosses the lower band from below,

and a sell signal when the price crosses the upper band from

above. Using the BBs in their canonical form, in both cases

the trade can be closed out when the price crosses the middle

band. As such, a trader will be taking long/short positions in

the market; a long/short position is a trading technique which

profits from increasing/decreasing asset prices.

To allow for efficient online optimization of the BBs we

define two new forms of the traditional indicator, running and

exponential BBs, that make use of estimates of the 1st and

2nd moments of the time series.

1) Running and Exponential Bollinger Bands: We define a

BB as:

BB = MAn ± k × σ(nperiod) (14)

where MAn is an n-day moving average and σ is the standard

deviation. Then a Running Bollinger Band that makes use of

estimates of the 1st and 2nd moments is:

BB = An ± k × Jn(Bn −A2
n)

1/2 (15)

where,

An =
1

n

n
∑

i=1

Yi , Bn =
1

n

n
∑

i=1

Y 2
i (16)

Jn =
n

n− 1

1/2
(17)

where the normalization factor Jn allows for an unbiased

estimate of the σ and Yi is ith data point. From this, recursive

updates of the BBs can be performed as follows:

An =
1

n
Yn +

n− 1

n
An−1 (18)

Bn =
1

n
Y 2
n +

n− 1

n
Bn−1 (19)



TABLE II
THE PARAMETERS THAT THE PSO ALGORITHM OPTIMIZED. MA STANDS

FOR MOVING AVERAGE. THE PARTICELS ARE THE NUMBER OF PARTICLES

FROM EACH INDIVIDUAL IN THE SWARM ALLOCATED FOR THAT

PARAMETER.

Description Particles

The value for calculating the upper/lower band. 2/2
Window size for the upper/lower band MA. 5/5
The type of ABB to use for upper/lower band. 1/1
The stop loss for short-sells/buys. 2/2

For the exponential form we define the BB on a time scale

η−1. Where incremental updates of the estimates are:

An = ηYi + (1− η)An−1 (20)

Bn = ηY 2
i + (1− η)Bn−1 (21)

and the normalization factor becomes:

Jn =
1− η/2

1− η
(22)

This implementation of the ABBs was written in JAVA and

optimizes eight parameters, as displayed in table II. A result

from [1] concluded that BBs are ineffective at generating

profits when the market is trending. This shortcoming of

the BBs was mainly due to the exiting of profitable trades

prematurely. To counteract this consequence of using the

middle band (the N day moving average) to initiate the closing

out of a trade, this implementation uses trailing stop-losses to

determine exit points. A trailing stop-loss is a popular trading

technique that essentially allows a set amount to be lost from

the maximum profit achieved.

An additional advantage to using BBs as the underlying

technical analysis tool is that we are able to tap into a common

heuristic used by active traders of identifying turning points

in stock movements. The identification of an overbought or

oversold security signals a correction and therefore a change

in directional movement. However, choosing a turning point

is very difficult as a trader will be taking positions that are

contrary to the current market trend.

B. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [8] is a population

based algorithm inspired from swarm intelligence commonly

used in optimization tasks. PSO has had success with search-

ing complex solution spaces, similar to the abilities of genetic

algorithms (GA). PSO was chosen for the original study as it

had been shown to be as effective as GAs when modelling

technical trading rules, as in Lee et al. [10], yet it had a

much simpler implementation and arrived at a global optimum

with fewer iterations. Each particle in the swarm represented

an n-dimensional position vector that maps to the various

parameters displayed in table II. In its canonical form the

swarm is governed by the following:

υi,j = ω × υi,j + c1r1 × (localbest i,j − xi,j)

+c2r2 × (globalbest j − xi,j) (23)

TABLE III
THE RANGE OF FEASIBLE VALUES FOR EACH PARAMETER AND ITS

CORRESPONDING MAXIMUM VELOCITY FOR NAVIGATING THE SOLUTION

SPACE. WHERE ⊕ SIGNIFIES THAT THE MA TYPE CAN ONLY TAKE ON

VALUES OF 0 OR 1.

