arXiv:1406.5487v1 [g-fin.ST] 20 Jun 2014

Survival Models for the Duration of Bid-Ask Spread
Deviations

Efstathios Panayi
Department of Computer Science
University College London
London, WCI1E 6BT
Email: efstathios.panayi.10@ucl.ac.uk

Abstract—Many commonly used liquidity measures are based
on snapshots of the state of the limit order book (LOB) and
can thus only provide information about instantaneous liquidity,
and not regarding the local liquidity regime. However, trading
in the LOB is characterised by many intra-day liquidity shocks,
where the LOB generally recovers after a short period of time.
In this paper, we capture this dynamic aspect of liquidity using a
survival regression framework, where the variable of interest is
the duration of the deviations of the spread from a pre-specified
level. We explore a large number of model structures using a
branch-and-bound subset selection algorithm and illustrate the
explanatory performance of our model.
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I. INTRODUCTION

Market liquidity is considered a desirable characteristic of
financial markets, as in liquid markets we generally expect to
observe fewer abrupt changes, or ‘jumps’, in terms of either
the security price or the volume available for that security. In
such markets, participants can both build positions in these
securities, and liquidate them, without incurring substantial
execution costs. For some investors, liquidity is the most
important decision-making criterion in selecting the markets
and assets they would like to invest in, and is a central concept
that quantifies the quality of particular securities markets.

We focus on activity in the limit order book (LOB), the
central matching mechanism in use in over half of the world’s
stock exchanges today [24]. It collects all the buying and
selling interest in a particular stock and presents an aggregation
of these orders to every market participant. [24] suggests
that limit orders are submitted at different levels, in order
for market participants to protect themselves from adverse
selection, that is, execution of their order against a trader with
superior information. Thus, understanding the dynamics of the
LOB is important and it can help lower trading costs, through
the design of a schedule for the execution of large buy or sell
orders.

A large number of orders resting in the LOB come from
market making activity, and it is precisely this activity that we
would expect to replenish the LOB after a shock (for example,
after a large market order, or a series of cancellations). In this
setting, patient traders may want to wait until this replenish-
ment occurs before placing an order. This would reduce the
trading costs they would have to incur, by crossing a large
bid-ask spread for example. However, a snapshot of the LOB,
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such as that presented on traders’ terminals, is not informative
about the time such traders would have to wait.

In this paper we propose a model for the time required for
the spread to recover after a shock. We measure the duration of
the deviation of the spread from a pre-specified level and relate
it to a number of instantaneous and lagged covariates obtained
from the LOB. This is achieved through the development of a
survival regression framework. We explore a very large number
of model structures, and fit the model to a four month dataset
of LOB data from the Chi-X exchange. We can thus identify
covariates that have explanatory power over time.

Our survival regression approach is related to the model of
Lo et al. [22]], who had similarly utilised an accelerated failure
time formulation. However, their model was for the lifetime
of individual limit orders, while ours is for the deviation
of the spread and as such is more informative about the
liquidity regime. In addition, our regression model incorporates
more information about both instantaneous and lagged LOB
structural variables, and we show that these have substantial
explanatory power in explaining our observations.

The contribution of this paper is in developing a new
approach to modelling the relationship between the intra-day
structure of the LOB and the duration of spread deviations
from a pre-defined threshold level. In this context, we show
that incorporating LOB covariates in a survival regression
framework can explain a substantial part of the variation in the
spread duration deviations. We also explain how one can use
a branch-and-bound algorithm to explore different regression
model structures, in order maximise this explanatory power.

For each feature of the LOB considered as an explana-
tory variable, we evaluate whether an inter-day stationarity
assumption is suitable over our sample period. We find that it
is not, and thus fit the model separately to each daily dataset. In
addition, we investigate the relative increase in the explanatory
power as we increase the number of covariates in the model.
Finally, we provide an interpretation for the contribution of the
covariates that form part of the optimal models in explaining
the variation in the observed durations of spread deviations.

The remainder of this paper is structured as follows:
Section [[I] explains the operation of the LOB and describes
features of the dataset used in this paper. Section [III] explains
how our work relates to the literature in liquidity modelling and
survival analysis. Section [[V] formally defines the observation
random variables, the LOB covariates and the survival model.



Section [V] presents our results, in terms of the explanatory
power of the model and Section [V concludes.

II. LIMIT ORDER BOOK DATA

The central limit order book is a centralised system that
displays the trading interest in a particular stock on a given
trading venue. Market participants are typically allowed to
place two types of orders on the venue: Limit orders, where
they specify a price over which they are unwilling to buy (or
a price under which they are unwilling to sell), and market
orders, which are executed at the best available price. Market
orders are executed immediately, provided there are orders of
the same size on the opposite side of the book. Limit orders
are only executed if there is trading interest in the order book
at, or below (above), the specified limit price. If there is no
such interest, the order is entered into the limit order book,
where orders are displayed by price, then time priority.

