
ar
X

iv
:1

40
3.

22
29

v1
 [

q-
fin

.T
R

]
10

 M
ar

 2
01

4

A reinforcement learning extension to the
Almgren-Chriss framework for optimal trade

execution
Dieter Hendricks

School of Computational and
Applied Mathematics

University of the Witwatersrand
Johannesburg, South Africa

Email: dieter.hendricks@students.wits.ac.za

Diane Wilcox
School of Computational and

Applied Mathematics
University of the Witwatersrand

Johannesburg, South Africa
Email: diane.wilcox@wits.ac.za

Abstract—Reinforcement learning is explored as a candidate
machine learning technique to enhance existing analyticalso-
lutions for optimal trade execution with elements from the
market microstructure. Given a volume-to-trade, fixed time
horizon and discrete trading periods, the aim is to adapt a
given volume trajectory such that it is dynamic with respect
to favourable/unfavourable conditions during realtime execution,
thereby improving overall cost of trading. We consider the
standard Almgren-Chriss model with linear price impact as a
candidate base model. This model is popular amongst sell-side
institutions as a basis for arrival price benchmark execution
algorithms. By training a learning agent to modify a volume
trajectory based on the market’s prevailing spread and volume
dynamics, we are able to improve post-trade implementation
shortfall by up to 10.3% on average compared to the base model,
based on a sample of stocks and trade sizes in the South African
equity market.

I. I NTRODUCTION

A critical problem faced by participants in investment
markets is the so-called optimal liquidation problem, viz.how
best to trade a given block of shares at minimal cost. Here,
cost can be interpreted as in Perold’s implementation shortfall
([21]), i.e. adverse deviations of actual transaction prices
from an arrival price baseline when the investment decision
is made. Alternatively, cost can be measured as a deviation
from the market volume-weighted trading price (VWAP) over
the trading period, effectively comparing the specific trader’s
performance to that of the average market trader. In each case,
the primary problem faced by the trader/execution algorithm
is the compromise between price impact and opportunity cost
when executing an order.

Price impact here refers to adverse price moves due to a
large trade size absorbing liquidity supply at available levels
in the order book (temporary price impact). As market partic-
ipants begin to detect the total volume being traded, they may
also adjust their bids/offers downward/upward to anticipate
order matching (permanent price impact) [16]. To avoid price
impact, traders may split a large order into smaller child orders
over a longer period. However, there may be exogenous market
forces which result in execution at adverse prices (opportunity

cost). This behaviour of institutional investors was empirically
demonstrated in [9], where they observed that typical trades of
large investment management firms are almost always broken
up into smaller trades and executed over the course of a day
or several days.

Several authors have studied the problem of optimal liq-
uidation, with a strong bias towards stochastic dynamic pro-
gramming solutions. See [7], [17], [26], [1] as examples. In
this paper, we consider the application of a machine learning
technique to the problem of optimal liquidation. Specifically
we consider a case where the popular Almgren-Chriss closed-
form solution for a trading trajectory (see [1]) can be enhanced
by exploiting microstructure attributes over the trading horizon
using a reinforcement learning technique.

Reinforcement learning in this context is essentially a cali-
brated policy mapping states to optimal actions. Each stateis
a vector of observable attributes which describe the current
configuration of the system. It proposes a simple, model-
free mechanism for agents to learn how to act optimally in
a controlled Markovian domain, where the quality of action
chosen is successively improved for a given state [10]. For
the optimal liquidation problem, the algorithm examines the
salient features of the current order book and current stateof
execution in order to decide which action (e.g. child order
price or volume) to select to service the ultimate goal of
minimising cost.

The first documented large-scale empirical application of
reinforcement learning algorithms to the problem of optimised
trade execution in modern financial markets was conducted
by [20]. They set up their problem as a minimisation of
implementation shortfall for a buying/selling program over a
fixed time horizon with discrete time periods. For actions,
the agent could choose a price to repost a limit order for
the remaining shares in each discrete period. State attributes
included elapsed time, remaining inventory, current spread,
immediate cost and signed volume. In their results, they
found that their reinforcement learning algorithm improved the
execution efficiency by 50% or more over traditional submit-

http://arxiv.org/abs/1403.2229v1

and-leave or market order policies.
Instead of a pure reinforcement learning solution to the

problem, as in [20], we propose a hybrid approach which
enhancesa given analytical solution with attributes from
the market microstructure. Using the Almgren-Chriss (AC)
model as a base, for a finite liquidation horizon with discrete
trading periods, the algorithm determines the proportion of
the AC-suggested trajectory to trade based on prevailing
volume/spread attributes. One would expect, for example, that
allowing the trajectory to be more aggressive when volumes
are relatively high and spreads are tight may reduce the
ultimate cost of the trade. In our implementation, a static
volume trajectory is preserved for the duration of the trade,
however the proportion traded is dynamic with respect to
market dynamics. As in [20], a market order is executed at
the end of the trade horizon for the remaining volume, to
ensure complete liquidation. An important consideration in our
analysis is the specification of the problem as a finite-horizon
Markov Decision Process (MDP) and the consequences for
optimal policy convergence of the reinforcement learning al-
gorithm. In [20], they use an approximation in their framework
to address this issue by incorporating elapsed time as a state
attribute, however they do not explicitly discuss convergence.
We will use the findings of [14] in our model specification
and demonstrate near-optimal policy convergence of the finite-
horizon MDP problem.

