
Combining Different Meta-heuristics to Improve the

Predictability of a Financial Forecasting Algorithm

Babatunde Aluko
Centre for Computational Finance and

Economic Agents, University of Essex,

Wivenhoe Park, CO4 3SQ, UK

Dafni Smonou
Centre for Computational Finance and

Economic Agents, University of Essex,

Wivenhoe Park, CO4 3SQ, UK

Michael Kampouridis
School of Computing,

University of Kent,

Chatham, ME4 4AG, UK

Edward Tsang
Centre for Computational Finance and

Economic Agents, University of Essex,

Wivenhoe Park, CO4 3SQ, UK

Abstract— Hyper-heuristics have successfully been applied to a

vast number of search and optimization problems. One of the

novelties of hyper-heuristics is the fact that they manage and

automate the meta-heuristic’s selection process. In this paper, we

implemented and analyzed a hyper-heuristic framework on three

meta-heuristics namely Simulated Annealing, Tabu Search, and

Guided Local Search, which had successfully been applied in the

past to a Financial Forecasting algorithm called EDDIE. EDDIE

uses Genetic Programming to extract and learn from historical

data in order to predict future financial market movements. Results

show that the algorithm’s effectiveness has improved, thus making

the combination of meta-heuristics under a hyper-heuristic

framework an effective Financial Forecasting approach.

Keywords—Genetic Programming; Financial Forecasting;

Hyper-heuristics

I. INTRODUCTION

Financial forecasting is the process of predicting the future
movements of financial markets (E.g. risk, volatility, and
financial assets). It is an important aspect of finance and has
led investors to develop several methods in order to accurately
forecast the financial market movements. Over the years,
several computational intelligent methods such as Genetic
Algorithm [1], Fuzzy Logic [2], Genetic Network
Programming [3], Learning Classifier Systems [4], Artificial
Neural Network [5,6] have been used for financial forecasting.

In recent times, EDDIE [7,8,9], which is a financial
forecasting algorithm that makes predictions by employing
Genetic Programing [10,11] has been presented. The newest
version is called EDDIE8, which when compared with its
predecessor EDDIE7, it allows investors to specify a period
range for its technical analysis indicators

1
 instead of using pre-

specified periods [12]. To be more specific, EDDIE7 allows
the user to specify two pre-fixed period lengths for its
indicators which is the norm observed in both the academic
and industry literature. For instance, with EDDIE7 an indicator
could have a pre-fixed period of 12 & 50 days. On the other
hand, EDDIE8 uses a period from a parameterized range
between 2 and 65. Hence, the algorithm can create new
indicators, which have never been used in the past. This step
was very significant, because as mentioned other works in the
literature and also people in the industry have been using pre-
specified indicators (e.g. 20 days Moving Average and 50 days

1 A technical indicator is a tool used to measure and interpret market behavior.

The list of technical indicators used by EDDIE includes the Moving Average

(MA), Trade Break Out (TBR), Filter (FLR), Volatility (Vol), Momentum

(Mom), and Momentum Moving Average (MomMA).

Moving Average), without being able to justify why a 20 days
Moving Average should always be preferrable to 25 days
Moving Average. Results have shown that EDDIE8 could find
new and better solutions compared to EDDIE7’s non-dynamic
framework [12,13]. However, EDDIE8 could not consistently
outperform EDDIE7 as the search space was larger, and
searching was ineffective which often led to local optima
problem [13]. In order to address this stated problem, Smonou
et al. [14] successfully applied three meta-heuristics named
Simulated Annealing (SA), Tabu Search (TS), and Guided
Local Search (GLS) to the period nodes of EDDIE’s trees. As a
result, both EDDIE’s search effectiveness significantly
improved, as well its predictive performance in terms of best
results [14]. However, the meta-heuristics were only tested
individually leaving room for further improvement and
experiments.

To this end, in this work we will be combining the above

meta-heuristics under a hyper-heuristics framework and

evaluate the results. The merit of the hyper-heuristics lies on

the fact that the advantages of the meta-heuristics are

combined together into one algorithm and the meta-heuristic

selection process is automated. Hence, an investor would not

need to worry about which meta-heuristic is more appropriate

on a given dataset. This is very important, because of the

significance of the financial forecasting itself, which requires

the continuous development of new and improved algorithms.

The goal of our research is to show that as a result of the

combination of the above meta-heuristics under a hyper-

heuristic framework, EDDIE8’s search effectiveness can be

further improved, providing an even more reliable tool for the

financial industry.

The rest of this paper is organized as follows: Section II

presents EDDIE, Section III presents and discusses the hyper-

heuristic method used in this research, Section IV covers the

analysis of the experimental design, Section V presents and

discusses the results, and finally, Section VI concludes this

paper, and offers a recommendation for further development.

II. EDDIE

This section presents in detail the EDDIE process, the
performance metrics used by the algorithm, and investigates
the latest version of EDDIE called EDDIE8.

