
HIGH-DIMENSIONAL STOCK PORTFOLIO TRADING WITH DEEP
REINFORCEMENT LEARNING

Uta Pigorsch

Schumpeter School of Business and Economics

University of Wuppertal

Wuppertal, Germany

pigorsch@uni-wuppertal.de

Sebastian Schäfer

Schumpeter School of Business and Economics

University of Wuppertal

Wuppertal, Germany

sebastian.schaefer@uni-wuppertal.de

ABSTRACT

This paper proposes a Deep Reinforcement Learning algorithm for financial portfolio trading based on
Deep Q-learning (Mnih et al., 2013). The algorithm is capable of trading high-dimensional portfolios
from cross-sectional datasets of any size which may include data gaps and non-unique history lengths
in the assets. We sequentially set up environments by sampling one asset for each environment while
rewarding investments with the resulting asset’s return and cash reservation with the average return
of the set of assets. This enforces the agent to strategically assign capital to assets that it predicts
to perform above-average. We apply our methodology in an out-of-sample analysis to 48 US stock
portfolio setups, varying in the number of stocks from ten up to 500 stocks, in the selection criteria
and in the level of transaction costs. The algorithm on average outperforms all considered passive
and active benchmark investment strategies by a large margin using only one hyperparameter setup
for all portfolios.

Keywords Deep Reinforcement Learning · Portfolio Management · Algorithmic Trading

1 Introduction

Portfolio management includes the process of analyzing financial assets and estimating future returns and risks. As the
amount of available data, especially for stocks, is rising, intelligent systems which automate or even completely control
the portfolio management workflow can increase the investor’s performance (Gu et al., 2020). Therefore, machine
learning is widely used within portfolio management, e.g. for return predictions or risk evaluation as in Fischer and
Krauss (2018); Patel et al. (2015); Wolff and Echterling (2020).

Deep Reinforcement Learning (DRL) is the process of agents finding policies that are maximizing the cumulative
rewards for a specific task resulting from learning through interaction with an environment. As a basis for its decision-
making, the agent receives information about the state of the environment for every action it is supposed to take. The
agent should become artificially intelligent by using non-linear function approximators like neural networks in order to
improve its decision-making.

In the literature exist mainly two approaches to apply DRL within the context of portfolio management. Training agents
that are capable of trading a single asset which can include both long and short positions in the respective asset, and
training agents to make capital assignments to a portfolio of assets, i.e. learning the optimal weighting policy. However,
as we discuss in the following, these approaches suffer from limited flexibility and/or generalization capabilities.

Both methodologies come with substantial drawbacks. Training an agent on a single asset makes the environment, i.e.
the sample size, relatively small. For that, considering a stock with a data history of ten years and daily datapoints
gives only approx. 2530 samples whereas, e.g. state-of-the-art neural networks for image recognition are evaluated
using datasets that are multiple orders of magnitude larger (He et al., 2016). Small datasets come with the drawback
that noise-induced signals are fit and do not provide sufficient information for a generalizable solution to the problem.

ar
X

iv
:2

11
2.

04
75

5v
1 

 [
q-

fi
n.

PM
] 

 9
 D

ec
 2

02
1



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

Moreover, out-of-sample results for single assets are rather weak in terms of their economic and statistical expressiveness.
Finding a hyperparameter setup that performs reasonable well in-, as well as out-of-sample, can be found with tenable
computational efforts. This makes solutions found for a single asset fairly restricted to the asset itself and are potentially
not valid for other assets. These issues motivate to train agents that are capable of trading asset portfolios. However,
when using neural networks to generate output for a vector of aset weights, a complete feature matrix for every period
is required. Specifically, each period that contains a missing value cannot be used for training and might also make
adjacent periods obsolete as periods are usually interconnected. This requires, e.g., a portfolio consisting of stocks listed
for the same time period. As a consequence, the number of available assets to combine into a portfolio is rather limited.
We make crucial extensions to Deep Q-learning (Mnih et al., 2013) to simultaneously benefit from large, cross-sectional
datasets and portfolios of assets while still using environments with only one asset at a time for training.

Our methodology contains three major extensions. First, we sample one asset from a set of assets and set up a typical
DRL environment for trading the single asset. Using asset-specific features in each state, the agent makes periodical
decisions when to invest in the single asset. At each terminal period, the environment is reset with a newly sampled
asset. Second, we reward investments in the single asset with its next period’s return. Reserving cash, i.e. not investing,
is rewarded with the mean return of the set of assets in the next period. Lastly, when evaluating the agent, in every
period, we build equally weighted portfolios with each asset the agent is willing to invest in. This methodology allows
using large, cross-sectional datasets with stronger generalization due to the random sampling of assets while the reward
function motivates the agent to actively avoid investments that the agent predicts to perform below average.

The remainder of the paper is structured as follows: Section 2 briefly introduces the concepts of DRL in the context of
trading financial assets and provides a short review of the related literature. Our algorithm, which uses Deep Q-learning
(Mnih et al., 2013), is proposed in Section 3 and tested on US stock data in Section 4. Section 5 concludes and discusses
implications for further studies.