Figure [I] shows an example snapshot of the order book
for a particular stock, as traded on the Chi-X exchange, at a
particular instance of time. A market order to buy 200 shares
would result in 3 trades: 70 shares at 2702, another 100 shares
at 2702 and the remaining 30 at 2704. A limit order to sell
300 shares at 2705, on the other hand, would not be executed
immediately, as the highest order to buy is only at 2700 cents.
It would instead enter the limit order book on the right hand
side, second in priority at 2705 cents after the order for 120
shares which is already in the book.

(Buy |
100 —1 2700 70 — 100
80 — s0 —| 2699 20
200 —| 2698 s
500 — 30 — 100 —| 2696 300 — 100 — 250
100 — 300 — 500 —| 2693 100 — 400

Fig. 1. An example of the state of the LOB

We study a dataset from the Chi-X exchange (prior to
its merger with BATS), for the period between the 2nd of
January and the 27th of April 2012. Our 82 day sample
contains information relating to the trading of stock Alstom
SA, a French energy and transportation company that is part
of the CAC40 index. This consists of all timestamped limit
order submissions, executions and cancellations within normal
business hours. The exchange has both a visible and a hidden
order book and orders are routed to each book according to
the type and size of the order. The visible book supports the
submission of a number of order types EL however, these are all
converted by the exchange matching engine into time stamped
limit order submissions, executions and cancellations, and this
is what is contained in our dataset.

The activity in our dataset is characterised by a relatively
low proportion of trades, compared to the number of limit

Uhttp://www.chi- xeurope.com/document-library/
chi-x-europe-exchange- guide-v2-7-f.pdf
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Fig. 2. Total trading activity in the LOB for Alstom SA on the Chi-X trading
venue over January 2012.

order submissions and cancellations. This is a feature of
modern financial markets, and there are a number of factors
contributing to this. For example, there are the activities
of market makers, who need to price their bids and offers
appropriately, so as to avoid the risk of adverse selection [24].
Some proprietary trading algorithms may also produce a large
number of cancellations, due in part to ‘chasing’ the current
market price for the asset, or seeking ‘latent’ liquidity (i.e.
that is available, but not displayed) . There are also orders
submitted very far from the top of the order book, and as such,
have a very small probability of execution [25]]. For the dataset
considered in this paper, we generally have between 150,000
and 300,000 daily events, of which only between 1.5% and
5% are executions, as indicated in Figure Q

III. RELATED WORK
A. Bid-ask spread literature

The bid-ask spread, or the difference between the highest
bid and lowest offered price in the LOB, represents the cost
that an investor must incur in order to be guaranteed immediate
execution, i.e. by crossing the spread with a market order.
In the financial literature, early models focusing on quote-
driven (dealer) markets had attributed the variation of the
spread on inventory holding costs and the risk of adverse
selection [I1]], while Huang and Stoll also find a large
order processing component. Affleck-Graves et al. [2] then
found differences in the breakdown of the spread into these
components in quote and order-driven markets.

The intra-day variation of the spread in different markets
has different properties: For example, while Chan et al.
found a declining intra-day spread for NASDAQ securities,
Abhyankar et al. found a U-shape pattern. Chordia and
Roll [9]] study of timeseries variations in the bid-ask spread.
They found that (long-term) liquidity is influenced by factors
such as interest rates, market volatility and seasonal effects.

Our contribution to this literature is in introducing a time
component to existing considerations about the variation of
the spread. That is, while we do not model the absolute level
of the spread, we propose a model with explanatory power
about the duration of the deviation of the spread from a
specified threshold level. We also focus on much shorter time
intervals than those considered thus far, typically in the order
of milliseconds. This is necessary in markets which have an
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increasing representation of high frequency trading firms [18]],
and where the order flow of such firms has an impact on market
quality [S]]. Our model is furthermore distinguished from the
work attributing the spread to various theoretical determinants,
in that it evaluates the explanatory power of covariates without
proposing an explicit theoretical stochastic model of the LOB.

B. Survival models

Survival analysis is a technique used to model the lifetimes
of certain variables of interest that are usually subject to
competing risks. It has been used in the past to predict
financial distress (e.g. [14], [21]), to examine the lifetimes
of hedge funds [16] and to model the time-to-exit of venture
capital firms from their investments [15]. Deville and Riva
[10] used a similar approach, with a Weibull specification, to
model the duration of the deviation from put-call parity of the
French index options market. They found that the ‘time-to-no-
arbitrage’ is systematically linked to liquidity-related variables,
such as the traded volume on the options or index markets.

To the best of our knowledge, our paper is the first to
examine fluctuations in the spread explicitly using a survival
model. However, there has been related work in modelling
the lifetime of individual limit orders (that is, the time be-
tween execution and cancellation), with early models by Al-
Suhaibani and Kryzanowski [3|] for the less liquid Saudi stock
market, and by Cho and Nelling [8|] for the New York Stock
Exchange. In developing our survival model for the duration
of the deviations of the spread, we note that we learn from
the survival regression framework proposed in Lo et al. [22]
what could be a reasonable subset of covariates (transforms) of
the LOB structure to consider in our model. We also employ
the accelerated failure time survival formulation used in their
model.