A. EDDIE Process

As mentioned in the introduction, EDDIE is a financial
forecasting algorithm that uses Genetic Programming to extract
data in order to predict the future price of a stock. EDDIE’s
goal is to answer the following question “Will the price
increase by r% within the next n days?” [15]. The program
receives a dataset which comprises of three inputs: historical
data (daily closing prices of stocks or indices), a group of
technical indicators, and binary target signals which are
recommendations of buy (1) or not-to-buy (0). The user
specifies the technical indicators which are relevant to the
prediction along with the period range. EDDIE uses the
inputted information through a GP process to construct Genetic
Decision Trees (GDTs) needed to create the binary target
signals of buy (1) and not-to-buy (0). Each individual GDT is
then evaluated and evolved on a training dataset for a number
of pre-defined generations. At the end of the process, the GDT
with the highest fitness is applied to the testing data.

Additionally, the performance of the best GDT applied on
the data is evaluated by comparing the level of prediction

2

against the reality
3
. The performance of the best GDT is

measured through the 3 metrics presented in (1), (2) and (3).
The TP, TN, FP and FN represent the True Positive, True
Negative, False Positive and False Negative comparison results
respectively.

Rate of Correctness (RC):

 (1)

Rate of Missing Chances (RMC):

 (2)

Rate of Failure (RF):

 (3)

These three metrics were further combined by Li & Tsang
to produce the fitness function presented in (4)

 ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF (4)

where w1, w2 and w3 are the weights assigned to RC, RMC
and RF respectively. These values were carefully selected in
order to capture the different investor’s preferences.

Further to this, Li & Tsang introduced a constraint function
as described in (5), (6) and (7), in order to further improve the
effectiveness of the fitness function.

R = [Cmin, CMax] (5)

2 These are the predictions made by EDDIE.
3 These are the actual the events that have already happened. The signals are

calculated by looking ahead of the closing price for a time horizon of n days

at the specified r% [27].

Cmin =
 min

 ot o d
 % (6)

CMax =
 max

 ot o d
 % (7)

In the above formulas, R denotes the effective constraint

function, Cmin and Cmax represent the percentage of the
minimum and maximum positive predictions required, Pmin
and Pmax represents the total number of minimum and
maximum positive predictions, and Tot_No_Td represents the
total number of training data. It is important to state that the
value of the weight of RC (w1) remained the same if the
percentage of positive signal that the GDT produced falls
within the [Cmin, Cmax] range, otherwise a value of zero is
assigned to w1. More specifically, a constraint of R = [55,60]
means the percentage of positive signals that a GDT predicts
should fall within that pre-specified range. If this occurs, the
w1 remains the same; else, a value of zero is assigned to w1.
This is useful because this contraint guide the search thus,
makes it focus on important solutions. Research has shown that
this method significantly reduces RF, while keeping RC at the
same level. More information regarding the selection of these
values can be found in [17,16].

B. Presentation of EDDIE8

EDDIE8, which is the current implementation of EDDIE,
uses the GP to search the search space of technical indicators
for solutions, which are represented in the form of GDTs. This
as such was possible because of its extended grammar. Hence,
an investor can specify indicators’ periods in a parameterized
range between 2 and 65. This merit gives EDDIE the ability to
make the best combination of indicators and periods each time.
Furthermore, this functionality provides EDDIE with a lot of
flexibility as currently both academic and industrial
applications use only pre-specified indicators. Fig. 1 illustrates
the Backus Normal Form (BFN) grammar used by EDDIE8.

As it can be observed from Fig. 1, the tree starts with an if-

then-else as the root, continues with a Boolean or a logic
operator as its first branch and finally a VarConstructor which
takes as children the “technical indicator” and the “period”
(denoted as [Pmin, Pmax]), which can be used to carry out
genetic operations such as mutation and crossover [13]. The
VarConstructor gives the program the ability to construct
variables by combining various technical indicators

with

Fig. 1. The Backus Normal Form of ED8 [12].

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision
< ondition> :: < ondition> “And” < ondition> |
< ondition> “Or” < ondition> |
“ ot” < ondition> |
VarConstructor <RelationOperation> Threshold
<VarConstructor> ::= MA period | TBR period | FLR period | Vol period |
Mom period | MomMA period
< elationOperation> :: “>” | “<” | “ ”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function

symbols
Period is an integer within a parameterized range,

[Pmin, Pmax]
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Figure 1

Fig. 1

periods
4
 such as 23 days Momentum, 19 days Trade Break

Out, and so on. The advantage of this was that EDDIE was
able to create new technical indicators, which had never been
used before for financial forecasting.

However, the aforementioned advantage also gave birth to

a drawback, which has to do with the significantly larger

search space. For instance, if a given GDT has a maximum of

k indicators and a period range between 2 and 65, then the

permutations of exhausting the search space of 384 indicators

(i.e. 6 indicators * 64 periods) would be 384
k
. Whereas, in the

previous version of EDDIE which was limited to 6 indicators

and 2 periods, the permutation of exhausting the search space

of 12 indicators (i.e. 6 indicator * 2 periods) would be 12
k
.

This extremely large search space made it much more difficult

for EDDIE8 to consistently find better solutions than its

predecessor. For this reason, we were interested in improving

the local search of the algorithm at the level of the period

nodes, since this was the main reason of the enlarged search

space. This will be achieved by implementing a hyper-

heuristic on three successful meta-heuristics to better explore

the search space. The next section presents Smonou et al.'s

previous work on meta-heuristics, which had the goal of

improving the search effectiveness.