2 Background and related literature

2.1 Reinforcement Learning

We assume that the task of trading a financial asset can be represented as a partially observable Markov decision
problem (POMDP) (Spaan, 2012). We do so as there must be some underlying state that describes every possible trading
decision made in the markets but is as large that it is pratically unobservable. We therefore construct an observable
subset of the state consisting of features that are sufficiently relevant. The features are outlined below. We follow the
standard definitions for the POMDP and denote the environment by E in which the agent acts. For each iteration, the
agent receives information about the state in time step t, denoted as st, and performs an action at from the action space
A. As a consequence, the environment returns a reward Rt from the reward functionR given the specific state-action
pair. Note that we use Rt for rewards and rt for financial returns in the following. That is, for every iteration, the agent
receives a tuple consisting of the state, action and reward, i.e. (st, at, Rt). Based on the tuple, the agent’s task is to find
a profitable trading strategy, given by the policy π(st).

When trading financial assets, the agent must make periodical decisions. The definition of a period can hereby vary
from split seconds to weeks. At each period, the agent receives information about the current state of the environment.
In the context of stock trading specifically, this may be the agent’s available capital and trading positions as well as
asset-specific information such as figures from recent earnings reports and the price history. The latter is frequently
represented by technical indicators.

Using the available information, the agent should decide on an action which results in a step in the environment. In a
financial trading environment that means undertaking an investment or adjusting portfolio weights with the available
capital. The reward is typically defined by the asset’s or portfolio’s return, either immediately for each period or
cumulative at the end of multiple periods. Alternatively, the excess return compared to a specific benchmark or the
Sharpe-Ratio can be well suited, too (Almahdi and Yang, 2017; Théate and Ernst, 2021; Yang et al., 2020).

2.2 Related work

DRL is widely used for trading and portfolio management. These studies are either concerned with trading assets
individually or trading portfolios by learning dynamic asset allocation policies. The following studies are concerned
with the trading of single assets.

Huang (2018) demonstrate the effectiveness of DRL for trading currency pairs. The author uses recurrent DRL to
trade 12 currency pairs and concludes that using a rather small replay memory, compared to what is used in standard
reinforcement learning, can be more effective. Moreover, the author finds that higher trading costs do not necessarily

2



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

decrease trading performance as learnt strategies become more robust. On all pairs, the agent successfully outperforms
the benchmark strategies buy-and-hold as well as sell-and-hold. Moreover, the author provides insights into the trading
behavior of the agents. That is, agents maintain higher win rates at approx. 60% with average profits close to zero.
These results are in line to our findings. Specifically, we show that the agents are capable of adjusting to increased
transaction costs as compared to active benchmark strategies while also yielding higher cumulative returns than a
passive investment approach.

The Deep Q-learning algorithm (Mnih et al., 2013) is a popular choice for automated financial asset trading. Théate
and Ernst (2021) test trading strategies based on DQN-agents over a cross-section of 30 stocks and stock indices. The
agents successfully find trading strategies that on average outperform a passive buy-and-hold strategy. The authors
train a DQN agent for each asset individually over a period of six years and evaluate their respective performance on
a subsequent two year time period. Overall, agents tend to alternate between a more passive, buy-and-hold strategy
and a mean-reversion strategy but cannot outperform a passive investment benchmark for some assets. We find that
the capability of alternating and combining multiple investment strategies to be crucial as we compare our agents to
both passive and active bechmarks whereas none of these is a domninant strategy in the proposed portfolio setups.
Li et al. (2019) compare different variants of the Deep Q-learning (vanilla vs. double vs. duelling) and find the best
performance when using the vanilla Deep Q-learning on ten US stocks. Addtionally, Zhang et al. (2020) compare
different DRL-algorithms in discrete and continuous action spaces for trading futures contracts. The analysis contains
50 futures contracts from multiple asset classes. The authors compare a variety of DRL methodologies on each asset
class by forming portfolios based on the decisions made on each asset. Overall, Deep Q-learning performs the best.
Besides, the authors show robustness in the performance of the algorithms for various levels of transaction costs. Based
on these results, we use the vanilla Deep Q-learning algorithm (Mnih et al., 2013) as our baseline algorithm. As our
choice of the neural network architecture, we follow Taghian et al. (2020) who compare different feature extraction
neural network architectures for the task of DRL for financial asset trading. Based on tests on four assets, the authors
find that, overall, a simple multi-layer-perceptron architecture based on a Deep Q-learning algorithm performs the best.
Furthermore, they find the best results using the time series of raw price data (i.e. open, high, low, close prices) as inputs
while comparing it with hand-crafted inputs from the time series of price data like candlestick patterns. As hand-crafted
inputs seem to provide little predictive power, we only transform the time series of past returns using multiple moving
averages in combination with stock specific data from quarterly statements to reduce the dimensionality of the input
vector.

Besides trading single assets, some studies address the portfolio allocation problem with DRL. Xiong et al. (2018) show
the effectiveness of DRL for portfolio trading using a DRL agent to trade a portfolio of 30 assets. The agent achieves an
annualized return of 22.24% in comparison to a 15.93% return given by the Dow Jones Industrial. Park et al. (2020)
achieve promising results using deep Q-learning for multi-asset trading. The authors use an action mapping function to
gain a discrete action space which is supposed to be more practical. The mapping function selects actions that are close
in effect to the agent‘s chosen action while keeping the tradeover relatively low. With this setup, the authors achieve an
outperformance over multiple benchmark strategies for a US and Korean portfolio. We follow the choice of a discrete
action space and show the agent’s capability to yield high cumulative returns even when transaction costs are high.

