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Abstract—Reinforcement learning is explored as a candidate
machine learning technique to enhance existing analyticako-
lutions for optimal trade execution with elements from the
market microstructure. Given a volume-to-trade, fixed time
horizon and discrete trading periods, the aim is to adapt a
given volume trajectory such that it is dynamic with respect
to favourable/unfavourable conditions during realtime execution,
thereby improving overall cost of trading. We consider the
standard Almgren-Chriss model with linear price impact as a
candidate base model. This model is popular amongst sellek
institutions as a basis for arrival price benchmark executon
algorithms. By training a learning agent to modify a volume
trajectory based on the market's prevailing spread and volume
dynamics, we are able to improve post-trade implementation
shortfall by up to 10.3% on average compared to the base model
based on a sample of stocks and trade sizes in the South Africa
equity market.
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cost). This behaviour of institutional investors was erncgity
demonstrated ing], where they observed that typical trades of
large investment management firms are almost always broken
up into smaller trades and executed over the course of a day
or several days.

Several authors have studied the problem of optimal lig-
uidation, with a strong bias towards stochastic dynamic pro
gramming solutions. Seé&’] [17], [2€], [1] as examples. In
this paper, we consider the application of a machine legrnin
technique to the problem of optimal liquidation. Specifigal
we consider a case where the popular Alimgren-Chriss closed-
form solution for a trading trajectory (se&]] can be enhanced
by exploiting microstructure attributes over the tradirgihon
using a reinforcement learning technique.

Reinforcement learning in this context is essentially & cal
brated policy mapping states to optimal actions. Each ssate

A critical problem faced by participants in investmen&a vector of observable attributes which describe the ctirren

markets is the so-called optimal liquidation problem, Yiaw configuration of the system. It proposes a simple, model-
best to trade a given block of shares at minimal cost. Heffeee mechanism for agents to learn how to act optimally in
cost can be interpreted as in Perold’'s implementation flort a controlled Markovian domain, where the quality of action
([21]), i.e. adverse deviations of actual transaction pric&fhiosen is successively improved for a given stdtd.[For
from an arrival price baseline when the investment decisitine optimal liquidation problem, the algorithm examines th
is made. Alternatively, cost can be measured as a deviatigalient features of the current order book and current state
from the market volume-weighted trading price (VWAP) oveexecution in order to decide which action (e.g. child order
the trading period, effectively comparing the specific érggl price or volume) to select to service the ultimate goal of
performance to that of the average market trader. In ead) casinimising cost.
the primary problem faced by the trader/execution algorith The first documented large-scale empirical application of
is the compromise between price impact and opportunity casinforcement learning algorithms to the problem of opsiaci
when executing an order. trade execution in modern financial markets was conducted
Price impact here refers to adverse price moves due tdw [20]. They set up their problem as a minimisation of
large trade size absorbing liquidity supply at availableele implementation shortfall for a buying/selling program pee
in the order book (temporary price impact). As market partiéixed time horizon with discrete time periods. For actions,
ipants begin to detect the total volume being traded, they mthe agent could choose a price to repost a limit order for
also adjust their bids/offers downward/upward to antitgpathe remaining shares in each discrete period. State atsbu
order matching (permanent price impad¥[. To avoid price included elapsed time, remaining inventory, current sprea
impact, traders may split a large order into smaller childbos immediate cost and signed volume. In their results, they
over a longer period. However, there may be exogenous marf@ind that their reinforcement learning algorithm imprdviee
forces which result in execution at adverse prices (oppitstu execution efficiency by 50% or more over traditional submit-
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and-leave or market order policies. lower execution cost variance for the same or lower level of
Instead of a pure reinforcement learning solution to thexpected execution cost.

problem, as in 20], we propose a hybrid approach which The exposition of their solution is as follows: They assume

enhancesa given analytical solution with attributes fromthat the security price evolves according to a discretén-arit

the market microstructure. Using the Almgren-Chriss (AQhetic random walk:

model as a base, for a finite liquidation horizon with diseret B 1/2 nk

trading periods, the algorithm determines the proportibn o Sk = Sp—1 + 077 — 7'9(7)’

the AC-suggested trajectory to trade based on prevailimere_

volume/spread attributes. One would expect, for examp#d, t '

allowing the trajectory to be more aggressive when volumes G, = price at timek,

are relatively high and spreads are tight may reduce the

ultimate cost of the trade. In our implementation, a static

volume trajectory is preserved for the duration of the trade

however the proportion traded is dynamic with respect to & = draws from independent random variables,

market dynamics. As in2[0], a market order is executed at ni = volume traded at tim& and

the end of the trade horizon for the remaining volume, to

ensure complete liquidation. An important consideratioaur

analysis is the specification of the problem as a finite-tooriz  Here, permanent price impact refers to changes in the