C. Meta-heuristics and Hyper-heuristic Framework

In order to solve this presented challenge, three meta-
heuristics were successfully applied by Smonou et al. [14]
with the view to better explore the huge search space and find
better solutions. These meta-heuristics were applied to the
period of VarConstructor of the tree (therefore on the period
leaf nodes of the tree) and each meta-heuristic followed a
general process of selecting a tree based on a pre-specified
probability, and subsequently randomly selecting any
VarConstructor of the tree. In each case, we make marginal
changes to the periods of each VarConstructor of the given
tree, until the termination criteria is met. The periods that result
to an improved tree fitness are then saved and they replace the
old periods. Since in this paper we are presenting an extension
of [14] by combining these 3 metaheuristics under a hyper-
heuristics framework, it is essential to present a summary of
the mechanism of each meta-heuristic. As the SA and the TS
have been extensively presented in the literature [18,19], we
will not go into much detail regarding their process. However,
the GLS will be explained more thoroughly as it is considered
a rather new meta-heuristic approach.

The Simulated Annealing [14] meta-heuristic improves the
GD ’s fitness by probabilistically selecting a tree and then
indentifying and selecting all neighbors

5
 surrounding the

selected VarConstructor’s period. The process is then
iteratively exploring the search space of the neighbors of the

4 The period represents an integer value in parameterized range between 2 and

65 that an indicator can take.
5 A neighbor is the surrounding interval, which can be obtained by making a

marginal change (k) to the selected period value, e.g. 5≤ k ≤ 5. or example, if

the selected period is 15 days of MA, then neighborhood will be any periods

from 10 to 20 days.

tree until the terminal criteria are met. Additionally, worst
solutions are probabilistically accepted and kept.

The Tabu Search [14] meta-heuristic follows a similar
process like the Simulated Anealing with the addition of two
parameters, which are the aspiration criteria and tabu list. The
former keeps track of the memory size of neighbors that the
solutions have currently visited without improvement, and the
latter controls the memory size of the neighbors that contain
promising solutions.

Last but not least, the Guided Local Search [14] meta-
heuristic was added on a Hill Climbing local search in order to
escape the local optima by guiding the search through the use
of penalties and an augmented fitness function. GLS is
activated when the search gets stuck in local optima, which
occurs when the fitness has failed to improve (as a result of
the local search in the tree’s periods) a pre-specified number
of times. As explained in [14], GLS uses an augmented fitness
function as can be seen in Equation (8) to guide the Local
Search out of the local optima:

 h(s) g(s) - ∑ pi Ii(s)

 (8)

where, () is the fitness function, the number of features,
pi is the penalty parameter for feature fi and is a
regularization parameter.

The advantage of using Equation (8) when GLS is used, is
that the local optima which are confronted are with respect to
the augmented function. Therefore, these may be different than
the local optima with respect to the original fitness function
(4). Before any penalties are applied (pi), the original fitness
function and the augmented function are the same, however as
search progresses, the augmented function is being constantly
updated. This allows the local search to escape from the local
optima of the original fitness since GLS is altering the local
optima status under the augmented fitness function using a
penalty modification mechanism. For more information about
the process of GLS the reader can refer to [20,14]

Results from this experiment in [14] were successful as it
showed promising solutions as each meta-heuristic
significantly improved the performance of EDDIE8 in terms
of best results. However, the meta-heuristics applied had a few
limitations. The first limitation was that the experimental
parameters of each meta-heuristic were not fully investigated.
Results could thus be affected by changing the values of the
experimental parameters of the above meta-heuristics. Such
parameters are for the SA, the Temperature and kmax (which
is the maximum number of iterations), for TS the aspiration
criteria (the memory size of neighbors the solutions has
currently visited without improvement) and the tabu list
(which is the memory size of the neighbors that contains
promising solution) and finally for the GLS the kmax (which
is maximum numbers of iterations). Furthermore, the second
limitation was the fact that the meta-heuristics were only
applied and tested independently. Hence, one algorithm (e.g.
SA) might be good for some datasets, while another algorithm
(e.g. TS) might be better for other datasets.

In order to tackle the above issues, we decided to improve

each of the meta-heuristics presented above by tuning the

experimental parameters and more importantly, to combine

the best versions of these meta-heuristics under a hyper-

heuristic framework. Our purpose thus in this paper is to

automate the meta-heuristics selection process, while at the

same time investigate the effect of the application of the hyper-

heuristics framework on EDDIE8's performance.

III. METHODOLOGY

This section describes in detail the implementation of a
hyper-heuristics framework called Choice Function on EDDIE.
The reasons behind the adoption of the Choice Function, were
firstly, its proven efficiency across various research fields [20,
21], as well as the fact that it fits well on our problem as it is a
score based technique where different heuristics are selected
based on the aggregation of three score measures.

A. Choice Function Hyper-heuristic

Choice Function hyper-heuristic was first introduced and
presented in [21]. Detailed information about the Choice
Function adopted for this research can be found in [22].

The Choice Function selects a heuristic from a set by
assessing their performance based on three measures namely,
the performance of each individual heuristic, how well a given
heuristic has performed in relation to the previous heuristic
used, and the heuristic that was last selected by the Choice
Function. The meta-heuristics are scored based on the mixture
of the measures described in (9), (10), (11) and (12).