The model described above is compared with the
base Almgren-Chriss model to determine whether it in-
creases/decreases the cost of execution for different types
of trades consistently and significantly. This study will help
determine whether reinforcement learning is a viable technique
which can be used to extend existing closed-form solutions to
exploit the nuances of the microstructure where the algorithms
are applied.

This paper proceeds as follows: Section 2 introduces the
standard Almgren-Chriss model. Section 3 describes the spe-
cific hybrid reinforcement learning technique proposed, along
with a discussion regarding convergence to optimum action
values. Section 4 discusses the data used and results, compar-
ing the 2 models for multiple trade types. Section 5 concludes
and proposes some extensions for further research.

II. T HE ALMGREN-CHRISS MODEL

Bertsimas and Lo are pioneers in the area of optimal liqui-
dation, treating the problem as a stochastic dynamic program-
ming problem [7]. They employed a dynamic optimisation
procedure which finds an explicit closed-form best execution
strategy, minimising trading costs over a fixed period of time
for large transactions. Almgren and Chriss extended the work
of [7] to allow for risk aversion in their framework [1]. They
argue that incorporating the uncertainty of execution of an
optimal solution is consistent with a trader’s utility function.
In particular, they employ a price process which permits linear
permanent and temporary price impact functions to construct
an efficient frontier of optimal execution. They define a trading
strategy as beingefficient if there is no strategy which has

lower execution cost variance for the same or lower level of
expected execution cost.

The exposition of their solution is as follows: They assume
that the security price evolves according to a discrete arith-
metic random walk:

Sk = Sk−1 + στ1/2ξk − τg(
nk

τ
),

where:

Sk = price at timek,

σ = volatility of the security,

τ = length of discete time interval,

ξk = draws from independent random variables,

nk = volume traded at timek and

g(.) = permanent price impact.

Here, permanent price impact refers to changes in the
equilibrium price as a direct function of our trading, which
persists for at least the remainder of the liquidation horizon.
Temporary price impact refers to adverse deviations as a result
of absorbing available liquidity supply, but where the impact
dissipates by the next trading period due to the resilience of
the order book. Almgren and Chriss introduce a temporary
price impact functionh(v) to their model, whereh(v) causes
a temporary adverse move in the share price as a function of
our trading ratev [1]. Given this addition, the actual security
transaction price at timek is given by:

S̃k = Sk−1 − h(
nk

τ
).

Assuming asell program, we can then define the total
trading revenue as:

N
∑

k=1

nkS̃k = XS0+

N
∑

k=1

(στ1/2ξk−τg(
nk

τ
))xk−

N
∑

k=1

nkh(
nk

τ
),

wherexk = X −
k
∑

j=1

nj =
N
∑

j=k+1

nj for k = 0, 1, ..., N .

The total cost of trading is thus given byx = XS0 −
∑

nkS̃k, i.e. the difference between the target revenue value
and the total actual revenue from the execution. This definition
refers to Perold’s implementation shortfall measure (see [21]),
and serves as the primary transaction cost metric which
is minimised in order to maximise trading revenue. Since
implementation shortfall is a random variable, Almgren and
Chriss compute the following:

E(x) :=

N
∑

k=1

τxkg(
nk

τ
) +

N
∑

k=1

nkh(
nk

τ
)

and

V ar(x) := σ2

N
∑

k=1

τxk
2.

The distribution of implementation shortfall is Gaussian if the
ξk are Gaussian.

Given the overall goal of minimising execution costs and
the variance of execution costs, they specify their objective
function as:

min
x

{E(x) + λV ar(x)},

where:

x = implementation shortfall,

λ = level of risk aversion.

The intuition of this objective function can be thought
of as follows: Consider a stock which exhibits high price
volatility and thus a high risk of price movement away from
the reference price. A risk averse trader would prefer to trade
a large portion of the volume immediately, causing a (known)
price impact, rather than risk trading in small increments
at successively adverse prices. Alternatively, if the price is
expected to be stable over the liquidation horizon, the trader
would rather split the trade into smaller sizes to avoid price
impact. This trade-off between speed of execution and risk
of price movement is what governs the shape of the resulting
trade trajectory in the AC framework.

A detailed derivation of the general solution can be found
in [1]. Here, we state the general solution:

xj =
sinh(κ(T − tj))

sinh(κT)
X for j = 0, ..., N.

The associated trade list is:

nj =
2 sinh(1

2
κτ)

sinh(κT)
cosh(κ(T − tj− 1

2

))X for j = 0, ..., N,

where:

κ =
1

τ
cosh−1

(

τ2

2
κ̃2 + 1

)

,

κ̃2 =
λσ2

η(1− ρτ
2η)

,

η = temporary price impact parameter,

ρ = permanent price impact parameter,

τ = length of discrete time period.