Markov Decision Process (MDP) and the consequences fjuilibrium price as a direct function of our trading, which

optimal policy convergence of the reinforcement learniirg apersists for at least the remainder of the liquidation haiz

gorithm. In [20], they use an approximation in their frameworkiemporary price impact refers to adverse deviations asudtres

to address this issue by incorporating elapsed time as @ stait absorbing available liquidity supply, but where the iropa

attribute, however they do not explicitly discuss converge dissipates by the next trading period due to the resilierice o

We will use the findings of I4] in our model specification the order book. Almgren and Chriss introduce a temporary

and demonstrate near-optimal policy convergence of theefiniprice impact functiom(v) to their model, wheré.(v) causes

horizon MDP problem. a temporary adverse move in the share price as a function of
The model described above is compared with theur trading ratev [1]. Given this addition, the actual security

base Almgren-Chriss model to determine whether it irransaction price at timé is given by:

creases/decreases the cost of execution for differentstype . Nk

of trades consistently and significantly. This study willghe Sk = Sp—1 — h(T)-

determine whether reinforcement learning is a viable teghen . ,
. - . Assuming asell program, we can then define the total

which can be used to extend existing closed-form solutlonsttrading revenue as:

exploit the nuances of the microstructure where the algorst '

o = volatility of the security
7 = length of discete time interval

g(.) = permanent price impact

are applied. N N Nk al Nk
This paper proceeds as follows: Section 2 introduces the, 7Sk = XSO"*‘Z(UTI/Q&@—TQ(T))%—Z neh(—),
standard Almgren-Chriss model. Section 3 describes the spel k=1 k=1

cific hybrid reinforcement learning technique proposedngl k N
with a discussion regarding convergence to optimum actigferez, = X — > n;= > n;fork=0,1,..,N.

values. Section 4 discusses the data used and results, Gompar, . ;4o costj:olf tradi%:gkjile thus given by = XS, —

ing the 2 models for multiplg trade types. Section 5 concﬁudcz ni Sk, i.e. the difference between the target revenue value
and proposes some extensions for further research. and the total actual revenue from the execution. This defimit
II. THE ALMGREN-CHRISS MODEL refers to Perold’s implementation shortfall measure (249,[

and serves as the primary transaction cost metric which

Bgrtsma; and Lo are pioneers in the area of op.tlmal Iqugs- minimised in order to maximise trading revenue. Since
dation, treating the problem as a stochastic dynamic progra,

: ; 2 "implementation shortfall is a random variable, Almgren and

ming problem ¥]. They employed a dynamic optimisation~, ..« .omoute the following:
L e . pute the following:

procedure which finds an explicit closed-form best executio
strategy, minimising trading costs over a fixed period ofetim N n N n
for large transactions. Almgren and Chriss extended thdwor E(z) == ZW’CQ(T) + Z”kh(?)
of [7] to allow for risk aversion in their frameworKl]. They k=1 k=1
argue that incorporating the uncertainty of execution of and
optimal solution is consistent with a trader’s utility fuios. ) N )
In particular, they employ a price process which permitsdin Var(z) := o Z T2k
permanent and temporary price impact functions to conistruc k=1
an efficient frontier of optimal execution. They define aingd The distribution of implementation shortfall is Gaussiathie
strategy as beingfficientif there is no strategy which has¢;, are Gaussian.