The first measure () evaluates the performance of each

individual heuristic h1, h2, h3...hj as described in (9):

f (h) ∑ n

In(h)

 n(h)

i

n

(9)

where In(hj) is the change in the fitness function with
regards to the nth time that hj was used, Tn(hj) is the time taken
in milliseconds from the time the heuristic was used in the nth
last time until when it returned a solution to the Choice
Function and is a random value between (0,1), interval with
a decreasing geometric behavior assigned to the past
performance values of hj.

The second measure evaluates how well a given heuristic
has performed in relation to the previous heuristic used.
Suppose a heuristic hj is called, which is based on the previous
heuristic hk, then the value of the function f2, is calculated
using the formula in (10):

f (h ,hk) ∑ n

In(h ,hk)

 n(h ,hk)

i

n

(10)

where In(hj,hk) is the change in the fitness function with
regards to the nth time that the pair (hj,hk) was used, Tn(hj,hk)
is the time taken in milliseconds from the time the pairs (hj,hk)
were used in the nth last time until it returned a solution to the
Choice Function and is a random value between (,)
interval with a decreasing geometric behavior assigned to the
past performance values of the pairs (hj,hk).

The third measure evaluates the elapsed time since a given
meta-heuristic was last used by the Choice Function and ()
is set to zero each time hj is used. The function (f3) is
presented in (11):

 f (h) (h) (11)

At any stage of the search, the meta-heuristics are
accessible to the Choice Function and the score of each
measure is computed using (12):

 f(h

) f (h) f (h ,hk) f (h) (12)

where and are weights that are used to intensify the search
and is a weight used to diversify the search. hese factors
increase the efficiency by which the Choice Function explores
the search space.

B. Choice Function on EDDIE8

Based on the general description of the Choice Function as
presented in the previous sub-section, the Choice Function
was implemented on EDDIE as presented in Fig 2.

Fig. 2 Choice Function Pseudocode

As it can be seen from Fig 2, the process begins by
randomly selecting a tree from the population based on a
specified probability. When this probability condition is met,
the Choice Function value () is evaluated and calculated

for each heuristic as described in Section III-A. In addition,
the heuristic with the highest () is selected. The meta-

heuristic selected is then applied to the selected tree. As a rule,
these meta-heuristics explore the search space of the periods
of VarConstructor of the selected tree to search for better
fitness value until the termination criteria are met. Every time
the meta-heuristic is applied, the values of the Choice
Function measure score f (h), f (h ,hk), f (h) are updated

accordingly. This process continues until the population size is
exhausted. The merit of this approach lies on the fact that it
enables the different meta-heuristics to be applied on the
period of the tree. These above factors, which effectively
control the intensification and diversification of the search,
increase EDDIE’s exploration and exploitation abilities of the
huge search space. Hence, enhances the chance of improving
the performance of EDDIE8 algorithm.

IV. EXPERIMENTAL DESIGN

This section presents the data and experimental parameter
values that have been used for the adjusted meta-heuristics
and the Choice Function hyper-heuristic. The data used for
this experiment can be collected from “DataStream” or
www.finance.yahoo.com.

While k < = PopulationSize
 Select a candidate from the population with a

 probability of P.
 ForEach (Meta-heuristics)

Evaluate the performance measure

 () , () , () and calculate

the choice function score F.
Select the meta-heuristics with the highest F

score
Apply the meta-heuristic to the period of the tree.

End While.

http://www.finance.yahoo.com/

In this research, 9 datasets were used. They consist of 7
FTSE 100 stocks (Aggreko, Easyjet, Hammerson, HSI,
Imperial obacco “denoted as Imp”, arks Spencer, ext)
along with 2 indices (MDAX, NASDAQ). The reason behind
using these stocks is because of their previously observed
good performance [12,13,23].

Furthermore, the data fed into EDDIE for our experiment
had a time horizon of 1300 days, where 1000 days were used
as the training days and 300 days as the testing days. In
addition, the experiment parameter values presented in Table I,
and Table II were used for the experimental design. The
parameters used for the experiment remained the same as used
by Smonou et al. [14]. The reason behind using these values is
to maintain consistency with the previous research for the
result analysis. In Table I, the GP parameters used by EDDIE8
are illustrated. Specifically, the program generates 500 GDTs
with a maximum initial depth of 6, maximum tree depth of 8
having 0.1, 0.01, 0.9 probabilities of reproduction, mutation
and crossover respectively. Those are then evolved for 50
generations over a 1000 days training period. At end of each
generation, the best GDT (which is the one with the highest
fitness (4)) is applied on a testing period.

Table I

GP PARAMETERS

GP Parameters Values

Max initial Depth 6

Max Depth 8

Generation 50

Population Size 500

Tournament Size 2

Reproduction probability 0.1

Mutation probability 0.01

Crossover probability 0.9

Table II

EDDIE PARAMETERS

EDDIE Parameters Values

n 20

EDDIE8 Period [2, 65]

Weight w1 0.6

Weight w2 0.1

Weight w3 0.3

Furthermore, Table II presents the EDDIE’s parameters
used in the experiments. More specifically, the n represents
the time horizon, EDDIE8 period is the technical indicator’s
parameterized period range, and the w1, w2 and w3, are
weights assigned to RC, RMC and RF respectively.