This implies that for a program of selling an initially long
position, the solution decreases monotonically from its initial
value to zero at a rate determined by the parameterκ. If trading
intervals are short,κ2 is essentially the ratio of the product
of volatility and risk-intolerance to the temporary transaction
cost parameter. We note here that a larger value ofκ implies
a more rapid trading program, again conceptually confirming
the propositions of [17] that an intolerance for execution risk
leads to a larger concentration of quantity traded early in the
trading program. Another consequence of this analysis is that
different sized baskets of the same securities will be liquidated
in the same manner, barring scale differences and provided
the risk aversion parameterλ is held constant. This may be
counter-intuitive, since one would expect larger baskets to be
effectively less liquid, and thus follow aless rapid trading
program to minimise price impact costs.

It should be noted that the AC solution yields a suggested
volume trajectory over the liquidation horizon, however there
is no discussion in [1] as to the prescribedorder typeto execute
the trade list. We have assumed that the trade list can be
executed as a series ofmarket orders. Given that this implies
we are always crossing the spread, one needs to consider that
traversing an order book with thin volumes and widely-spaced
prices could have a significant transaction cost impact. We thus
consider a reinforcement learning technique which learnswhen
andhow muchto cross the spread, based on the current order
book dynamics.

The general solution outlined above assumes linear price im-
pact functions, however the model was extended by Almgren
in [2] to account for non-linear price impact. This extended
model can be considered as an alternative base model in future
research.

III. A REINFORCEMENT LEARNING APPROACH

The majority of reinforcement learning research is based on
a formalism of Markov Decision Processes (MDPs) [4]. In this
context, reinforcement learning is a technique used to numeri-
cally solve for a calibrated policy mapping states to optimal or
near-optimal actions. It is a framework within which a learning
agent repeatedly observes the state of its environment, and
then performs a chosen action to service some ultimate goal.
Performance of the action has an immediate numeric reward
or penalty and changes the state of the environment [10].
The problem of solving for an optimal policy mapping states
to actions is well-known in stochastic control theory, with
a significant contribution by Bellman [5]. Bellman showed
that the computational burden of an MDP can be significantly
reduced using what is now known as dynamic programming.
It was however recognised that two significant drawbacks exist
for classical dynamic programming: Firstly, it assumes that a
complete, known model of the environment exists, which is
often not realistically obtainable. Secondly, problems rapidly
become computationally intractable as the number of state
variables increases, and hence, the size of the state space for
which the value function must be computed increases. This
problem is referred to as thecurse of dimensionality[25].

Reinforcement learning offers two advantages over classi-
cal dynamic programming: Firstly, agents learn online and
continually adapt while performing the given task. Secondly,
the methods can employ function approximation algorithms
to represent their knowledge. This allows them to generalize
across the state space so that the learning time scales much
better [12]. Reinforcement learning algorithms do not require
knowledge about the exact model governing an MDP and
thus can be applied to MDP’s where exact methods become
infeasible.

Although a number of implementations of reinforcement
learning exist, we will focus onQ-learning. This is a model-
free technique first introduced by [27], which can be used to
find the optimal, or near-optimal, action-selection policyfor a
given MDP.

During Q-learning, an agent’s learning takes place during
sequential episodes. Consider a discrete finite world where
at each stepn, an agent is able to register the current state
xn ∈ X and can choose from a finite set of actionsan ∈ A.
The agent then receives a probabilistic rewardrn, whose
mean valueRxn

(an) depends only on the current state and
action. According to [27], the state of the world changes
probabilistically toyn according to:

Prob(yn = y|xn, an) = Pxny(an).

The agent is then tasked to learn the optimal policy mapping
states to actions, i.e. one which maximises total discounted
expected reward. Under some policy mappingπ and discount
rateγ (0 < γ < 1), the value of statex is given by:

V π(x) = Rx(π(x)) + γ
∑

y

Pxy(π(x))V
π(y).

According to [6] and [23], the theory of dynamic programming
says there is at least one optimal stationary policyπ∗ such that

V ∗(x) = V π∗

(x) = max
a

{Rx(a) + γ
∑

y

Pxy(a)V
π∗

(y)}.

We also defineQπ(x, a) as the expected discounted reward
from choosing actiona in statex, and then following policy
π thereafter, i.e.

Qπ(x, a) = Rx(a) + γ
∑

y

Pxy(π(x))V
π(y).

The task of theQ-learning agent is to determineV ∗, π∗

andQπ∗

wherePxy(a) is unknown, using a combination of
exploration and exploitation techniques over the given domain.
It can be shown thatV ∗(x) = maxa Q

∗(x, a) and that an
optimal policy can be formed such thatπ∗(x) = a∗. It
thus follows that if the agent can find the optimal Q-values,
the optimal action can be inferred for a given statex. It is
shown in [10] that an agent can learn Q-values via experiential
learning, which takes place during sequential episodes. Inthe
nth episode, the agent:

• observes its current statexn,
• selects and performs an actionan,
• observes the subsequent stateyn as a result of performing

actionan,
• receives an immediate rewardrn and
• uses a learning factorαn, which decreases gradually over

time.
Q is updated as follows:

Q(xn, an) = Q(xn, an) +

αn(rn + γmax
b

Q(xn+1, b)−Q(xn, an)).

Provided each state-action pair is visited infinitely often,
[10] show thatQ converges toQ∗ for any exploration policy.
Singh et al. provide guidance as to specific exploration policies
for asymptotic convergence to optimal actions and asymptotic
exploitation under theQ-learningalgorithm, which we incor-
porate in our analysis [24].