Given the overall goal of minimising execution costs and It should be noted that the AC solution yields a suggested
the variance of execution costs, they specify their objectivolume trajectory over the liquidation horizon, howevegrth

function as: is no discussion inl]] as to the prescribegrder typeto execute
min{E(z) + A\Var(z)}, the trade list. We have assumed that the trade list can be
’ executed as a series ofarket orders Given that this implies
where: we are always crossing the spread, one needs to consider that

traversing an order book with thin volumes and widely-splace
prices could have a significant transaction cost impact.h\e t
consider a reinforcement learning technique which lewatmsn

The intuition of this objective function can be thoughg&ndhow muchto cross the spread, based on the current order

of as follows: Consider a stock which exhibits high pric®00k dynamics.

volatility and thus a high risk of price movement away from The general solution outlined above assumes linear priee im
the reference price. A risk averse trader would prefer tdetrapact functions, however the model was extended by Almgren
a large portion of the volume immediately, causing a (knowif) [2] to account for non-linear price impact. This extended
price impact, rather than risk trading in small increment®odel can be considered as an alternative base model irefutur
at successively adverse prices. Alternatively, if the gris research.

expected to be stable over the liquidation horizon, theetrad

would rather split the trade into smaller sizes to avoid gric I1l. A REINFORCEMENT LEARNING APPROACH

impact. This trade-off between speed of execution and risk o ) ) )
of price movement is what governs the shape of the resultin The majority of reinforcement learning research is based on
trade trajectory in the AC framework. atormalism of Markov Decision Processes (MDR) [n this

A detailed derivation of the general solution can be fourfePntext, reinforcement learning is a technique used to mame
in [1]. Here, we state the general solution: cally solve for a calibrated policy mapping states to optiora
near-optimal actions. It is a framework within which a ldam

x = implementation shortfall
A = level of risk aversion

T = wx for j =0,..,N. agent repeatedly observes the state of its environment, and
sinh(xT) then performs a chosen action to service some ultimate goal.
The associated trade list is: Performance of the action has an immediate numeric reward

- 2sinh(%f<ﬁ) or penalty and changes the state of the environm#@g [

= — cosh(k(T —t;_1))X for j =0,...,N, The problem of solving for an optimal policy mapping states
sinh(xT') c to actions is well-known in stochastic control theory, with
where: a significant contribution by Bellmans]. Bellman showed

reduced using what is how known as dynamic programming.

that the computational burden of an MDP can be significantly
+1).
It was however recognised that two significant drawbackstexi

1 2
k= —cosh™! (T—%Q
T 2

o2

R = —, for classical dynamic programming: Firstly, it assumed tha
n(1 - %) complete, known model of the environment exists, which is
7 = temporary price impact parameter often not realistically obtainable. Secondly, problemgidly

become computationally intractable as the number of state
variables increases, and hence, the size of the state space f
which the value function must be computed increases. This
This implies that for a program of selling an initially longproblem is referred to as thmurse of dimensionalitj25].
position, the solution decreases monotonically from itsah Reinforcement learning offers two advantages over classi-
value to zero at a rate determined by the paramettitrading cal dynamic programming: Firstly, agents learn online and
intervals are shortz? is essentially the ratio of the productcontinually adapt while performing the given task. Secgndl
of volatility and risk-intolerance to the temporary tracisan the methods can employ function approximation algorithms
cost parameter. We note here that a larger value ohplies to represent their knowledge. This allows them to genezaliz
a more rapidtrading program, again conceptually confirmingicross the state space so that the learning time scales much
the propositions of17] that an intolerance for execution riskbetter [L2]. Reinforcement learning algorithms do not require
leads to a larger concentration of quantity traded earlyha tknowledge about the exact model governing an MDP and
trading program. Another consequence of this analysisas tlihus can be applied to MDP’s where exact methods become
different sized baskets of the same securities will be tigtéd infeasible.
in the same manner, barring scale differences and providedilithough a number of implementations of reinforcement
the risk aversion parameteris held constant. This may belearning exist, we will focus oQ-learning This is a model-
counter-intuitive, since one would expect larger basketse free technique first introduced bg7], which can be used to
effectively less liquid, and thus follow &ss rapidtrading find the optimal, or near-optimal, action-selection polioy a
program to minimise price impact costs. given MDP.