Additionally, the experiment design is separated into two
parts. In the first part, we examined the experimental
parameter values of the previous meta-heuristics [14] (which
will be denoted as ED8_SA, ED8_TS, ED8_GLS

respectively) and tested if calibrating these meta-heuristic
parameters would produce further improvement.

Firstly, two parameters of the SA called temperature and
kmax were examined. The former affects the probability of
acceptance of SA, which has a significant role to determine if
a solution has been accepted. The latter controls the maximum
number of iteration allowed to explore the search space of the
periods of the VarConstructor per time. We chose different
values of temperature and the kmax using Smonou et al.’s
values (temperature: 0.9, kmax: 8) as benchmarks. The values
used are 0.5, 0.7, 1, 1.2 for the temperature, and 7, 8, 10, 12,
15, 20 for kmax.

Furthermore, the tabu list and aspiration criteria of TS
were examined. The former keeps track of the memory size of
neighbors that the solutions have currently visited without
improving and the latter controls the memory size of the
neighbors that contain promising solution. We chose higher
and lower values of tabu list and the aspiration criteria using
Smonou et al.’s value (tabu list: [-2, +2], aspiration criteria: [-
1, +1]) as a benchmark. We examined the tabu list parameter
values with neighborhood size of (-3, +3), (-4, +4), (-5, +5)
and aspiration criteria parameter values with neighborhood
size of (-1, +1), (-2, +2), (-3, +3), (-4, +4).

Moreover, the kmax of GLS, which controls the maximum
number of iteration, was examined. Higher and lower values
of kmax were chosen using Smonou et al. value (kmax: 10) as
a benchmark. The values varied from 4, 8, and 15. These were
selected in order to investigate their influence on the
algorithm’s performance, taking into consideration the
computational time.

Finally, the experiment parameter tuning showed that for
the SA the combination of temperature value of 1 and kmax of
15 gave the best results. Regarding the TS algorithm, the
combination of tabu list of (-4, +4) and aspiration criteria of
(-1, +1) gave the best results. Lastly, the GLS with kmax of 8
gave the best results in terms of the average ranking of all
metrics. Thus the above values were selected to be used in our
experiments.

For the second and the main part of the experiments, we
examined if the introduction of the Choice Function would
bring further improvement to the best-performing version of
the meta-heuristics. We experimented with higher and lower
values of , , and , which are the weights assigned to the
measure score of the Choice Function (f1, f2, f3 respectively)
where and intensify the search and diversifies the search
as mentioned in Section IIIA. We used values ranging
between 0.03 to 1 for , , respectively. The reason we
chose these values for , and was because of our
preference to balance exploitation with exploration. For
instance, even if a particular meta-heuristic is performing well,
we still want the program to occasionally explore other meta-
heuristics. From our experiments we have concluded that
parameters of = 0.5, = 0.3 and = 1.0 produced the best
results in our preliminary experiments; thus, we have decided
to give more emphasis on diversification (since diversifies
the search). The merit of having this Choice function
parameter setup prevents the search from getting stuck to only
well-performing meta-heuristics.

V. RESULTS

This chapter presents and discusses the results from our
experiments on 9 datasets over 50 runs. For the purpose of this
paper, we considered the best

6
 and average for each of the

performance measures (Fitness, RC, RMC, and RF).
Tables III and IV illustrate the average and best results of

the application of the hyper-heuristic to EDDIE8, in
comparison to the versions of EDDIE8 with each parameter-
amended meta-heuristic. We have chosen to compare the
selected hyper-heuristic with the individual meta-heuristics
that were picked during our experiments with different
parameters as mentioned in Section IV.