Jiang et al. (2017) utilize an ensemble of parallelly trained agents to dynamically weight assets. Agents are trained
independently and only share the last neural network‘s layer, i.e. the softmax. By applying the structure to the
cryptocurrency market on a 30-minute time frame, the technique produces cumulative returns in multiples of the
returns of the benchmark strategies and also strongly outperforms in terms of the Sharpe-Ratio. Srivastava et al.
(2020) use reinforcement learning to solve the problem of finding the optimal, dynamic asset allocation strategy. For
that, the authors compare different network structures for the agents, specifically a convolutional neural network,
vanilla recurrent neural network and a recurrent neural network with long short-term memory cells. Given a portfolio
of 24 US stocks, all structures successfully outperform an equally weighted portfolio in terms of total returns and
Sharpe-Ratio. Additionally, the authors present how feeding in the time series of past weights can stabilize trading
and, thus, dramatically reduce the turnover chosen by the agents. Almahdi and Yang (2017) show that recurrent DRL
agents perform well when optimizing for risk measures such as the Sharpe- or Calmer-Ratio. The authors validate
their findings by comparing out-of-sample trading agents with several benchmarks, all being outperformed by the
risk-measure-optimized agents.

Overall, these studies demonstrate the potential of DRL in portfolio management applications. We contribute to the
existing literature by proposing a DRL algorithm that is highly flexible in the portfolio setup. That is, using our
self-regularizing algorithm, one simple hyperparameter setup is sufficient to successfully trade a large variety of stock
portfolios. As such, our approach is flexible, i.e. not tailored to individual stocks and, hence, more generally applicable.
Furthermore, we completely disregard any hand-crafted, additional trading logic making the agent’s trading strategies
fully self-contained.

3



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

3 Deep Q-learning for Portfolio Management

A (risk-neutral) investor’s goal is the maximization of wealth WT , where T is the terminal period at the end of an
investment period, after undertaking a series of investment decisions that manipulate the initial wealth Wt=0. Starting
with an initial wealth of Wt=0, the investor undertakes investment decisions like buying and selling stocks. In the
following, one period corresponds to one day. That is, the agent can change its capital assignments daily. Hence, the
investor’s final wealth, WT is the cumulative return resulting from the daily decisions made by the agent, i.e.:

WT = Wt=0

T∏
t=1

(1 + rt),

with rt denoting the return at the end of day t. To simplify the objective, we consider the natural logarithm of wealth,
which is given by:

log(WT ) = log(Wt=0) +

T∑
t=1

log(1 + rt).

When the returns rt are close to zero, which is a reasonable assumption if the returns are measured on a daily frequency,
we use the following approximation:

T∑
t=1

log(1 + rt) ≈
T∑
t=1

rt,

such that the objective becomes to maximize the sum of (daily) returns. However, as investors are myopic (Benartzi and
Thaler, 1995), short-term returns should be more valuable than returns in the distant future. Thus, we discount returns
by a factor γ such that the objective changes to maximizing

∑T
t=1 γ

trt.

As the agent must learn from its periodical rewards, a value should be assigned to each state-action pair. To this end,
a state-action function is defined that assigns to each state-action pair a value based on the expected sum of future,
discounted rewards assuming that the agent will follow the policy π from the current timestep k to T , i.e.:

Q(s, a) = Eπ

[
T∑
k=0

γkRt+k | st = s, at = a

]
= Ea′∼π [Rt +Q(s′, a′) | st = s, at = a] ,

(1)

where Eπ is the expected value following policy π, s′ is the state that results from executing action a in state s and
a′ is the action chosen from policy π in state s′ (see also Sutton and Barto (2018)). A natural choice for a policy is
to always select the action that maximizes the state-action value. However, this requires a model which determines,
or, in a stochastic framework, approximates the state-action function Q(s, a). Mnih et al. (2013) suggest to solve this
issue by training neural networks (here specifically called Q-networks) to approximate the state-action function. The
authors use an agent that has a discrete action space and decides based on the state-action value predictions. The
Q-network, in which parameters are randomly initiated, is trained iteratively using stochastic gradient descent. Using
the squared loss between predicted state-action values and partially observed state-action values, the neural network is
iteratively enhanced. A predicted state-action value is obtained from the Q-network with the state-vector as the input
layer. Partially observed state-action values, yi, are obtained based on (1) where the reward Rt is observed and the
state-action value is predicted by the Q-network, however, assuming that in the consecutive periods only optimal actions
are chosen:

yi = Q∗(s, a) = E
[
Rt + max

a′
Q∗(s′, a′)|st = s, at = a

]
.

If state s is the terminal state then there are no more actions to take and no state-action value predictions necessary.
Hence, the target is set to the reward that is observed for the state-action pair: yi = Rt. Using the maximum expected
state-action value makes the algorithm off-policy, i.e. the policy is updated using actions that are not originated by the
policy itself. The squared loss, which should be minimized, results as:

Li(θi) = E[(yi −Q(s, a; θi))
2],

with the corresponding gradient as:

∇θiLi(θi) = Es′∼E
[
(Rt + γmax

a′
Q(s′, a′; θi−1)

−Q(s, a; θi)∇θiQ(s, a; θi)
]
.