A. Implications of finite-horizon MDP

The above exposition presents an algorithm which guar-
antees optimal policy convergence of a stationary infinite-
horizon MDP. The stationarity assumption, and hence validity
of the above result, needs to be questioned when consideringa
finite-horizon MDP, since states, actions and policies are time-
dependent [22]. In particular, we are considering a discrete
period, finite trading horizon, which guarantees execution
of a given volume of shares. At each decision step in the
trading horizon, it is possible to have different state spaces,
actions, transition probabilities and reward values. Hence the
above model needs revision. Garcia and Ndiaye consider
this problem and provide a model specification which suits
this purpose [14]. They propose a slight modification to the
Bellman optimality equations shown above:

V ∗

n (x) = max
an

{Rx(an) + γ
∑

y

Pn
xy(an+1)V

π∗

n+1(y)}

for all x ∈ Sn, y ∈ Sn+1, an ∈ Sn, n ∈ {0, 1, ..., N} and
V ∗

N+1
(x) = 0. This optimality equation has a single solution

V ∗ = {V ∗

1 , V
∗

2 , ..., V
∗

N} that can be obtained using dynamic
programming techniques. The equivalent discounted expected
reward specification thus becomes:

Qπ
n(x, an) = Rx(an) + γ

∑

y

Pn
xy(π(x))V

π
n+1(y).

They propose a novel transformation of anN -step non-
stationary MDP into an infinite-horizon process ([14]). This
is achieved by adding an artifical final reward-free absorbing
statexabs, such that all actionsaN ∈ AN lead toxabs with
probability 1. Hence the revisedQ-learning update equation
becomes:

Qn+1(xn, an) = Qn(xn, an) + αn(xn, an)Un,

where

Un =











rn + γmaxb Qn(yn, b)−Qn(xn, an) if xn ∈ Si, i < N

rn −Qn(xn, an) if xn ∈ SN

0 otherwise.

If xn /∈ SN , yn = xn+1, otherwise choose randomly inS1.
If xn+1 ∈ Sj , selectan+1 ∈ Aj . The learning rule forSN is
thus equivalent to settingV ∗

N+1
(xabs) = Q∗

N+1
(xabs, aj) = 0

∀ aj ∈ AN+1.
Garcia and Ndiaye further show that the above specification

(in the case whereγ = 1) will converge to the optimal policy
with probability one, provided that each state-action pairis
visited infinitely often,

∑

n αn(x, a) = ∞ and
∑

n α
2
n(x, a) <

∞ [14].

B. Implementation for optimal liquidation

Given the above description, we are able to discuss our
specific choices for state attributes, actions and rewards in
the context of the optimal liquidation problem. We need to
consider a specification which adequately accounts for our
state of execution and the current state of the limit order

book, representing the opportunity set for our ultimate goal
of executing a volume of shares over a fixed trading horizon.

1) States: We acknowledge that the complexity of the
financial system cannot be distilled into a finite set of states
and is not likely to evolve according to a Markov process.
However, we conjecture that the essential features of the
system can be sufficiently captured with some simplifying
assumptions such that meaningful insights can still be inferred.
For simplicity, we have chosen a look-up table representation
of Q. Function approximation variants may be explored in
future research for more complex system configurations. As
described above, each statexn ∈ X represents a vector of
observable attributes which describe the configuration of the
system at timen. As in [20], we useElapsed Timet and
Remaining Inventoryi as private attributes which capture our
state of execution over a finite liquidation horizonT . Since
our goal is to modify a given volume trajectory based on
favourable market conditions, we includespreadand volume
as candidate market attributes. The intuition here is that the
agent will learn to increase (decrease) trading activity when
spreadsare narrow (wide) andvolumesare high (low). This
would ensure that a more significant proportion of the total
volume-to-trade would be secured at a favourable price and,
similarly, less at an unfavourable price, ultimately reducing the
post-trade implementation shortfall. Given the look-up table
implementation, we have simplified each of the state attributes
as follows:

• T = Trading Horizon ,V = Total Volume-to-Trade,
• H = Hour of day when trading will begin,
• I = Number of remaining inventory states,
• B = Number of spread states,
• W = Number of volume states,
• spn = %ile Spread of thenth tuple,
• vpn = %ile Bid/Ask Volume of thenth tuple,
• Elapsed Time: tn = 1, 2, 3, ..., T ,
• Remaining Inventory: in = 1, 2, 3, ..., I ,

• Spread State: sn =



















1, if 0 < spn ≤ 1
B

2, if 1
B

< spn ≤ 2
B

...

B, if (B−1)
R

< spn ≤ 1,

• Volume State: vn =



















1, if 0 < vpn ≤
1
U

2, if 1
W

< vpn ≤ 2
W

...

W, if (W−1)
W

< vpn ≤ W.

Thus, for thenth episode, the state attributes can be sum-
marised as the following tuple:

zn =< tn, in, sn, vn > .