Parameter Range Max Velocity

Upper Band {-4,4} 0.10
Lower Band {-4,4} 0.10

MA Type {0 ⊕ 1} 0.10
Stop Loss {-0.99,0} 0.10

Window Size {5,500} 20

Here υi,j is the velocity of jth dimension of the ith particle, c1
and c2 determine the influence on a particular particle by its

optimal position previously visited and the optimal position

obtained by the swarm as a whole, r1 and r2 are uniform

random numbers between 0 and 1, and ω is an inertia term

(see [17]) chosen between 0 and 1.

xi,j = xi,j + υi,j (24)

Here xi,j is the position of the jth dimension of the ith

particle in the swarm. To encourage exploration and limit the

speed with which the swarm would converge, a maximum

velocity was chosen for each dimension dependent on its range

of feasible mappings. In table III the range and maximum

velocity for each parameter is displayed. The type of ABB to

use was mapped using a wrapper function which evaluated to

a running BB if the particle had a value greater than or equal

to 0.5 and mapped to an exponential BB if the particle had a

value less than 0.5.

1) Heterogenus Particle Swarm Optimization: This study

used a more sophisticated version of PSO called Dynamic

Heterogeneous Particle Swarm Optimization (dHPSO) [4]

which has been shown to outperform the canonical from of

PSO on a variety of optimization problems. With dHPSO

the position update remains the same but the calculation of

the velocity update is expanded to allow for alternatives. The

swarm becomes heterogeneous as each particle in the swarm

will have one of five possible velocity update profiles and the

swarm is dynamic as the velocity update profile will change if

a particle becomes stagnant. The additional velocity updates

are as follows:

υi,j = ω × υi,j + c1r1 × (localbest i,j − xi,j) (25)

υi,j = ω × υi,j + c2r2 × (globalbest j − xi,j) (26)

υi,j ∼ N

(

localbest i,j + globalbest j
2

, σ

)

(27)

υi,j =

{

localbest i,j if U(0,1) < 0.5

N
(

localbest i,j+globalbest j

2
, σ

)

otherwise

(28)

where, N and U are normal and uniform distributions respec-

tively. Equation 25 is the cognitive only profile where the so-

cial component has been removed. This promotes exploration

as each particle becomes a hill-climber. Equation 26 is the

social only profile where the cognitive component has been



removed. In effect the entire swarm becomes one large hill-

climber. Equation 27 is the Barebones PSO where the position

update is the velocity update, so:

xi,j = υi,j , and (29)

σ = |localbest i,j − globalbest j |. (30)

Finally, equation 28 is the modified Barebones profile. One

additional improvement has been made to the dHPSO algo-

rithm where particles that continue to be stagnant after velocity

profile changes will be re-initialized randomly in the solution

space. This modification was shown to improve the algorithms

ability to find solutions that outperform the market index.

2) Fitness Function: The goal of the experiment is to create

an optimal trader, determined by profitability, for each market

segment. As such, it would seem obvious that training the

swarm with a fitness function based on profit would be the

most appropriate. Although other literature, Moody et al. [16],

has found that optimal performance was arrived at with fitness

functions which have a risk to reward payoff, the previous

study which developed the ABBs concluded that a fitness

function which simply maximizes profitability was the most

effective and therefore will be used in this study. The fitness

function is as follows:

fitnessi =

T
∑

t=1

capitalt×
(P1,t − P0,t)

P0,t
−(τ×capitalt) (31)

where fitnessi is the fitness of the ith particle in the swarm,

τ represents the transaction costs, T is the total number of

trades, and P0 and P1 are the entering and exiting price for

the underlying asset. The profit for each trade is the rate of

return multiplied by the capital invested minus the transaction

cost which is also a function of the amount of capital invested.

It is important to keep in mind that the number of trades does

not reflect the amount of time invested in the market. Once

an ABB enters the market, either short or long, the trade is

maintained until the end of the test period or the stop-loss

criteria is satisfied.

C. Data and Experiment Setup

The data used for testing cyclical profitability were the

daily closing prices for the S&P 500 for a 10 year time

period spanning 2001-2010. The first 5 years were allocated

for training the ABBs with the remaining 5 years for testing.

A benefit of using BBs (as well as other technical analysis

techniques) is that no pre-processing of the data is required as

the indicators do not make any assumptions of normality or

stationarity.

1) Creating Optimal Agents: To allow for a range of

investment policies we analyze the optimal traders at different

levels of granularity. Thus the experiments are conducted for

an increasing number of data points within the sliding window.

The use of the sliding window is the same as described in

section II-A. Table IV displays the parameters and number of

agents created for each of the experiment setups. To assess

the profitability of the agents, the experiments are carried out

with an initial starting capital of £1000.00 and a transaction

rate (applied when entering and exiting the market) of 0.25%,

i.e., a quarter of a percent of the amount of capital invested.