Table III

AVERAGE RESULTS HYPER-HEURISTIC

Dataset Heuristics Fitness RC RMC RF

Easyjet

ED8_SA 0.1220 0.4600 0.6550 0.2960

ED8_TS 0.1300 0.4680 0.6380 0.2890

ED8_GLS 0.1510 0.4890 0.5910 0.2790

Hyper-heuristic 0.1416 0.4820 0.5930 0.2940

First

ED8_SA 0.1480 0.4900 0.5400 0.3060

ED8_TS 0.1560 0.4980 0.5310 0.3000

ED8_GLS 0.1510 0.4940 0.5180 0.3110

Hyper-heuristic 0.1482 0.4860 0.5570 0.2920

Hammerson

ED8_SA 0.1190 0.5010 0.4940 0.4400

ED8_TS 0.1270 0.5070 0.4590 0.4370

ED8_GLS 0.1520 0.5310 0.4240 0.4160

Hyper-heuristic 0.1480 0.5290 0.4380 0.4180

HSI

ED8_SA 0.2650 0.6260 0.1990 0.3030

ED8_TS 0.2510 0.6100 0.2290 0.3060

ED8_GLS 0.2600 0.6190 0.2220 0.2990

Hyper-heuristic 0.2674 0.6290 0.1990 0.3010

Imp

ED8_SA 0.2090 0.5690 0.4820 0.2820

ED8_TS 0.2100 0.5720 0.4610 0.2900

ED8_GLS 0.1970 0.5610 0.4520 0.3140

Hyper-heuristic 0.2029 0.5650 0.4700 0.2960

Marks_Spencer

ED8_SA 0.1390 0.5020 0.4840 0.3790

ED8_TS 0.1300 0.4950 0.4780 0.3950

ED8_GLS 0.1280 0.4920 0.4910 0.3920

Hyper-heuristic 0.1223 0.4860 0.4950 0.4000

MDAX

ED8_SA 0.1260 0.4970 0.1940 0.5080

ED8_TS 0.1340 0.5050 0.1820 0.5030

ED8_GLS 0.1210 0.4960 0.2330 0.5100

Hyper-heuristic 0.1266 0.4990 0.2010 0.5080

NASDAQ

ED8_SA 0.1780 0.5300 0.4390 0.3210

ED8_TS 0.1690 0.5200 0.4590 0.3250

ED8_GLS 0.1730 0.5250 0.4400 0.3260

Hyper-heuristic 0.1874 0.5410 0.4120 0.3200

Next

ED8_SA 0.1140 0.4650 0.5110 0.3820

ED8_TS 0.1240 0.4760 0.4930 0.3750

ED8_GLS 0.1420 0.4950 0.4810 0.3580

Hyper-heuristic 0.1238 0.4760 0.4990 0.3730

For the results presented in both Tables III and IV, an
improvement between the Hyper-heuristic and the rest of the
algorithms’ results is denoted in bold. For example, if the

6 The best GDT means selecting the best tree in terms of training data (out of
all 50 individual runs), and reporting its performance (fitness, RC, RMC, RF)
in the testing data. This has practical value, because in real-life a trader would
not have access to the test data (unseen data); thus we pick the best tree from
training and use it. We use that tree and check how well it performs in the
unseen data.

Hyper-heuristic has provided better solution than the ED8_SA
algorithm, then the ED8_SA solution will be denoted in bold.
This can be seen in Table III for instance, in the Easyjet
dataset, the Hyper-heuristic has improved the Fitness
comparing to both ED8_SA and ED8_TS algorithms.

Furthermore, as we can see from Table III, the average
results of the hyper-heuristics have done quite well, improving
the meta-heuristics average results in a total of 55 instances
(denoted in bold). In addition, some improvements are quite
important, for instance the RMC figures of Easyjet’s ED8_SA,
and ED8_TS, Hammerson’s ED8_SA, MDAX’s ED8_GLS
and NASDAQ’s ED8_TS, where the improvements are in the
scale of 3 - 6%.

Table IV

BEST RESULTS HYPER-HEURISTIC

Dataset Heuristics Fitness RC RMC RF

Easyjet

ED8_SA 0.1530 0.4830 0.6550 0.2530

ED8_TS 0.2210 0.5700 0.4480 0.2390

ED8_GLS 0.0695 0.4070 0.7590 0.3290

Hyper-heuristic 0.1890 0.5400 0.4090 0.3140

First

ED8_SA 0.2520 0.6100 0.2510 0.3780

ED8_TS 0.0663 0.4070 0.6430 0.2950

ED8_GLS 0.1490 0.4930 0.4730 0.3310

Hyper-heuristic 0.1090 0.4500 0.5650 0.3480

Hammerson

ED8_SA 0.0898 0.4700 0.5210 0.4180

ED8_TS 0.1100 0.4970 0.6210 0.4670

ED8_GLS 0.2130 0.5930 0.3020 0.3760

Hyper-heuristic 0.1320 0.5030 0.3550 0.4490

HSI

ED8_SA 0.2750 0.6370 0.1070 0.3080

ED8_TS 0.1850 0.5330 0.4290 0.3220

ED8_GLS 0.3140 0.6830 0.0537 0.3020

Hyper-heuristic 0.3150 0.6830 0.0049 0.3150

Imp

ED8_SA 0.2250 0.5930 0.4000 0.3020

ED8_TS 0.2280 0.5970 0.3890 0.3020

ED8_GLS 0.1610 0.5270 0.4650 0.3610

Hyper-heuristic 0.2430 0.6130 0.2050 0.3470

Marks_Spencer

ED8_SA 0.1760 0.5400 0.3440 0.3710

ED8_TS 0.1590 0.5230 0.4350 0.3780

ED8_GLS 0.1240 0.4870 0.4680 0.4040

Hyper-heuristic 0.1430 0.5030 0.3820 0.4040

MDAX

ED8_SA 0.1960 0.5800 0.1630 0.4690

ED8_TS 0.1990 0.5670 0.0068 0.4530

ED8_GLS -0.0005 0.3930 0.5510 0.6050

Hyper-heuristic 0.1610 0.5470 0.2450 0.4740

NASDAQ

ED8_SA 0.1570 0.5070 0.4680 0.3140

ED8_TS 0.1930 0.5470 0.4030 0.3350

ED8_GLS 0.2200 0.5770 0.3530 0.3010

Hyper-heuristic 0.2180 0.5730 0.3830 0.2910

Next

ED8_SA 0.1940 0.5500 0.4040 0.3350

ED8_TS 0.1570 0.5100 0.4800 0.3180

ED8_GLS 0.2180 0.5730 0.4290 0.2760

Hyper-heuristic 0.1710 0.5230 0.4800 0.3180

Furthermore, the best results in Table IV show further

significant improvements. More specifically, we can observe
that, with the exception of the Next dataset, hyper-heuristics
have managed to improve at least three metrics for at least
one meta-heuristic, for each dataset. This is very important,
because it implies that the hyper-heuristics framework can
take advantage of the benefits of the different meta-heuristics