p = permanent price impact parameter
7 = length of discrete time period



During Q-learning an agent’s learning takes place during\. Implications of finite-horizon MDP
sequential episodes. Consider a discrete finite world whererpe apove exposition presents an algorithm which guar-
at each step, an agent is able to register the current staigees optimal policy convergence of a stationary infinite-
z, € X and can choose from a finite set of actianse A.  norizon MDP. The stationarity assumption, and hence glidi
The agent then receives a probabilistic reward whose of the above result, needs to be questioned when considering
mean valuefi,, (a,) depends only on the current state anfinjte-horizon MDP, since states, actions and policies iane-t
action. According to 27], the state of the world changesyependentZ2]. In particular, we are considering a discrete
probabilistically toy,, according to: period, finite trading horizon, which guarantees execution
Prob(y, = y|an, an) = Py, y(an). of a given .volume. of shqres. At each _decision step in the
trading horizon, it is possible to have different state sgac
The agent is then tasked to learn the optimal policy mappiRgtions, transition probabilities and reward values. tethe
states to actions, i.e. one which maximises total discalntg§hove model needs revision. Garcia and Ndiaye consider
expected reward. Under some policy mappingnd discount this problem and provide a model specification which suits
ratey (0 < < 1), the value of state is given by: this purpose 14]. They propose a slight modification to the

. . Bellman optimality equations shown above:
V™ (z) = Ry(m()) + Z Pry(m(2)) V7™ (y).
Yy

Vi () = max{R;(an) + 7 > PR (ant) Vi (v)}
According to B] and [23], the theory of dynamic programming " y

says there is at least one optimal stationary potitysuch that for all # € Sp, ¥ € Sui1s an € Sn, n € {0,1,...., N} and

X o+ o+ V3 (z) = 0. This optimality equation has a single solution
= = - P, . N+1 . . .
Vi) =Vv" (@) mfx{R (e) +'YZ y(@VT ()} V* = {V*, Vi, ..., V3 } that can be obtained using dynamic
) Y ) programming techniques. The equivalent discounted egfect
We also defineQ™(z,a) as the expected discounted rewargeyard specification thus becomes:

from choosing action: in statex, and then following policy
« thereafter, i.e. Q7 (2, an) = Ry(an) +72P£y(7r(x)) ().
Yy
™(z,a) = Ry(a) + P, V™ (y). .
@ (wa) (@) 72@; y(m@)V7 () They propose a novel transformation of aw-step non-
stationary MDP into an infinite-horizon proces44]). This

dO™ where P . K . binati fis achieved by adding an artifical final reward-free absaybin
and Q™ where F;,(a) is unknown, using a combination o statex,,s, such that all actionay € Ay lead tox,,s with

exploration and exploitation techniques over the given aiom probability 1. Hence the revise@-learning update equation
It can be shown thal’"(z) = max, Q*(z,a) and that an .o

optimal policy can be formed such that'(x) = a*. It
thus follows that if the agent can find the optimal Q-values, Qni1(Tn, an) = Qn(Tn, an) + an(Tn, an)Uny,
the optimal action can be inferred for a given statelt is

The task of theQ-learning agent is to determin&™*, =*

shown in fLO] that an agent can learn Q-values via experientigfhere
learning, which takes place during sequential episodethdn rn +ymaxy Qn(Yn, b) — Qun(@n,a,) if 2, €S;,i <N
nth episode, the agent: Un =< 7n — Quln, an) if 2, € Sy

» Observes its current state,, 0 otherwise.

« selects and performs an actiop, . .
. observes the subsequent stateas a result of performing If @n € Sy, yn = @n41, otherwise choose randomly i .

actiona,, If £,41 € S5, selecta,+1 € A;. The learning rule folSy is

« receives an immediate rewarg and thus equivalent to settiny; . ; (Tabs) = Q41 (Tavs; @) =0

« uses a learning factar,, which decreases gradually over’ ¢; € {4N+1- . o
time. Garcia and Ndiaye further show that the above specification

(in the case where = 1) will converge to the optimal policy

with probability one, provided that each state-action pgir

Q(Tn,an) = QTn,an)+ visited infinitely often " a,(z,a) = co andy_, a2 (z,a) <
o (T + 7 max Q(2ni1,b) — Q(zn,ay,)). o0 [14].