We assume no transaction costs for investing in the risk-free

rate (Rf ) which is accrued daily and has AER of 2%. In this

implementation the ABB fully invests all capital each day and

whilst in a trade no other positions can be taken.

TABLE IV
THE PARAMETERS FOR THE VARIOUS EXPERIMENT SETUPS.

Case Window # of Agents ≈ time # of test periods

1 125 1132 6 mths 1133
2 250 1007 1 yr 1008
3 500 757 2 yrs 758
4 1000 257 4 yrs 258

The parameters for the PSO algorithm have the same

settings for each experiment and are displayed in table V. In

order to maximize the number of time-periods where an agent

is identified that outperforms the market, the PSO algorithm

will initially train for 100 epochs. If at that time an optimal

agent is not found the algorithm is allowed to continue up to

a maximum of 1000 epochs. The dimensions are a sum of the

number of particles in each position vector allocated to each

of the ABB parameters.

TABLE V
THE PARAMETER SETTINGS FOR THE PSO ALGORITHM.

Parameter Value Parameter Value

initial epochs 100 max epochs 1000
c1 2 c2 2
Particles 30 Dimensions 20

D. Cyclical Profitability Results

The results presented in this section are the average per-

formance results for the ABBs over all test periods. There are

three metrics considered: (1) the average number of ABBs that

outperform the market (OM), (2) the average number of ABBs

that produce a positive return (PR), and (3) the average number

of ABBs that are effective (EF), where effective implies,

from the above definition, that the ABB was profitable, active

and outperformed the market index. The following sections

will present tables and box plots of the results as well as a

discussion.

1) Case 1 through Case 4: The results from training and

testing the ABBs using sliding windows of 125, 250, 500 and

1000 days are presented in tables VI-IX and figures 4-7 are

boxplots of the metric distributions.

E. Discussion

The results presented in tables VI through IX reveal that at

each level of granularity there were ABBs that were effective

in the out-of-sample test data. Figure 3 plots the average

number of trades and the percentage of effective ABBs against

the window size. We see an increase in the percentage of the

ABBs that are effective as the window size increases. This is

due to overfitting, where the ABBs tuned to smaller amounts of
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Fig. 3. Plots of the average number of trades for effective ABBs and the
average percentage of ABBs that were effective.

TABLE VI
THE RESULTS FROM TRAINING AND TESTING THE ABBS WITH A SLIDING

WINDOW OF 125 DAYS. ??t̄r STANDS FOR THE AVERAGE NUMBER OF

TRADES BY THE ABBS THAT SATISFIED THE CONCERNED METRIC.

OM OMt̄r PR PRt̄r EF EFt̄r

Average 0.444 2.841 0.463 2.409 0.193 2.844
Min 0.116 0.000 0.000 0.000 0.000 1.000
Max 0.627 21.270 1.000 19.723 0.462 19.914
Median 0.449 1.941 0.434 1.549 0.192 1.984

TABLE VII
THE RESULTS FROM TRAINING AND TESTING THE ABBS WITH A SLIDING

WINDOW OF 250 DAYS. ??t̄r STANDS FOR THE AVERAGE NUMBER OF

TRADES BY THE ABBS THAT SATISFIED THE CONCERNED METRIC.

OM OMt̄r PR PRt̄r EF EFt̄r

Average 0.438 5.128 0.371 4.588 0.162 4.829
Min 0.056 0.000 0.013 0.000 0.000 1.000
Max 0.678 41.695 1.000 38.571 0.422 38.147
Median 0.438 4.015 0.343 3.669 0.157 3.765

TABLE VIII
THE RESULTS FROM TRAINING AND TESTING THE ABBS WITH A SLIDING

WINDOW OF 500 DAYS. ??t̄r STANDS FOR THE AVERAGE NUMBER OF

TRADES BY THE ABBS THAT SATISFIED THE CONCERNED METRIC.

OM OMt̄r PR PRt̄r EF EFt̄r

Average 0.601 8.558 0.311 6.689 0.226 6.521
Min 0.001 0.062 0.000 0.065 0.000 1.000
Max 0.959 92.201 0.997 92.028 0.858 92.028
median 0.617 7.258 0.289 5.463 0.219 5.123

TABLE IX
THE RESULTS FROM TRAINING AND TESTING THE ABBS WITH A SLIDING

WINDOW OF 1000 DAYS. ??t̄r STANDS FOR THE AVERAGE NUMBER OF

TRADES BY THE ABBS THAT SATISFIED THE CONCERNED METRIC.