and be applicable to a wide range of datasets. Furthermore,
the best results were impressively improved for certain
datasets; for instance, in NASDAQ the hyper-heuristic
managed to improve all metrics of the SA and TS. In addition,
hyper-heuristics have introduced several significant
improvements in terms of the RMC best results. The most
notable improvements are in the HSI dataset by 42% for
ED8_TS, 10% for ED8_SA, and 5% for the ED8_GLS, in the
Imp by 20% for ED8_SA, 18% for ED8_TS, and 26% for
ED8_GLS and in the Easyjet by 25% for ED8_SA, 4% for
ED8_TS and by 35% for ED8_GLS. Therefore, we can argue
that the addition of the hyper-heuristic was proven quite
beneficial for EDDIE8’s best results especially in terms of the
RMC. The immediate implication of having low RMC is that
the algorithm will be able to discover a greater amount of buy
opportunities, thus increase an investor's profit chances.

Moreover, the Friedman non-parametric test presents the
ranking results of all metrics, for Best and Average results, in
Tables V, VI, VII, and VIII. As we can observe, hyper-
heuristics rank first

7
 in the majority of the Best results

(Fitness, RC, RMC), and also rank first in terms of Average
RF. This is very important, because it confirms the beneficial
performance of the framework, which we reported earlier in
this section.

Subsequent analysis on the Holm post-doc test [24] [25]
did not show a statistical significance in terms of the above
results. However, this should not alarm us, because the fact
remains that the hyper-heuristic framework was ranked first
across the majority of the Best Results tests. As we mentioned
earlier, it is very important for an algorithm to be performing
well in terms of Best Results, because of its real-life value: a
trader in real-life would run the forecasting algorithm multiple
times and then use the best-performing tree (trading strategy).
Thus, having better best trees can lead to an increase to the
trader’s profit margin.

The above discussion allows us to argue that the
introduction of the hyper-heuristics has made EDDIE8 a
robust algorithm. In addition, EDDIE8 would be expected to
produce even better results if more meta-heuristics were
included in the framework, and this is something we intend to
further investigate. Lastly, as we have seen from the results
(especially in terms of Best), the automated selection process
of the meta-heuristics led to a broader applicability of the
EDDIE algorithm, as it was able to introduce multiple
improvements in the performance metrics, without being
affected by the dataset that was used.

Table V

Friedman Ranking – Best and Average Results Fitness

Algorithm
Ranking

Best Results

 Ranking

Average Results

ED8_SA 2.556 2.778

ED8_TS 2.667 2.333

ED8_GLS 2.556 2.444

Hyper-heuristic 2.222 2.444

7 Results with lower ranking denote a better overall performance.

Table VI

Friedman Ranking – Best and Average Results RC

Algorithm
Ranking

Best Results

 Ranking

Average Results

ED8_SA 2.444 2.778

ED8_TS 2.778 2.333

ED8_GLS 2.500 2.444

Hyper-heuristic 2.278 2.444

Table VII

Friedman Ranking – Best and Average Results RMC

Algorithm
Ranking

Best Results

 Ranking

Average Results

ED8_SA 2.333 3.000

ED8_TS 2.944 2.444

ED8_GLS 2.667 2.000

Hyper-heuristic 2.056 2.556

Table VIII

Friedman Ranking – Best and Average Results RF

Algorithm
Ranking

Best Results

 Ranking

Average Results

ED8_SA 2.333 2.778

ED8_TS 2.444 2.556

ED8_GLS 2.444 2.444

Hyper-heuristic 2.778 2.222

VI. CONCLUSION

This paper presented work on the application of a hyper-

heuristic framework to 3 meta-heuristics previously applied on

a Genetic Programming Financial Forecasting algorithm

called EDDIE8. EDDIE8 allows the GP to search in the space

of technical indicators for solutions, instead of using pre-

specified ones, as happens in other works in the literature and

also in the industry. However, a consequence of this is that

EDDIE8’s search area is quite large, leading to occasionally

missed solutions due to ineffective search.

In order to address this issue, we applied a Choice

Function hyper-heuristic to Simulated Annealing, Tabu Search

and Guided Local Search, which were meta-heuristics that in

the past had individually been applied to the period nodes of

EDDIE8’s trees [14]. Results showed that the algorithm’s

performance was improved in terms of best results with the

most impressive being the RMC, thus proving that the

combination of Genetic Programming and hyper-heuristics is

valuable for Financial Forecasting. In terms of the best

results, the improvement was very important, due to the fact

that an investor, who would use the best tree of those

experiments, could experience an outstanding boost of his

profit. Additionally, the enhancement of the RMC results is

proof that our algorithm is more competitive in terms of

identifying more trading opportunities; therefore it would be

preferred by an investor who would like to ensure that most

buy opportunities are captured.

Furthermore, this approach has automated the meta-

heuristic selection process, as the investor has no concerns

about which meta-heuristics to use every time. As we saw, this

led to a broader applicability of the EDDIE algorithm, as the

improvements that were introduced were not dependent on the

given dataset.