(2)

Samples are generated via an epsilon-greedy strategy. That is, with a probability of ε, the agent chooses a random action
while it selects the greedy action, i.e. the action with the highest expected state-action value, with a probability of 1− ε.

4



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

This ensures that sufficient exploration is undertaken. However, the concrete value of ε depends on the problem itself.
Since consecutive samples can be highly correlated, the authors propose using an experience replay memory. While
exploring the environment, new samples are stored in the experience replay memory. When updating the Q-network’s
parameters via stochastic gradient descent, a batch of samples is randomly drawn from the experience replay memory.
This furthermore increases the sample efficiency of the algorithm as samples are used more than once (Mnih et al.,
2013). The full algorithm is called Deep Q-learning. We use the algorithm as described and include further extensions
such that it fits the purpose of trading financial asset portfolios.

Generally, the agent is supposed to be able to train portfolios of assets while it is also desirable that it can deal with
different history lengths of the assets. To deal with that, we differentiate between a training and a trading phase.

When training the agent, we only construct environments with single assets. Here, the agent needs to learn to trade a
single asset by either investing in the asset or holding cash. Our methodology is long-only which is a product of the
reward function that is outlined further below. A single asset environment is constructed by randomly drawing one of
the assets from the selection of available assets with replacement. That is, while training, each asset is shown to the
agent possibly multiple times. We define the state as a stack of asset-specific features and of a dummy variable that
indicates the most recent action the agent has made. Each time the agent reaches the terminal state of the asset’s data
history, a new asset is drawn, i.e. the environment is reset.

The process of optimal trading of financial portfolios by an agent can be defined as a maximization of wealth using a
policy that assigns capital to a set of assets. We use a discrete action space as motivated by Park et al. (2020). The
agent can choose between either at = 1 with which the agent invests in the asset or holds its long position if it already
invested. If it decides for at = 0, the agent decides to reserve cash for other investments. That reduces the problem to
the following decision made for each asset and period: Will the asset perform above-average or should the capital be
reserved for other assets? To promote that decision making, we reward investments in the asset with the next period’s
return adjusted for transaction costs C if they occur. The reward for reserving cash is the average next period’s return of
the set of assets. Thus, the reward function is defined as:

Rt =

{
rt+1,i − (1− at−1)C if at = 1
1
Nt

∑Nt

j=1 rt+1,j if at = 0,
, (3)

where rt+1,i is the next period’s return of the currently selected asset in the environment and Nt is the number of stocks
in the set of assets in period t.

This training setup enforces the agent to maximize the cumulative return in the training set. However, it is desired to find
a policy that achieves high cumulative returns in out-of-sample datasets. Thus, we prevent the agent from overfitting by
using a validation set. We use this set in regular evaluation intervals Ω by computing the out-of-sample cumulative
return achieved by the agent’s policy. We initialize the cumulative return on the validation set with CR∗v = 0. That is,
there will be no solution if the agent yields losses when trading in the validation set. However, this does not occur in our
experiments. For brevity, we define the steps without evaluation as ω. We save the Q-network’s parameters with which
the agent performs best on the validation set in terms of cumulative return. The full algorithm is stated in Algorithm 1

To compute cumulative portfolio returns, we compute state-action values for the assets in each period for both possible
actions, i.e. investing and reserving cash. For that, we construct an equally-weighted portfolio from the assets that the
agent wants to invest in, i.e. where the state-action values suggest a long position. As the agent can hold assets for
multiple periods but the weight of the asset may still change, we account for the costs that occur when the weights need
to be increased. These rebalancing costs occur when assets remain in the portfolio for multiple consecutive periods
while the portfolio shrinks in the number of assets.

4 Experiments

4.1 Methodology

We apply our algorithm to a cross-section of US stocks. To this end, we select a data history of 500 stocks including
daily data from 2010-01-01 to 2021-06-30. To evaluate the algorithm’s capabilities we compare cumulative returns
on the test period with three benchmarks. First, we use a passive approach via an equally weighted buy-and-hold
portfolio using all stocks. Second, we include two active investment strategies following momentum or reversion with a
simple rule. The momentum strategy invests in stocks with a positive average return over the last five trading days. In
contrast, the reversion strategy buys stocks that have a negative average return over the last five trading days. We report
cumulative returns for all strategies and considered sets of stocks. As the 500 stocks are selected based on their terminal
market capitalization, the resulting returns are higher than those of stock indices, like the S&P500.

5



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

Algorithm 1 Deep Q-learning for portfolio trading
Extensions to the original Deep Q-learning algorithm from (Mnih et al., 2013) are marked in italics.