OM OMt̄r PR PRt̄r EF EFt̄r

Average 0.611 12.108 0.391 11.871 0.352 12.289
Min 0.000 0.000 0.000 0.000 0.000 1.000
Max 1.000 51.171 1.000 48.952 1.000 48.952
Median 0.624 13.593 0.399 13.296 0.329 13.589

data are more likely to become overfitted and to not generalize

as well. We also observe a monotonic increase in the average

number of trades executed by the ABBs as the window size

increases. From the OM and PR metrics we can observe

●
●

●

●●●●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●●

●

●●
●
●●●

●

●

●

●●●

●
●

●

●●

●

●

●
●

●
●

●
●
●●●

●

●

●

●●

●

●
●
●●
●

●●●●

●
●

●●●●●

●

●●

●

●

●

●

●

●●

●

●

●●
●
●

●
●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●
●

●●●

●

●
●
●

●●

●●

●

●

●

●●
●

●

●●●
●●
●
●

●

●

●

●
●
●
●

●

●

●

●

●●

●
●●●●

●

●●

●
●
●

●

●

●
●
●●
●

●
●●

●

●

●

●
●●
●

Outperform PositiveReturn Effective

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fig. 4. Box plots of the distributions of the Outperform the Market (OM),
Positive Return (PR) and EFfective (EF) metrics for case 1.
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Fig. 5. Box plots of the distributions of the Outperform the Market (OM),
Positive Return (PR) and EFfective (EF) metrics for case 2.

that ABBs are not always active in the market and that the

parameters which are optimal in one time period can lead to a

technical indicator that does not execute any trades when the

market environment is quite different. This is partly the reason

for higher percentages of the ABBs producing positive returns

but not being able to outperform the market. On average the

ABBs made a trade every 3 to 4 months when they were

effective, though there were instances where the ABBs were

effective and extremely active in executing trades. In case 3

where the window size was 500 days we observe a maximum

average trading activity of 92.028, which translates to about 4

trades a month. This is quite active for a technical indicator

that is identifying turning points in stocks price behaviour.

The boxplots reveal that none of the metric distributions

are normal (all rejected the null of normal from the Jarque-

Bera test [7]) and that for the majority of the plots there are

several outliers beyond the 1st and 3rd quartiles. With the

exception of case 4 (1000 day window) all of the boxes are

quite small indicating that 50% of the data is within close

range of the median. This narrow interquartile range coincides

with the large amount of outliers or suspected outliers.
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Fig. 6. Box plots of the distributions of the Outperform the Market (OM),
Positive Return (PR) and EFfective (EF) metrics for case 3.

Outperform PositiveReturn Effective

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fig. 7. Box plots of the distributions of the Outperform the Market (OM),
Positive Return (PR) and EFfective (EF) metrics for case 4.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented an analysis of two implications of the

AMH from a computational intelligence perspective. The first

was variable efficiency and whether the presence of non-linear

dependence in a time-series offered any advantages for fore-

casting with supervised learning algorithms. The results clearly

demonstrate that when non-linear dependence is present there

is a statistically significant increase in the directional accuracy

of the SL algorithms forecasts. This result was obtained using

a simulated GARCH process but proves that if non-linear

dependence can be reliably detected in a financial time-series

then more accurate forecasts can be expected.

The second implication of cyclical profitability was shown

to be quite abundant in the financial markets. Its more re-

strictive form, cyclical effectiveness, was also shown to be

valid though not as abundant. This result demonstrates that

trading models fitted to one time-period will have a non-zero

probability of being effective again. The results also provide

insight into overfitting and the information content in older

previously learned models.

Future work concerns the development of a forecasting

algorithm which can combine the signals produced by a

population of optimized technical indicators to take advantage

of cyclical profitability.

REFERENCES

[1] Matthew Butler and Dimitar Kazakov. Particle swarm optimization of
bollinger bands. In Proceedings of the 7th international conference

on Swarm intelligence, ANTS’10, pages 504–511, Berlin, Heidelberg,
2010. Springer-Verlag.

[2] Daniel O. Cajueiro and Benjamin M. Tabak. Ranking efficiency for
emerging markets. Chaos, Solitons and Fractals, 22(2):349 – 352, 2004.