The fact that the hyper-heuristic tested in this paper has

improved EDDIE’s performance is very promising. Our future

research objectives are to investigate the possibility of

dynamically updating the values of the Choice Function

parameters, to introduce a re-enforcement learning scheme to

the Choice Function parameters, to apply the same framework

in more datasets, and last but not least to experiment with

other hyper-heuristics framework implementation.

REFERENCES

[1] F Allen and R Karjalainen, "Using genetic algorithms to find
technical trading rules," Journal of Financial, vol. 51, pp. 245–

271, 1999.

[2] A Kablan, "Adaptive neuro fuzzy inference systems for high

frequency," , Sliema, 2009, pp. 105-110.

[3] Y Chen, S Muba, K Hirasawa, and J Hu, "Genetic network

programming with sarsa learning and its application to creating

stock trading rules," , Singapore, 2007, pp. 220–237.

[4] S Schulenburg and P Ross, "Explorations in LCS Models of
Stock Trading," in Advances in Learning Classifier Systems,4th

International Workshop, IWLCS 2001, P.L. Lanzi, W.

Stolzmann, and S.W. Wilson, Eds. Berlin: Springer Berlin

Heidelberg, 2002, vol. 2321, pp. 150-179.

[5] AP Refenes, Neural Networks in the Capital Markets. New

York: John Wiley & Sons, Inc., 1994.

[6] N Baba and M kozaki, "An intelligent forecasting system of

stock price using neural networks," , vol. 1, Baltimore, MD,
1992, pp. 371 - 377.

[7] E Tsang, P Yung, and J Li, "EDDIE-Automation, a decision

support tool for financial forecasting," Journal of Decision

Support Systems, vol. 37, no. 4, pp. 559– 565, 2004.

[8] J Li and E Tsang, "Improving technical analysis predictions: An

application of genetic programming," , USA, 1999, pp. 108–

112.

[9] E Tsang and J Li, "EDDIE for financial forecasting," in Genetic
Algorithms and Genetic Programming in Computational

Finance, New York, 2002, pp. 161–174.

[10] J Koza, Genetic Programming II: Automatic Discovery of

Reusable Programs. Cambridge: MIT, 1994.

[11] J Koza, Genetic Programming: On the programming of
computers by means of natural selection. Cambridge: MIT

Press, 1992.

[12] M Kampouridis, "Computational Intelligence in Financial
Forecasting and Agent-Based Modeling: Applications of

Genetic Programming and Self-Organizing Maps," PhD Thesis,

2011.

[13] M Kampouridis and E Tsang, "EDDIE for Investment
Opportunities Forecasting: Extending the Search Space of the

GP," Proceedings of the IEEE Congress on Evolutionary

Computation, pp. 2019-2026, 2010.

[14] D Smonou, M Kampouridis, and E Tsang, "Metaheuristics
Application on a Financial Forecasting Problem," in IEEE

Congress on Evolutionary Computation, Cancun, Mexico, 2013,

pp. 1021-1028.

[15] E Tsang et al., "EDDIE in financial decision making," Journal
of Management and economics, p. 4, 2000.

[16] J Li and E Tsang, "Reducing failures in investment

recommendations using genetic programming," , Barcelona,

2000.

[17] E Tsang, S Markose, and H Er, "Chance discovery in stock

index option and future arbitrage," New Mathematics and

Natural Computation, vol. 1, no. 3, pp. 435-447, 2005.

[18] F Glover and E Taillard, "A user's guide to tabu search," Annals
of Operations Research, vol. 41, no. 1, pp. 1-28, 1993.

[19] L Davis, Genetic algorithms and simulated annealing.: Pitman,

1987.

[20] C Voudouris and E Tsang, "Guided Local Search and its
application to the Travelling Salesman problem"," European

Journal of Operational Research , vol. 133, pp. 469-499 , 1999.

[21] P Cowling, G Kendall, and E Soubeiga, "Hyperheuristic: A tool

for rapid prototyping in scheduling an optimisation," Second
European Conference on Evolutionary Computing for

Combinatorial Optimisation (EvoCop), pp. 1–10, 2000.

[22] P Rattadilok, "An Investigation and Extension of a Hyper-

heuristic Framework," Informatica: An International Journal of
Computing and Informatics, vol. 34, no. 4, pp. 523-534, 2010.

[23] M Kampouridis, A Alsheddy, and E Tsang, "On the

investigation of hyper- heuristics on a financial forecasting

problem," Annals of Mathematics and Artificial Intelligence,
2012.

[24] S Garcia and F Herrera, "An Extension on Statistical

 omparisons of lassifiers over ultiple Data Sets for all

Pairwise Comparisons," Journal of Machine Learning Research,

vol. 9, no. 66, pp. 2677-2694, 2008.

[25] J Demšar, "Statistical comparisons of classifiers over multiple

data sets," The Journal of Machine Learning Research, vol. 7,

pp. 1-30, 2006.

[26] M Friedman, "A Comparison of Alternative Tests of

Significance for the Problem of m Rankings," The Annals of

Mathematical Statistics, vol. 11, no. 1, pp. 86-92, 1940.

[27] E Tsang, J Li, and J Butler, "EDDIE beats the bookies,"

International Journal of Software, pp. 1033–1043, 1998.