Provided each state-action pair is visited infinitely ofterB: Implementation for optimal liquidation
[10] show that@ converges ta)* for any exploration policy.  Given the above description, we are able to discuss our
Singh et al. provide guidance as to specific exploratiorcpesi specific choices for state attributes, actions and rewards i
for asymptotic convergence to optimal actions and asynptothe context of the optimal liquidation problem. We need to
exploitation under th&-learningalgorithm, which we incor- consider a specification which adequately accounts for our
porate in our analysis2f]. state of execution and the current state of the limit order

Q is updated as follows:



book, representing the opportunity set for our ultimatelgoa 2) Actions: Based on the Almgren-Chriss (AC) model

of executing a volume of shares over a fixed trading horizospecified above, we calculate the AC volume trajectory
1) States: We acknowledge that the complexity of thglAC,, AC,, ..., ACT) for a given volume-to-tradel), fixed

financial system cannot be distilled into a finite set of statéime horizon {") and discrete trading periods£ 1,2, ..., T).

and is not likely to evolve according to a Markov processiC; represents the proportion &f to trade in period, such

However, we conJe(_:tgre that the essgnual fea‘“fes 0 f. ttheat ZT: AC, = V. For the purposes of this study, we assume

system can be sufficiently captured with some simplifying ~— /=

assumptions such that meaningful insights can still beiiete that each child order is executed asnarket orderbased on

For simplicity, we have chosen a look-up table represesratithe prevailing limit order book structure. We would like our

of Q. Function approximation variants may be explored ilgarning agent to modify the AC volume trajectory based on

future research for more complex system configurations. Agevailing volume and spread characteristics in the masAet

described above, each state € X represents a vector of such, the possible actions for our agent include:

observable attributes which describe the configuratiorhef t « 3, = Proportion ofAC; to trade,

system at timen. As in [20], we useElapsed Timet and e [rp = Lower bound of volume proportion to trade,

Remaining Inventory as private attributes which capture our « ;5 = Upper bound of volume proportion to trade,

state of execution over a finite liquidation horiz@h Since o Action: aj; = 8;AC:, wherefrp < 8; < Bus

our goal is to modify a given volume trajectory based on andj; = 3;_1 + Biner-

favourable market conditions, we includpreadandvolume The aim here is to train the learning agent to trade a higher

as candidate market attributes. The intuition here is that tower) proportion of the overall volume when conditions ar

agent will learn to increase (decrease) trading activitemh fayourable (unfavourable), whilst still broadly presenyithe

spreadsare narrow (wide) andolumesare high (low). This yolume trajectory suggested by the AC model. To ensure

would ensure that a more significant proportion of the totghat the total volume-to-trade is executed over the givereti

volume-to-trade would be secured at a favourable price afhrizon, we execute any residual volume at the end of the

similarly, less at an unfavourable price, ultimately reidgahe  {ading period with anarket order

post-trade implementation shortfall. Given the look-ubléa  3) Rewards: Each of the actions described above results
implementation, we have simplified each of the state atie®u jn a volume to execute with anarket order based on the

as follows: _ prevailing structure of the limit order book. The size of the
T = Trading Horizon ,V = Total Volume-to-Trade,

« H = Hour of day when trading will begin, child order volume will determine how deep we will need to
« I = Number of remaining inventory states, traverse the order book. For example, suppose we h&kgYa
. €V= NNumbtff Offspflead states, order with avolume-to-tradeof 20000, split into child orders
. = Number of volume states, . . . .
« spn = %ile Spread of thex” tuple, of 1OOQO in period and 1OQOO in period+ 1. If the structure
o upn = %ile Bid/Ask Volume of thent™ tuple, of the limit order book at timée is as follows:
o Elapsed Time t, =1,2,3,...,T, o Level-1 Ask Price= 100.00;Level-1 Ask Volume 3000
o Remaining Inventory: ¢, = 1,2,3,..., 1, e Level-2 Ask Price= 100.50;Level-2 Ask Volume 4000

1, f0<spy<§ o Level-3 Ask Price= 102.30;Level-3 Ask Volume 5000

2, if % < spn < % o Level-4 Ask Price= 103.00;Level-4 Ask Volume 6000
+ Spread State sn = 4 o Level-5 Ask Price= 105.50;Level-5 Ask Volume 2000

B, if @ < spn < 1, the volume-weighted execution price will be:

L 0 <opn < v , (3000 x 100) + (4000 x 100.5) + (3000 x 102.3) _ o

2, if & n < 5 = 9.
« Volume State v, =4~ " W < UPn S 10000

Trading more (less) given this limit order book structurdl wi
result in a higher (lower) volume-weighted execution prife
"the following trading period + 1 has the following structure:

Level-1 Ask Price= 99.80;Level-1 Ask Volume 6000
Level-2 Ask Price= 99.90;Level-2 Ask Volume 2000
Level-3 Ask Price= 101.30;Level-3 Ask Volume 7000

For sp,, andvp,,, we first construct a historical distribution of ¢ 'szg:g f\zt E;:gi ig;-ggftgg:'g ﬁzt xg:mz 2888

spreggls and volumes based on the training set. It ha_s bﬁﬁeenvolume-weighted execution price for the second chitteor
empirically observed that major equity markets exhibit | . 1.

shaped trading intensity throughout the day, i.e. moreviati (6000 x 99.8) + (2000 x 99.9) + (2000 x 101.3)
in mornings and closer to closing auction. A further disauss . 10000 . -
of these insights can be found i8][and [8]. In fact, [13] ) ,
empirically demonstrates that South African stocks exhiblf thle reference phr|cefc?'f the ﬁt.OCk %t:.o_ is 99.5, then the
similar characteristics. We thus consider simlulationsereh P ementation shortfallrom this trade Is:

training volume/spread tuples arehour dependent, such that ({20000 x 99.5) — (10000 x 100.9 + 10000 x 100.12)

the optimal policy is further refined with respect to trading 20000 x 99.5

time (H). = —0.0101 = —101bps.

w, it WD < p, < W
Thus, for thent” episode, the state attributes can be su
marised as the following tuple:

Zn =< tnvlna Snavn >

= 100.12.




Since the conditions of the limit order book were morénimportant assumption in this model specification is that o
IﬁVOUﬁgle fngUtY orderg 6"(1)86“00 —!—mld’ildeer(])%% f_nOdlfl?dd trading activity does not affect the market attributeshatigh
e child orders to, say in periocan in perio S e ; ; ;

t 4+ 1, the resultingmplementation shortfalivould be: tgmporary price |mpact Is incorporated mto execut|or-1.q£mc
via depth participation of thenarket orderin the prevailing

((20000 x 99.5) — (8000 x 100.54 + 12000 x 100.32) limit order book, we assume the limit order book is resilient
20000 x 99.5 with respect to our trading activity. Market resiliency cae
= —0.0091 = —91bps. thought of as the number of quote updates before the market’s

) ) ) ) spread reverts to its competitive level. Degryse et al. glibw
In this example, increasing the child order volume Wik  n5t 5 pure limit order book market (Euronext Paris) is fairl
Pricesare lower and_evel-1 Volumeare higher decreases thgagilient with respect to most order sizes, taking on awerag
overal cost of the trade. It is for this reason timaplementation gg quote updates for the spread to normalise following the
shortfall is a natural candidate for the rewards matrix ip,gst aggressive orderdJ]. Since we are using 5-minute
our reinforcement learning system. Each action implies tgyding intervals and small trade sizes, we will assume that
child o_rder vc_)lume, which has an associated volume—weqi]htgny permanent price impact effects dissipate by the next
execution price. The agent will learn the consequences tPdding period. A preliminary analysis of South Africancite
each action over the trading horizon, with the ultimate giial revealed that there were on average over 1000 quote updates
minimising the total trade’émplementation shortfall during the 5-minute trading intervals and the pre-tradeeprd
4) Algorithm and MethodologyGiven the above specifica- ook equilibrium is restored within 2 minutes for large tad
tion, we followed the following steps to generate our resultThe validity of this assumption however will be tested irufiet
» Specify a stock §), volume-to-trade I('), time horizon research, as well as other model specifications exploredhwhi
(7)), and trading datetime (from which the trading houincorporate permanent effects in the system configuration.
H is inferred),
o Partition the dataset into independérdining setsand
testing setso generate results (thieaining setalways A. Data used
pre-dates theesting sel, For this study, we collected 12 months of market depth
« Calibrate the parameters for the Almgren-Chriss (AQjck data (Jan-2012 to Dec-2012) from the Thomson Reuters
volume trajectory ¢, ) using the historicatraining set  Tick History (TRTH) database, representing a universe & 16
setp = 0, since we assume order book is resilient tetocks that make up the South African local benchmark index