For spn andvpn, we first construct a historical distribution of
spreads and volumes based on the training set. It has been
empirically observed that major equity markets exhibitU-
shaped trading intensity throughout the day, i.e. more activity
in mornings and closer to closing auction. A further discussion
of these insights can be found in [3] and [8]. In fact, [13]
empirically demonstrates that South African stocks exhibit
similar characteristics. We thus consider simlulations where
training volume/spread tuples areH-hour dependent, such that
the optimal policy is further refined with respect to trading
time (H).

2) Actions: Based on the Almgren-Chriss (AC) model
specified above, we calculate the AC volume trajectory
(AC1, AC2, ..., ACT) for a given volume-to-trade (V), fixed
time horizon (T) and discrete trading periods (t = 1, 2, ..., T).
ACt represents the proportion ofV to trade in periodt, such

that
T
∑

t=1

ACt = V . For the purposes of this study, we assume

that each child order is executed as amarket orderbased on
the prevailing limit order book structure. We would like our
learning agent to modify the AC volume trajectory based on
prevailing volume and spread characteristics in the market. As
such, the possible actions for our agent include:

• βj = Proportion ofACt to trade,
• βLB = Lower bound of volume proportion to trade,
• βUB = Upper bound of volume proportion to trade,
• Action: ajt = βjACt, whereβLB ≤ βj ≤ βUB

andβj = βj−1 + βincr.

The aim here is to train the learning agent to trade a higher
(lower) proportion of the overall volume when conditions are
favourable (unfavourable), whilst still broadly preserving the
volume trajectory suggested by the AC model. To ensure
that the total volume-to-trade is executed over the given time
horizon, we execute any residual volume at the end of the
trading period with amarket order.

3) Rewards: Each of the actions described above results
in a volume to execute with amarket order, based on the
prevailing structure of the limit order book. The size of the
child order volume will determine how deep we will need to
traverse the order book. For example, suppose we have aBUY
order with avolume-to-tradeof 20000, split into child orders
of 10000 in periodt and 10000 in periodt+1. If the structure
of the limit order book at timet is as follows:

• Level-1 Ask Price= 100.00;Level-1 Ask Volume= 3000
• Level-2 Ask Price= 100.50;Level-2 Ask Volume= 4000
• Level-3 Ask Price= 102.30;Level-3 Ask Volume= 5000
• Level-4 Ask Price= 103.00;Level-4 Ask Volume= 6000
• Level-5 Ask Price= 105.50;Level-5 Ask Volume= 2000

the volume-weighted execution price will be:

(3000 × 100) + (4000× 100.5) + (3000× 102.3)

10000
= 100.9.

Trading more (less) given this limit order book structure will
result in a higher (lower) volume-weighted execution price. If
the following trading periodt+1 has the following structure:

• Level-1 Ask Price= 99.80;Level-1 Ask Volume= 6000
• Level-2 Ask Price= 99.90;Level-2 Ask Volume= 2000
• Level-3 Ask Price= 101.30;Level-3 Ask Volume= 7000
• Level-4 Ask Price= 107.00;Level-4 Ask Volume= 3000
• Level-5 Ask Price= 108.50;Level-5 Ask Volume= 1000

the volume-weighted execution price for the second child order
will be:

(6000× 99.8) + (2000 × 99.9) + (2000× 101.3)

10000
= 100.12.

If the reference price of the stock att = 0 is 99.5, then the
implementation shortfallfrom this trade is:

((20000 × 99.5) − (10000 × 100.9 + 10000 × 100.12)

20000 × 99.5

= −0.0101 = −101bps.

Since the conditions of the limit order book were more
favourable forBUY orders in periodt+1, if we had modified
the child orders to, say 8000 in periodt and 12000 in period
t+ 1, the resultingimplementation shortfallwould be:

((20000 × 99.5) − (8000 × 100.54 + 12000 × 100.32)

20000 × 99.5

= −0.0091 = −91bps.

In this example, increasing the child order volume whenAsk
Pricesare lower andLevel-1 Volumesare higher decreases the
overal cost of the trade. It is for this reason thatimplementation
shortfall is a natural candidate for the rewards matrix in
our reinforcement learning system. Each action implies a
child order volume, which has an associated volume-weighted
execution price. The agent will learn the consequences of
each action over the trading horizon, with the ultimate goalof
minimising the total trade’simplementation shortfall.

4) Algorithm and Methodology:Given the above specifica-
tion, we followed the following steps to generate our results:

• Specify a stock (S), volume-to-trade (V), time horizon
(T), and trading datetime (from which the trading hour
H is inferred),

• Partition the dataset into independenttraining setsand
testing setsto generate results (thetraining set always
pre-dates thetesting set),

• Calibrate the parameters for the Almgren-Chriss (AC)
volume trajectory (σ, η) using the historicaltraining set;
set ρ = 0, since we assume order book is resilient to
trading activity (see below),

• Generate the AC volume trajectory (AC1, ..., ACT),
• Train theQ-matrix based on the state-action tuples gen-

erated by thetraining set,
• Execute the AC volume trajectory at the specified trading

datetime (H) on each day in thetesting set, recording the
implementation shortfall,

• Use the trainedQ-matrix to modify the AC trajectory as
we executeV at the specified trading datetime, recording
the implementation shortfalland

• Determine whether the reinforcement learning (RL)
model improved/worsened realisedimplementation short-
fall.