1: Initialize experience replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: Sample random asset and generate environment
4: Initialize highest cumulative return on validation set to CR∗v = 0
5: Initialize steps without evaluation to ω = 0
6: for t = 1 to N do
7: ω = ω + 1
8: if ω = Ω then
9: Get cumulative return on validation set and store in CRv

10: if CRv > CR∗v then
11: Update Q-network parameters with current parameters: θ∗← θ
12: Set CR∗v ← CRv
13: end if
14: Set ω = 0
15: end if
16: Get current state st
17: With probability ε select random action at
18: else select greedy action: at = argmaxa Q(s, a)
19: Update trading position and receive reward Rt according to (3)
20: Observe next state st+1

21: Store transition (st, at, rt, st+1) in D
22: Sample batch of (sj , aj , rj , sj+1) from D
23: Set

yj =

{
Rj if state is terminal
Rj + γmaxa′Q(sj+1, a

′; θ) otherwise
24: Perform gradient step on (yj −Q(sj , aj ; θ))

2 according to (2)
25: if state is terminal then
26: Sample new random asset and generate environment
27: end if
28: end for

We construct 15 portfolios from the cross-section. These differ in the number of stocks k and the selection criteria.
That is, we form portfolios with k being 10, 25, 50, 100 and 200. For each k, we build portfolios using the biggest
and smallest k stocks in terms of market capitalization and one where k stocks are randomly selected from the full
cross-section. This gives each portfolio unique characteristics although they partly may share stocks. Besides, we also
test the algorithm using all 500 stocks available. After selecting stocks for each portfolio, we drop for each stock those
periods that contain a missing value. However, we keep the period’s data for all other stocks, as the algorithm is capable
of trading a varying portfolio size and, hence, is not affected by data gaps. We split every portfolio’s data history into a
training, validation and test set. Validation starts on 2019-01-01, testing at 2020-01-01. This yields a test period that is a
great challenge for the agent since it includes periods with sharp losses at the beginning of the Covid-19 pandemic
coupled with a strong trend change resolving into a market with overall large gains while the agent is trained over a less
volatile period. This situation allows to access the true capabilities of the agent to adjust to extreme scenarios, but using
the beginning of 2020, the agent is also tested during a more tranquil period.

We use both fundamental data available from quarterly statements and the stock price history. As of fundamental data
we use the following indicators: sales per share, gross margin, operating margin, net profit margin, return on equity,
return on assets, current ratio, debt ratio, market capitalization, the book to market equity ratio and the latest close price
which are overall closely related to key factors found in Fama and French (2015). A key feature for trading financial
assets via DRL is the price history and is typically used in the input layer, e.g. in Almahdi and Yang (2017); Jiang et al.
(2017); Théate and Ernst (2021); Zhang et al. (2020). To reduce the dimensionality of the input vector, we transform the
price history using moving averages of the return history, both arithmetically and exponentially weighted. We hereby
use windows of 5, 10, 20, 50, 100 and 200 days. Furthermore, we use rolling standard deviations of returns over a
history length of 5, 10, 20, 50, 100 days. Lastly, the Q-network’s input vector contains a dummy variable indicating if
the agent has already invested in the currently observed stock. This may be relevant for deciding if a trade is worth the

6



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

lo
w

m
id

hi
gh

Level of transaction cost

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e 

da
ily

 re
tu

rn
 in

 %

Early 2020
Agent
Buy-and-hold
Momentum
Reversion

lo
w

m
id

hi
gh

2.0

1.5

1.0

0.5

0.0
Covid-19 crash

lo
w

m
id

hi
gh

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Post-crash recovery and growth

Figure 1: Out-of-sample trading performances for each level of transaction costs while splitting the test period into
three phases based on market conditions.

transaction costs. Features are scaled to be normally distributed with a zero-mean and unit standard deviation using the
training dataset. Afterwards, scaling is only applied to the validation and test dataset.

In our analyis, daily returns are used to calculate the reward for each period. We assume that the agent can enter the
market for any amount of shares at the trading day’s opening price and close all positions at the closing price. Besides,
we analyze the performances for three levels of transaction costs: 1, 5, 10 basis points (bps). We hereby follow the
literature that uses DRL for trading. E.g., Srivastava et al. (2020) assume 5 bps for a US stock portfolio, Théate and
Ernst (2021) assume transaction costs from 0 to 20 bps for single stocks and Zhang et al. (2020) analyze the performance
achieved for futures contracts from 1 up to 45 bps.

4.2 Hyperparameters

One of the main advantages of using reinforcement learning next to supervised learning for the portfolio management
task is the ability of the agents to not only make predictions about the next period but also to place that prediction into
the scope of a long-term planning process using discounted rewards. However, a financially reasonable risk-adjusted
discount factor, e.g. the daily average rate of return of a market index, is typically very close to one. This means that
the agent has to make long-term predictions about the distant future development of the stock. On the other hand, we
expect more myopic predictions to be more reliable. Similarly, Théate and Ernst (2021) state that there is a trade-off
between long-term orientation and increasing uncertainty in returns far into the future. Still, there are examples in
which a discount factor close to one worked out well, e.g. in Huang (2018) or Chen et al. (2021). According to our
expectation, we found that when the discount factor is too close to 1, the uncertainty about future returns becomes too
high and the policy breaks down to a constant prediction that chooses the same action in every state. The issue resolves
at a discount factor of 0.9, a value that is also used in the Deep Q-learning approach of Park et al. (2020). The same
reasoning applies to the exploration rate. We found that a higher exploration of 30% enables the agent to regularly
find improvements to its policy and avoids getting stuck in local minima. We found that 3,000,000 training steps are
sufficient for every setup and optimal solutions are likely to be found much earlier. As in Mnih et al. (2013) we keep the
experience memory size at 10% of the number of training steps, i.e. at 300,000. Moreover, to increase the training
efficiency, we do gradient steps every 20 iterations and use a large batch size of 1024 to efficiently use the capabilities
of GPUs. Alongside, we evaluate the agent 300 times during training, i.e. every 10,000 iterations. It is important to
note that the choice of the evaluation interval is associated with a trade-off between the additional time required for
computations and performance that is lost due to unfrequent evaluations.