[3] Rachel Caspari. The evolution of grandparents. Scientific American,
305:44–49, August 2011.

[4] Andries Engelbrecht. Heterogeneous particle swarm optimization. In
Marco Dorigo, Mauro Birattari, Gianni Di Caro, Ren Doursat, Andries
Engelbrecht, Dario Floreano, Luca Gambardella, Roderich Gro, Erol
Sahin, Hiroki Sayama, and Thomas Sttzle, editors, Swarm Intelligence,
volume 6234 of Lecture Notes in Computer Science, pages 191–202.
Springer Berlin / Heidelberg, 2010.

[5] Eugene F Fama. Efficient capital markets: A review of theory and
empirical work. Journal of Finance, 25(2):383–417, May 1970.

[6] M. Hinich and D. Patterson. Detecting epochs of transient dependence
in white noise. Money, Measurement and Computation, pages 61–75,
2005.

[7] Carlos M. Jarque and Anil K. Bera. Efficient tests for normality,
homoscedasticity and serial independence of regression residuals. Eco-

nomics Letters, 6(3):255 – 259, 1980.
[8] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural

Networks, 1995. Proceedings., IEEE International Conference on, vol-
ume 4, pages 1942 –1948 vol.4, nov/dec 1995.

[9] Bjoern Krollner, Bruce Vanstone, and Gavin Finnie. Financial time series
forecasting with machine learning techniques: A survey. In European

symposium on artificial neural networks: Computational and machine

learning. Bruges, Belgium.Apr. 2010. School of Information Technology
at ePublications@bond, 2010.

[10] Ju-Sang Lee, Sangook Lee, Seokcheol Chang, and Byung-Ha Ahn.
A comparison of GA and PSO for excess return evaluation in stock
markets. In IWINAC (2), pages 221–230, 2005.

[11] C. Lento and N. Gradojevic. The profitability of technical trading rules:
a combined signal approach. Journal of Applied Business Research,
23(1):13–27, 2007.

[12] J. Leung and T. Chong. An empirical comparison of moving average
envelopes and Bollinger Bands. Applied Economics Letters, 10(6):339–
341, 2003.

[13] Kian-Ping Lim. Ranking market efficiency for stock markets: A nonlin-
ear perspective. Physica A: Statistical Mechanics and its Applications,
376:445 – 454, 2007.

[14] Andrew W. Lo. The adaptive markets hypothesis: market efficiency
from an evolutionary perspective. Journal of Portfolio Management,
30:15–29, 2004.

[15] Andrew W. Lo. Reconciling efficient markets with behavioral finance:
the adaptive markets hypothesis. Journal of Investment Consulting, 7:21–
44, 2005.

[16] J. Moody, L. Wu, Y. Liao, and M. Saffell. Performance functions
and reinforcement learning for trading systems and portfolios. Applied

Financial Economics Letters, 17:441–470, 1998.
[17] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In

Evolutionary Computation Proceedings, 1998. IEEE World Congress on

Computational Intelligence., The 1998 IEEE International Conference

on, pages 69–73, 1998.
[18] Alexandru Todea, Maria Ulici, and Simona Silaghi. Adaptive markets

hypothesis - evidence from Asia-Pacific financial markets. The Review

of Finance and Banking, 1(1):007–013, December 2009.
[19] Paul D. Yoo, Maria H. Kim, and Tony Jan. Machine learning techniques

and use of event information for stock market prediction: A survey and
evaluation. In CIMCA-IAWTIC’06, pages 835–841, Washington, DC,
USA, 2005. IEEE Computer Society.

[20] Luciano Zunino, Massimiliano Zanin, Benjamin M. Tabak, Daro G.
Prez, and Osvaldo A. Rosso. Forbidden patterns, permutation entropy
and stock market inefficiency. Physica A: Statistical Mechanics and its

Applications, 388(14):2854 – 2864, 2009.


	Introduction
	Variable Efficiency
	Non-linear Dependence
	Supervised Learning
	Experiment Results

	Cyclical Profitabiltiy
	Adaptive Bollinger Bands
	Running and Exponential Bollinger Bands

	Particle Swarm Optimization
	Heterogenus Particle Swarm Optimization
	Fitness Function

	Data and Experiment Setup
	Creating Optimal Agents

	Cyclical Profitability Results
	Case 1 through Case 4

	Discussion

	Conclusions and Future Work
	References