In order to train theQ-matrix to learn the optimal policy
mapping, we need to traverse the training data set (T ×I×A)
times, whereA is the total number of possible actions. The
following pseudo-code illustrates the algorithm used to train
the Q-matrix:

Optimal_strategy<V,T,I,A>
For (Episode 1 to N) {

Record reference price at t=0
For t = T to 1 {

For i = 1 to I
Calculate episode’s STATE attributes <s,v>
For a = 1 to A {

Set x = <t,i,s,v>
Determine the action volume a
Calculate IS from trade, R(x,a)
Simulate transition x to y
Look up max_p Q(y,p)
Update Q(x,a) = Q(x,a) + alpha*U }}}

Select the lowest-IS action max_p Q(y,p) for optimal policy

An important assumption in this model specification is that our
trading activity does not affect the market attributes. Although
temporary price impact is incorporated into execution prices
via depth participation of themarket orderin the prevailing
limit order book, we assume the limit order book is resilient
with respect to our trading activity. Market resiliency canbe
thought of as the number of quote updates before the market’s
spread reverts to its competitive level. Degryse et al. showed
that a pure limit order book market (Euronext Paris) is fairly
resilient with respect to most order sizes, taking on average
50 quote updates for the spread to normalise following the
most aggressive orders [11]. Since we are using 5-minute
trading intervals and small trade sizes, we will assume that
any permanent price impact effects dissipate by the next
trading period. A preliminary analysis of South African stocks
revealed that there were on average over 1000 quote updates
during the 5-minute trading intervals and the pre-trade order
book equilibrium is restored within 2 minutes for large trades.
The validity of this assumption however will be tested in future
research, as well as other model specifications explored which
incorporate permanent effects in the system configuration.

IV. DATA AND RESULTS

A. Data used

For this study, we collected 12 months of market depth
tick data (Jan-2012 to Dec-2012) from the Thomson Reuters
Tick History (TRTH) database, representing a universe of 166
stocks that make up the South African local benchmark index
(ALSI) as at 31-Dec-2012. This includes 5 levels of order book
depth (bid/ask prices and volumes) at each tick. The raw data
was imported into a MongoDB database and aggregated into
5-minute intervals showing average level prices and volumes,
which was used as the basis for the analysis.

B. Stocks, parameters and assumptions

To test the robustness of the proposed model in the South
African (SA) equity market we tested a variety of stock types,
trade sizes and model parameters. Due to space constraints,
we will only show a representative set of results here that
illustrate the insights gained from the analysis. The following
summarises the stocks, parameters and assumptions used for
the results that follow:

• Stocks
– SBK (Large Cap, Financials)
– AGL (Large Cap, Resources)
– SAB (Large Cap, Industrials)

• Model Parameters
– βLB : 0, βUB : 2, βincr : 0.25
– λ: 0.01,τ : 5-min, α0: 1, γ: 1
– V : 100 000, 1000 000
– T : 4 (20-min), 8 (40-min), 12 (60-min)
– H: 9, 10, 11, 12, 13, 14, 15, 16
– I,B,W : 5, 10
– Buy/Sell: BUY

• Assumptions
– Max volume participation rate in order book: 20%
– Market is resilient to our trading activity

Note, we setγ = 1 since [14] states that this is a necessary
condition to ensure convergence to the optimal policy with

probability one for a finite-horizon MDP. We also choose an
arbitrary value forλ, although sensitivities to these parameters
will be explored in future work. AC parameters are calibrated
andQ-matrix trained over a 6-monthtraining setfrom 1-Jan-
2012 to 30-Jun-2012. The resultant AC and RL trading trajec-
tories are thenexecutedon each day at the specified trading
timeH in the testing setfrom 1-Jul-2012 to 20-Dec-2012. The
implementation shortfallfor both models is calculated and the
difference recorded. This allows us to construct a distribution
of implementation shortfallfor each of the AC and RL models,
and for all trading hoursH = 9, 10, ..., 16.

C. Results

Table 1 shows the average % improvement in median
implementation shortfallfor the complete set of stocks and
parameter values. These results suggest that the model is more
effective for shorter trading horizons (T = 4), with an average
improvement of up to 10.3% over the base AC model. This
result may be biased due to the assumption of order book
resilience. Indeed, the efficacy of the trained Q-matrix may
be less reliable for stocks which exhibit slow order book
resilience, since permanent price effects would affect thestate
space transitions. In future work, we plan to relax this order
book resilience assumption and incoporate permanent effects
into state transitions.

Figure 1 illustrates the improvement in median post-trade
implementation shortfallwhen executing the volume trajecto-
ries generated by each of the models, for each of the candidate
stocks at the given trading times. In general, the RL model
is able to improve (lower) ex-postimplementation shortfall,
however the improvement seems more significant for early
morning/late afternoon trading hours. This could be due to
the increased trading activity at these times, resulting inmore
state-action visits in thetraining set to refine the associated
Q-matrix values. We also notice more dispersed performance
between 10:00 and 11:00. This time period coincides with
the UK market open, where global events may drive local
trading activity and skew results, particularly since certain SA
stocks are dual-listed on the London Stock Exchange (LSE).
The improvement inimplementation shortfallranges from 15
bps (85.3%) for trading 1000 000 of SBK between 16:00 and
17:00, to -7 bps (-83.4%) for trading 100 000 SAB between
16:00 and 17:00. Overall, the RL model is able to improve
implementation shortfallby 4.8%.