Financial data for return predictions contain a low signal-to-noise ratio. To avoid overfitting, we need to keep the
number of parameters in the networks relatively low. We found it more useful to extend the number of layers instead of
making the network wider, as, in much larger scales, is also done in He et al. (2016). Hence, we use two hidden layers,
activated by ReLU, with either 32, 64 or 128 neurons. Furthermore, we combine predictions from the three network
configurations, forming an ensemble of predictors. Krizhevsky et al. (2012) boost accuracy in an image classification
task using an ensemble of convolutional neural networks. Xie et al. (2013) show increased performance using ensembles
of multiple networks for representation learning. Lastly, to update the weights of the agents’ networks, we use the
Adam optimizer, see also Kingma and Ba (2014). All hyperparameters are summarized in Table 1.

7



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

Table 1: List of hyperparameters used for all portfolio setups.

Parameter Symbol Value

Discount factor γ 0.9

Exploration probability ε 0.3

Number of iterations N 3,000,000

Experience memory size N 300,000

Gradient step interval − 20

Evaluation interval Ω 10,000

Optimizer − Adam

Batch size − 1024

Number of hidden layers − 2
Number of neurons

in hidden layers − 32 or 64 or 128

4.3 Results

For each of the portfolio and transaction costs setups, we train three agents (one for each Q-network setup) and form
the respective ensembles. Then, we evaluate the out-of-sample performance using cumulative returns achieved in the
test period compared to the three benchmark strategies. This gives in total 148 agents to train and 48 unique portfolio
and transaction costs setups. All out-of-sample cumulative returns are reported in Table 2 (best performing strategies
are indicated in bold) and outlined in greater detail in Fig. 2 - 5 in the appendices. Overall, the agent outperforms all
benchmark strategies in 36 out of the 48 cases, and achieves the highest mean cumulative returns in every transaction
costs setup. Individually compared to each of the benchmark strategies, the agent outperforms in 37, 44 and 44 out of
the 48 cases the buy-and-hold, momentum, that buys stocks with recent positive returns, and reversion strategy, that
buys stocks with recent negative returns, respectively. Agent outperformances are more consistent and higher when
portfolios are larger, i.e. when more than 50 stocks are included. This is to be expected as the training dataset is growing
only in the number of stocks and, thus, contains more information when the number of stocks is increased. Moreover,
the agent shows the strongest relative outperformance on portfolios with smaller stocks. Both the agent and the active
benchmark strategies (momentum and reversion) suffer from increasing transaction costs. However, the agent shows
adaptiveness as the loss in performance is notably lower compared to the active benchmark strategies. Although the
momentum strategy performs worse than the reversion strategy on average, there are setups in which the momentum
strategy is superior to the reversion strategy. This indicates that the agents need to be highly dynamic in terms of the
learnt strategies for each of the setups.

The test period can be split into three major phases around the crisis starting in March 2020. Before, the set of assets
yields moderate, positive average returns in an uptrend followed by sharp losses during the crisis. Afterwards, the stock
selection quickly recovers and realizes large gains. The agent’s achieved mean returns in each of the three periods are
compared to the benchmark strategies in Fig. 1. We find that the proposed algorithm performs especially well in the
beginning of the test period and even improves the performance when increasing the transaction costs from 5 to 10
bps. However, the strategy does not outperform the benchmarks during the stock market losses in the beginning of the
Covid-19 pandemic. As there is no major crisis in the training set, this result may be expected. In the case of recovering
markets and larger gains, we find that the agent outperforms all benchmarks strategies on average which is in line with
the results in early 2020.

5 Conclusion

This paper proposes key extensions to Deep Q-learning (Mnih et al., 2013) to make the algorithm suitable for the trading
of financial asset portfolios. We generate environments with single assets randomly drawn from a set of assets and put
trading returns in the isolated environments into a portfolio-orientated perspective by rewarding cash reservation with
the mean return of the set of assets. Furthermore, we use a validation set and reserve the best performing parameters in
the Q-network to prevent overfitting. We use an ensemble of agents which further decrease overfitting and makes our
methodology highly flexible in the number of assets.

8



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

Table 2: Out-of-sample cumulative returns at the end of the test period for each level of transaction costs and different
portfolios

Transaction costs Portfolio size Portfolio type Agent Buy-and-hold Momentum Reversion