IV. DATA AND RESULTS

trading activity (see below), (ALSI) as at 31-Dec-2012. This includes 5 levels of orderkboo
« Generate the AC volume trajectori(, ..., ACT), depth (bid/ask prices and volumes) at each tick. The raw data
« Train theQ-matrix based on the state-action tuples gerwas imported into a MongoDB database and aggregated into
erated by theraining set 5-minute intervals showing average level prices and vokjme

» Execute the AC volume trajectory at the specified tradinghich was used as the basis for the analysis.
datetime {) on each day in th&esting setrecording the
implementation shortfall

« Use the trained)-matrix to modify the AC trajectory as  TO test the robustness of the proposed model in the South
we executd/ at the specified trading datetime, recording\frican (SA) equity market we tested a variety of stock types
the implementation shortfaland trade sizes and model parameters. Due to space constraints,

o Determine whether the reinforcement |earning (RLWG will Only show a representative set of results here that

model improved/worsened realisidplementation short- illustrate the insights gained from the analysis. The foit
fall. summarises the stocks, parameters and assumptions used for

the results that follow:
e Stocks
— SBK (Large Cap, Financials)

B. Stocks, parameters and assumptions

In order to train theQ-matrix to learn the optimal policy
mapping, we need to traverse the training data’Bet { x A)

times, whereA is the total number of possible actions. The — AGL (Large Cap, Resources)
following pseudo-code illustrates the algorithm used &ontr — SAB (Large Cap, Industrials)
the Q-matrix « Model Parameters

; = BLB:0,BuB: 2, Biner: 0.25
Optimal_strategy<v.Tl.A> — X 0.01,7: 5-min, ap: 1,v: 1

For (Episode 1 to N) {

Record reference price at t=0 — V:100 000, 1000 000

T: 4 (20-min), 8 (40-min), 12 (60-min)

F t =Tto1l
or L =TtoLl — H:9,10,11, 12, 13, 14, 15, 16
Cal cul ate episode’s STATE attributes <s,v> - I,B,W:5,10
For a =1to A{ — Buy/Sell: BUY
Set x = <t,i,s,v> o Assumptions

Determine the action volunme a L .
Calculate IS fromtrade, R(x,a) — Max volume participation rate in order book: 20%

Sinulate transition x toy — Market is resilient to our trading activity
Look up max_p Xy, p) Note, we sety = 1 since [L4] states that this is a necessary

Update Qx,a) = Qx,a) + al pha*U }}} . ; ; ;
Sel ect the lowest-1S action max_p Qvy,p) for optinmal policy  condition to ensure convergence to the optimal policy with



probability one for a finite-horizon MDP. We also choose an ___Parameters Trading Time(hour) Average

. T IBW 9 10 11 12 13 14 15 16
arbitrary value for\, although sensitivities to these parameter%/00000 yi

, : : 5 239 -14 47 134 1.8 33 18 351 10.3
will be explored in future work. AC parameters are calibdate 100000 8 5 253 43 83 23 14 99 -06 -1.9 6.1
and Q-matrix trained over a 6-monttraining setfrom 1-Jan- 1888880 12 g gg; '21532 Z-g 9237 1195 g-g ‘l‘-g 3%% S-é
2012 to 30-Jun-2012. The resultant AC and RL trading trale%oooooo 8 5 288 56 82 19 14 99 03 -26 6.6
tories are therexecutedon each day at the specified tradingioo0000 12 5 33.1 -25.0 7.2 -40 -08 48 48 1.2 2.7

time H in thetesting sefrom 1-Jul-2012 to 20-Dec-2012. The 100000 4 10 229 13 30 97 27 58 35 -26.1 2.8

100000 8 10 260 43 6.7 -02 35 86 1.6 -3.1 5.9
implementation shortfallor both models is calculated and the100000 12 10 278 219 75 -41 06 18 62 -95 11

difference recorded. This allows us to construct a distitbu 1000000 4 10 226 14 31 93 25 6.0 3.6 -26.1 2.8

of implementation shortfafior each of the AC and RL models, 1008888 ?2 18 gg-g 2403 223 %59 3(‘)% 71-% %35’) gg i-i
and for all trading hourd? = 9, 10, ..., 16. S . :
TABLE I: Average % improvement in mediaimplementation shortfalfor various
C. Results parameter values, using AC and RL models. Trainkfigdependent.
Table 1 shows the average % improvement in medi V7100000,1000000; T=4, 8,12 LBW=S