Figure 2 shows the % ofcorrect actionsimplied by the Q-
matrix, as it evolves through the training process after each
tuple visit. Here, acorrect action is defined as a reduction
(addition) in the volume-to-trade based on the max Q-value
action, in the case wherespreadsare above (below) the
50%ile andvolumesare below (above) the 50%ile level. This
coincides with the intuitive behaviour we would like the RL
agent to learn. These results suggest that finer state granularity
(I, B,W = 10) improves the overall accuracy of the learn-
ing agent, as demonstrated by the higher %correct actions
achieved. All model configurations seem to converge to some
stationaryaccuracy level after approximately 1000 tuple visits,

Parameters Trading Time(hour) Average
V T I,B,W 9 10 11 12 13 14 15 16
100000 4 5 23.9 -1.4 4.7 13.4 1.8 3.3 1.8 35.1 10.3
100000 8 5 25.3 4.3 8.3 2.3 1.4 9.9 -0.6 -1.9 6.1
100000 12 5 32.7 -25.2 7.2 -2.7 -1.5 4.6 4.5 -3.3 2.1
1000000 4 5 23.3 -1.3 4.8 9.3 1.9 3.5 1.8 35.0 9.8
1000000 8 5 28.8 5.6 8.2 1.9 1.4 9.9 -0.3 -2.6 6.6
1000000 12 5 33.1 -25.0 7.2 -4.0 -0.8 4.8 4.8 1.2 2.7
100000 4 10 22.9 1.3 3.0 9.7 2.7 5.8 3.5 -26.1 2.8
100000 8 10 26.0 4.3 6.7 -0.2 3.5 8.6 1.6 -3.1 5.9
100000 12 10 27.8 -21.9 7.5 -4.1 0.6 1.8 6.2 -9.5 1.1
1000000 4 10 22.6 1.4 3.1 9.3 2.5 6.0 3.6 -26.1 2.8
1000000 8 10 26.3 5.0 7.2 -0.5 3.3 7.0 2.3 -1.8 6.1
1000000 12 10 27.9 -24.3 8.3 -6.9 0.5 1.8 7.5 -3.3 1.4

TABLE I: Average % improvement in medianimplementation shortfallfor various
parameter values, using AC and RL models. TrainingH-dependent.

Fig. 1: Difference between median implementation shortfall generated using RL and AC
models, with given parameters (I,B,W = 5). TrainingH-dependent.

suggesting that a shorter training period may yield similar
results. We do however note that improving the % of correct
actions by increasing the granularity of the state space does not
necessarily translate into better model performance. Thiscan
be seen by Table 1, where the results whereI, B,W = 10
do not show any significant improvement over those with
I, B,W = 5. This suggests that the market dynamics may
not be fully represented byvolumeandspreadstate attributes,
and alternative state attributes should be explored in future
work to improve ex-post model efficacy.

Table 2 shows the average standard deviation of the re-
sultant implementation shortfallwhen using each of the AC
and RL models. Since we have not explicitly accounted for
variance of executionin the RL reward function, we see that
the resultant trading trajectories generate a higher standard
deviation compared to the base AC model. Thus, although the
RL model provides a performance improvement over the AC
model, this is achieved with a higher degree of execution risk,
which may not be acceptable for the trader. We do note that the
RL model exhibits comparable risk forT = 4, thus validating
the use of the RL model to reliably improve IS over short
trade horizons. A future refinement on the RL model should
incorporatevariance of execution, such that it is consistent
with the AC objective function. In this way, a true comparison
of the techniques can be done, and one can conclude as to

Fig. 2: % correct actions implied by Q-matrix after each training set tuple. Training
H-dependent.

Parameters Standard Deviation(%) % improvement
V T I,B,W AC RL in IS

100000 4 5 0.13 0.17 10.3
100000 8 5 0.14 0.23 6.1
100000 12 5 0.14 0.26 2.1
1000000 4 5 0.13 0.17 9.8
1000000 8 5 0.14 0.23 6.6
1000000 12 5 0.14 0.26 2.7
100000 4 10 0.13 0.17 2.8
100000 8 10 0.14 0.22 5.9
100000 12 10 0.14 0.26 1.1
1000000 4 10 0.13 0.17 2.8
1000000 8 10 0.14 0.22 6.1
1000000 12 10 0.14 0.26 1.4
Average 0.14 0.22 4.8

TABLE II: Standard deviation(%) of implementation shortfall when using AC vs RL
models.

whether the RL model indeed outperforms the AC model at a
statistically significant level.

V. CONCLUSION

In this paper, we introduced reinforcement learning as a
candidate machine learning technique toenhancea given
optimal liquidation volume trajectory. Nevmyvaka, Feng and
Kearns showed that reinforcement learning delivers promising
results where the learning agent is trained to choose the
optimal limit order price at which to place the remaining
inventory, at discrete periods over a fixed liquidation horizon
[20]. Here, we show that reinforcement learning can also be
used successfully to modify a given volume trajectory based
on market attributes, executed via a sequence ofmarket orders
based on the prevailing limit order book.