1 bp

10

big 222.9% 129.5% 103.6% 63.8%

random 68.1% 56.4% 50.6% 29.7%

small 109.0% 65.7% 100.7% 108.7%

25

big 41.4% 66.2% 39.4% 58.8%

random 78.6% 48.1% 47.6% 38.2%

small 147.8% 84.0% 108.5% 94.1%

50

big 101.0% 52.7% 44.5% 60.9%

random 90.8% 62.5% 16.9% 79.9%

small 119.0% 66.9% 51.7% 85.9%

100

big 126.0% 56.3% 53.8% 90.1%

random 185.9% 67.8% 17.1% 116.6%

small 475.0% 68.0% 52.2% 72.0%

200

big 115.6% 58.9% 31.0% 111.5%

random 84.4% 63.6% 17.7% 106.1%

small 195.0% 59.4% 41.0% 76.5%

500 all 155.1% 59.2% 40.4% 89.5%

Mean 144.7% 66.6% 51.1% 80.1%

5 bps

10

big 123.2% 129.5% 76.6% 44.3%

random 24.2% 56.4% 31.1% 13.1%

small 173.7% 65.7% 73.6% 81.7%

25

big 11.6% 66.2% 20.4% 37.1%

random 38.5% 48.1% 27.4% 19.2%

small 134.6% 84.0% 79.9% 67.5%

50

big 76.0% 52.7% 24.7% 38.8%

random 79.2% 62.5% 0.6% 54.8%

small 64.3% 66.9% 30.7% 60.2%

100

big 104.4% 56.3% 32.5% 63.6%

random 107.3% 67.8% 0.8% 86.5%

small 204.1% 68.0% 30.9% 48.0%

200

big 89.0% 58.9% 12.8% 82.0%

random 103.1% 63.6% 1.3% 77.4%

small 99.0% 59.4% 21.3% 51.8%

500 all 100.8% 59.2% 20.8% 63.1%

Mean 95.8% 66.6% 30.3% 55.6%

10 bps

10

big 127.6% 129.5% 47.8% 23.3%

random 3.5% 56.4% 10.2% -4.7%

small 68.3% 65.7% 44.7% 52.7%

25

big 46.1% 66.2% 0.2% 14.2%

random -41.0% 48.1% 5.8% -0.9%

small 114.3% 84.0% 49.5% 39.3%

50

big 53.8% 52.7% 3.6% 15.4%

random 55.2% 62.5% -16.6% 28.4%

small 107.7% 66.9% 8.5% 32.9%

100

big 69.4% 56.3% 9.9% 35.7%

random 131.0% 67.8% -16.4% 54.7%

small 153.1% 68.0% 8.5% 22.6%

200

big 74.1% 58.9% -6.5% 50.8%

random 70.2% 63.6% -16.0% 47.0%

small 92.7% 59.4% 0.5% 25.8%

500 all 86.0% 59.2% 0.1% 35.1%

Mean 75.7% 66.6% 8.4% 29.5%

9



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

With only a single hyperparameter setup, we test our methodology on 16 US stock portfolio configurations which vary
in the number of stocks as well as the selection criteria. We benchmark the performance against a passive buy-and-hold
and an active momentum and reversion strategy. Furthermore, we test three levels of transaction costs. The proposed
methodology shows promising results, outperforming all benchmarks in 75% of the setups. We find the algorithm to
generate excess returns in rising market environments, however, it cannot avoid the sharp losses during the beginning of
the pandemic. These findings motivate further extensions such as the inclusion of short-sales and accounting for risk,
e.g. using the Sharpe-ratio.

References
Almahdi, S. and Yang, S. Y. (2017). An adaptive portfolio trading system: A risk-return portfolio optimization using

recurrent reinforcement learning with expected maximum drawdown. Expert Systems with Applications, 87:267–279.
Benartzi, S. and Thaler, R. H. (1995). Myopic loss aversion and the equity premium puzzle. The quarterly journal of

Economics, 110(1):73–92.
Chen, S., Luo, W., and Yu, C. (2021). Reinforcement learning with expert trajectory for quantitative trading. arXiv

preprint arXiv:2105.03844.
Fama, E. F. and French, K. R. (2015). A five-factor asset pricing model. Journal of financial economics, 116(1):1–22.
Fischer, T. and Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions.

European Journal of Operational Research, 270(2):654–669.
Gu, S., Kelly, B., and Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies,

33(5):2223–2273.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 770–778.
Huang, C. Y. (2018). Financial trading as a game: A deep reinforcement learning approach. arXiv preprint

arXiv:1807.02787.
Jiang, Z., Xu, D., and Liang, J. (2017). A deep reinforcement learning framework for the financial portfolio management

problem. arXiv preprint arXiv:1706.10059.
Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks.

Advances in neural information processing systems, 25:1097–1105.
Li, Y., Ni, P., and Chang, V. (2019). Application of deep reinforcement learning in stock trading strategies and stock

forecasting. Computing, pages 1–18.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing

atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
Park, H., Sim, M. K., and Choi, D. G. (2020). An intelligent financial portfolio trading strategy using deep q-learning.

Expert Systems with Applications, 158.
Patel, J., Shah, S., Thakkar, P., and Kotecha, K. (2015). Predicting stock and stock price index movement using trend

deterministic data preparation and machine learning techniques. Expert systems with applications, 42(1):259–268.
Spaan, M. T. (2012). Partially observable markov decision processes. In Reinforcement Learning, pages 387–414.

Springer.
Srivastava, S. et al. (2020). Deep reinforcement learning for asset allocation in us equities. arXiv preprint

arXiv:2010.04404.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Taghian, M., Asadi, A., and Safabakhsh, R. (2020). Learning financial asset-specific trading rules via deep reinforcement

learning. arXiv preprint arXiv:2010.14194.
Théate, T. and Ernst, D. (2021). An application of deep reinforcement learning to algorithmic trading. Expert Systems

with Applications, 173.
Wolff, D. and Echterling, F. (2020). Stock picking with machine learning. Available at SSRN 3607845.
Xie, J., Xu, B., and Chuang, Z. (2013). Horizontal and vertical ensemble with deep representation for classification.

arXiv preprint arXiv:1306.2759.
Xiong, Z., Liu, X.-Y., Zhong, S., Yang, H., and Walid, A. (2018). Practical deep reinforcement learning approach for

stock trading. arXiv preprint arXiv:1811.07522.