0.16%

implementation shortfalfor the complete set of stocks anc .., |
parameter values. These results suggest that the modetés n 16 = ©

effective for shorter trading horizon%'(= 4), with an average § 010% 1@

improvement of up to 10.3% over the base AC model. Th % o.os% ¢
result may be biased due to the assumption of order ba E 0.06% 1

resilience. Indeed, the efficacy of the trained Q-matrix me & °** ' *® .

be less reliable for stocks which exhibit slow order boo E ™™ e e e .
resilience, since permanent price effects would affecstaee ¥ '~ R ' e ' . -

space transitions. In future work, we plan to relax this ordi =, | . . _ .
bOOk reSilience aSSUmption and inCOporate permanenttEﬁE 0.06% | Average improvement in implementation shortfall when using RL: 1.7 bps (6.3%)

into state transitions. -0.08% |
Figure 1 illustrates the improvement in median post-trac 09:00  10:00  11:00  12:00  13:00  14:00 1500  16:00
implementation shortfalivhen executing the volume trajecto- Tracing Hour

® AGL,100000,4,5 AGL,100000,8,5 AGL,100000,12,5 @ AGL,1000000,4,5 AGL,1000000,8,5 AGL,1000000,12,5

ries generated by each of the models, for each of the ca®diC «sxiom0es  «scioomnas  «seicioomizs esskiononas esakio00008s ss 1000000125
stocks at the given trading times. In general, the RL moOd esw.i0000045 -« 54810000085 - 548,100000125 ©545,10000004,5 ©SABI000N0ES  SAB,1000000,125
is able to improve (lower) ex-posinplementation shortfall Fig. 1: Difference between median implementation shortfall gateet using RL and AC
however the improvement seems more significant for eaflydels: With given parameters&,W = 5). Training H-dependent.
morning/late afternoon trading hours. This could be due smggesting that a shorter training period may yield similar
the increased trading activity at these times, resultingnare results. We do however note that improving the % of correct
state-action visits in théraining setto refine the associatedactions by increasing the granularity of the state space doe
Q-matrix values. We also notice more dispersed performanuecessarily translate into better model performance. Géis
between 10:00 and 11:00. This time period coincides witte seen by Table 1, where the results wher&, W = 10
the UK market open, where global events may drive locdb not show any significant improvement over those with
trading activity and skew results, particularly since agrtSA I, B,WW = 5. This suggests that the market dynamics may
stocks are dual-listed on the London Stock Exchange (LSHEpt be fully represented byolumeandspreadstate attributes,
The improvement inmplementation shortfaltanges from 15 and alternative state attributes should be explored inréutu
bps (85.3%) for trading 1000 000 of SBK between 16:00 amdork to improve ex-post model efficacy.
17:00, to -7 bps (-83.4%) for trading 100 000 SAB between Table 2 shows the average standard deviation of the re-
16:00 and 17:00. Overall, the RL model is able to improveultantimplementation shortfallvhen using each of the AC
implementation shortfalby 4.8%. and RL models. Since we have not explicitly accounted for
Figure 2 shows the % aforrect actionamplied by the Q- variance of executiom the RL reward function, we see that
matrix, as it evolves through the training process aftetheathe resultant trading trajectories generate a higher atand
tuple visit. Here, acorrect actionis defined as a reductiondeviation compared to the base AC model. Thus, although the
(addition) in the volume-to-trade based on the max Q-vall’lL model provides a performance improvement over the AC
action, in the case wherepreadsare above (below) the model, this is achieved with a higher degree of executidq ris
50%ile andvolumesare below (above) the 50%ile level. Thiswhich may not be acceptable for the trader. We do note that the
coincides with the intuitive behaviour we would like the RLRL model exhibits comparable risk far = 4, thus validating
agent to learn. These results suggest that finer state gragul the use of the RL model to reliably improve IS over short
(I, B,W = 10) improves the overall accuracy of the learntrade horizons. A future refinement on the RL model should
ing agent, as demonstrated by the highercétrect actions incorporatevariance of executignsuch that it is consistent
achieved. All model configurations seem to converge to sométh the AC objective function. In this way, a true compariso
stationaryaccuracy level after approximately 1000 tuple visityf the techniques can be done, and one can conclude as to
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