Specifically, we showed that a simple look-up tableQ-
learning technique can be used to train a learning agent to
modify a static Almgren-Chriss volume trajectory based on
prevailing spread and volume dynamics, assuming order book
resiliency. Using a sample of stocks and trade sizes in the
South African equity market, we were able to reliably improve
post-tradeimplementation shortfallby up to 10.3% on average
for short trade horizons, demonstrating promising potential
applications of this technique. Further investigations include
incorporatingvariance of executionin the RL reward function,
relaxing the order book resiliency assumption and alternative
state attributes to govern market dynamics.

ACKNOWLEDGMENT

The authors thank Dr Nicholas Westray for his contribu-
tion in the initiation of this work, as well as the insightful
comments from the anonymous reviewers. This work is based
on the research supported in part by the National Research
Foundation of South Africa (Grant Number CPRR 70643)

REFERENCES

[1] R. Almgren, N. Chriss.Optimal execution of portfolio transactions,
Journal of Risk, 3, pp. 5-40, 2000.

[2] R. Almgren. Optimal execution with nonlinear impact functions and
trading-enhanced risk, Applied Mathematical Finance, 10(1), pp. 1-18,
2003.

[3] A. Admati, P Pfleiderer.A theory of intraday patterns: volume and price
variability, Review of Financial Studies, 1(1), pp. 3-40, 1988.

[4] A. Barto, S. Mahadevan.Recent advances in hierarchical reinforcement
learning, Discrete Event Dynamic Systems, 13(4), pp. 341-379, 2003.

[5] R. Bellman.The theory of dynamic programming, Bulletin of the Amer-
ican Mathematical Society, 1954.

[6] R. Bellman, S. Dreyfus.Applied dynamic programming, Princeton Uni-
versity Press, Princeton, New Jersey, 1962.

[7] D. Bertsimas, A. Lo.Optimal control of execution costs, Journal of
Financial Markets, 1(1), pp. 1-50, 1998.

[8] W. Brock, A Kleidon. Periodic market closure and trading volume: a
model of intraday bids and asks, Journal of Economic Dynamics and
Control, 16(3), pp. 451-489, 1992.

[9] L. Chan, J Lakonishok.The behavior of stock prices around institutional
trades, Journal of Finance, 50(4), pp.1147-1174, 1995.

[10] P. Dayan, C. Watkins.Reinforcement learning, Encyclopedia of Cogni-
tive Science, 2001.

[11] H. Degryse, F. deJong, M. Ravenswaaij, G. Wuyts,Aggressive orders
and the resiliency of a limit order market, Review of Finance, 9(2), pp.
201-242, 2003.

[12] T. Dietterich.Hierarchical reinforcement learning with the MAXQ value
function decomposition, Abstraction, Reformulation and Approximation,
pp. 26-44, 2000.

[13] B. Du Preez.JSE Market Microstructure, MSc Dissertation, University
of the Witwatersrand, School of Computational and Applied Mathematics,
2013.

[14] F. Garcia, S. Ndiaye.A learning rate analysis of reinforcement learning
algorithms in finite-horizon, Proceedings of the 15th International Con-
ference on Machine Learning, 1998.

[15] A. Gosavi. Reinforcement learning: a tutorial survey and recent ad-
vances, INFORMS Journal on Computing, 21(2), pp. 178-192, 2009.

[16] R. Holthausen, R. Leftwich, D. Mayers.Large-block transactions, the
speed of response and temporary and permanent stock-price effects,
Journal of Financial Economics, 26(1), pp. 71-95, 1990.

[17] G. Huberman, W. Stanzl.Optimal liquidity trading, Yale School of
Management, Working Paper, 2001.

[18] L. Kaelbling, M. Littman, A. Moore.Reinforcement learning: a survey,
Journal of Artificial Intelligence Research, 4, pp. 237-285, 1996.

[19] J. McCulloch.Relative volume as a doubly stochastic binomial point
process, Quantitative Finance, 7(1), pp. 55-62, 2007.

[20] Y. Nevmyvaka, Y. Feng., M. Kearns.Reinforcement learning for optimal
trade execution, Proceedings of the 23rd international conference on
machine learning, pp. 673-680, 2006.

[21] A. Perold, The implementation shortfall: paper vs reality, Journal of
Portfolio Management, 14(3), pp. 4-9, 1988.

[22] M. Puterman,Markov Decision Processes, John Wiley and Sons, New
York, 1994.

[23] S. Ross.Introduction to stochastic dynamic programming, Academic
Press, New York, 1983.

[24] S. Singh, T Jaakola, M. Littman, C. Szepesvari.Convergence results
for single-step on-policy reinforcement learning algorithms, Machine
Learning, 38(3), pp. 287-308, 2000.

[25] R. Sutton, A. Barto.Reinforcement learning, Cambridge, MA: MIT
Press, 1998.

[26] D. Vayanos.Strategic trading in a dynamic noisy market, Journal of
Finance, 56(1), pp. 131-171, 2001.

[27] C. Watkins.Learning from delayed rewards, PhD Thesis, Cambridge
University, 1989.