10



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

Yang, H., Liu, X.-Y., Zhong, S., and Walid, A. (2020). Deep reinforcement learning for automated stock trading: An
ensemble strategy. Available at SSRN.

Zhang, Z., Zohren, S., and Roberts, S. (2020). Deep reinforcement learning for trading. The Journal of Financial Data
Science, 2(2):25–40.

Appendices
A Cumulative out-of-sample returns

The following figures show test returns for the respective portfolio setups achieved by the algotihm against the
benchmarks.

2020-01-02 2020-08-06 2021-03-12

25

0

25

50

75

100

125

150

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

Transaction costs of 1 bp
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

100

Transaction costs of 5 bps
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

Transaction costs of 10 bps
Agent
Buy-and-hold
Momentum
Reversion

Figure 2: Test trading performances of the proposed agent compared to the benchmark strategies including all 500
stocks for the different levels of transaction costs.

11



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

2020-01-02 2020-08-06 2021-03-12

0

50

100

150

200
Cu

m
ul

at
iv

e 
re

tu
rn

 in
 %

10 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12
40

20

0

20

40

60

80
10 random

2020-01-02 2020-08-06 2021-03-12

50

25

0

25

50

75

100

125

10 small

2020-01-02 2020-08-06 2021-03-12

20

0

20

40

60

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

25 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12
60

40

20

0

20

40

60

80
25 random

2020-01-02 2020-08-06 2021-03-12

25

0

25

50

75

100

125

150

25 small

2020-01-02 2020-08-06 2021-03-12

20

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

50 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

50 random

2020-01-02 2020-08-06 2021-03-12
50

25

0

25

50

75

100

125

50 small

2020-01-02 2020-08-06 2021-03-12
40

20

0

20

40

60

80

100

120

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

100 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12
50

0

50

100

150

100 random

2020-01-02 2020-08-06 2021-03-12

0

100

200

300

400

500
100 small

2020-01-02 2020-08-06 2021-03-12
40

20

0

20

40

60

80

100

120

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

200 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

100

200 random

2020-01-02 2020-08-06 2021-03-12
50

0

50

100

150

200
200 small

Figure 3: Test trading performances of the proposed agent compared to the benchmark strategies in the respective
portfolio setup assuming transaction costs of 1 bp.

12



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

2020-01-02 2020-08-06 2021-03-12

20

0

20

40

60

80

100

120
Cu

m
ul

at
iv

e 
re

tu
rn

 in
 %

10 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12
40

20

0

20

40

60
10 random

2020-01-02 2020-08-06 2021-03-12
50

0

50

100

150

200

10 small

2020-01-02 2020-08-06 2021-03-12

20

0

20

40

60

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

25 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

25 random

2020-01-02 2020-08-06 2021-03-12

25

0

25

50

75

100

125

25 small

2020-01-02 2020-08-06 2021-03-12

20

0

20

40

60

80

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

50 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

50 random

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

50 small

2020-01-02 2020-08-06 2021-03-12
40

20

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

100 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

100

100 random

2020-01-02 2020-08-06 2021-03-12
50

0

50

100

150

200

100 small

2020-01-02 2020-08-06 2021-03-12
40

20

0

20

40

60

80

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

200 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

100

200 random

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

100

200 small

Figure 4: Test trading performances of the proposed agent compared to the benchmark strategies in the respective
portfolio setup assuming transaction costs of 5 bps.

13



High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning

2020-01-02 2020-08-06 2021-03-12

25

0

25

50

75

100

125

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

10 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60
10 random

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80
10 small

2020-01-02 2020-08-06 2021-03-12

20

0

20

40

60

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

25 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

25 random

2020-01-02 2020-08-06 2021-03-12

25

0

25

50

75

100

125

25 small

2020-01-02 2020-08-06 2021-03-12

20

0

20

40

60

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

50 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

50 random

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

100

50 small

2020-01-02 2020-08-06 2021-03-12
40

20

0

20

40

60

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

100 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12
50

25

0

25

50

75

100

125

100 random

2020-01-02 2020-08-06 2021-03-12
50

25

0

25

50

75

100

125

150

100 small

2020-01-02 2020-08-06 2021-03-12
40

20

0

20

40

60

80

Cu
m

ul
at

iv
e 

re
tu

rn
 in

 %

200 big
Agent
Buy-and-hold
Momentum
Reversion

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

200 random

2020-01-02 2020-08-06 2021-03-12

40

20

0

20

40

60

80

100
200 small

Figure 5: Test trading performances of the proposed agent compared to the benchmark strategies in the respective
portfolio setup assuming transaction costs of 10 bps.

14


	1 Introduction
	2 Background and related literature
	2.1 Reinforcement Learning
	2.2 Related work

	3 Deep Q-learning for Portfolio Management
	4 Experiments
	4.1 Methodology
	4.2 Hyperparameters
	4.3 Results

	5 Conclusion
	Appendices
	A Cumulative out-of-sample returns