There are two major differences in our approach, compared
to that of Lo et al. [22]: Firstly, they handle censoring
differently, as they consider cancelled orders to be censored
observations, or failed executions. This may be due to the fact
that they study a dataset from a brokerage firm that served
mainly institutional clients, with a much lower proportion
of cancellations. Secondly, they only consider explanatory
variables that take into account the top of the order book
(highest bid and lowest offer price, as well as the volume at
those levels), whereas we take into account the first 5 levels on
both the bid and ask side, as well as lagged versions of those
variables. We demonstrate the importance of new features not
previously utilised in this study.

A related study by Chakrabarty et al. [[6] develops a
competing risk framework to further distinguish between the
lifetimes of executed or cancelled limit orders in a LOB. In this
survival regression study they also utilise the same covariates
employed in [22f]. In our paper, we do not use a competing
risk framework, as for us it not important to make a distinction
regarding whether the spread recovered to a former level due
to the arrival of limit orders to buy or limit orders to sell.

IV. SPREAD DEVIATIONS AND MODEL FORMULATION

Figure [3] shows an example of the durations of deviations
above threshold levels of the spread, the quantity we are mod-
elling in our survival regression approach. We show multiple

levels here, to note that there is flexibility in the choice of
the liquidity threshold, for example as a quantile of some
historical distribution of the liquidity measure. The recovery of
the spread to (say) its historical median value may be important
to a brokerage house or a large fundamentals trader executing
a large order, while a regulator may be more interested in the
duration of more infrequent events, where the spread reaches
very high quantile levels of the empirical distribution.

spread

1

Fig. 3. An example of the durations of spread deviations above four different
thresholds.

We note that in collecting our observations from our
dataset, the granularity of the millisecond-stamped transactions
and the speed of intra-day LOB revisions are such that we often
have deviations of duration 0. As this would cause problems
with the estimation of our model, we set the duration of these
deviations to 0.1 ms (100 microseconds), which is in the order
of the smallest round-trip time for messages to the exchange.

A. Notation and definitions of LOB variables and survival
model components

In general we will reserve upper case letters to denote
random variables, bold for random vectors and lower case
letters for the realizations of these random variables and
vectors. In addition, we utilise the following notation for a
single asset, on a single trading day:

e ¢ denotes the ask, b denotes the bid.

. Ptb’l € NT denotes the random variable for the limit
price of the i*" level bid at time ¢ in tick units. A
‘level’ is defined as one in which there is at least one
resting limit order at time ¢.

. Pta’i € N7 denotes the random variable for the limit
price of the i*" level ask at time ¢ in tick units.

[ th’i € N" denotes a column random vector of orders
at the 7*" level bid at time t.

o S =P - Ptb’1 denotes the random variable for the
spread at time ¢.

e ¢ denotes the threshold level of the spread, defined in
the same units as the spread S;. ¢ is deterministic and
constant over time.



e T, denotes the i-th random time instant in
a trading day that the spread S; exceeds
the threshold c. Formally, we define

T, = inf{t:S;>¢ t>T;, t>Ty}, where Ty
denotes the start of the observation window (1 minute
after the start of the trading day).

e 7; will denote the duration of time in ms, relative to
the exceedance event T3, that the liquidity measure S
remains above the threshold c. These are the response
random variables which correspond to the durations
of spread deviations. We impose an upper bound 7; <
Tp —T;, where Tp denotes the end of the observation
window (1 minute before the end of the trading day).
If a return of the liquidity measure S; to the threshold
¢ has not occurred by time Tp, we consider the
observation censored. Censored observations must be
accounted for separately in the model estimation, as
explained in this section.

a,l 1
Using this notation, we define the P/" = % as
the random variable of the quoted midpoint, or mid price. In
addition, we denote the total volume available at for example
the i-th bid level by TV;" = 17 .V, where 1,, is a column
vector of 1s. We then represent an incoming buy limit order,
with information relating to time, price and size and an order
id as 1 = (Iy, 1, 15, 1d).

For the threshold c, in this paper we take all observations
of the spread on the 2nd of January 2012. Using these
observations, we construct the empirical distribution and define
the threshold to be the median of that distribution, which
corresponds to €0.03, or 3 cents.

B. Observations

Based on these definitions, we can now formally define
the observation random variables to illustrate the survival
regression framework we develop. In the regression framework
we develop we would then select a threshold level ¢ as
described above, and define the durations of spread deviations
as:

T = inf{t L PR e t> Tt > To}

We consider here c to be given by the median, and thus 7; is
a random variable that represents the duration of the deviation
from the ‘normal’ level of liquidity. To understand how such
deviation events are generated, the ‘birth’ of the deviation at
time 7; would have come either from a market order or from
cancellations at the top of the book that had removed one or
more levels of the bid or ask. In the analysis we present here,
we do not distinguish between the two origins of deviations,
but our model is flexible enough to accommodate this easily,
e.g. by using a dummy variable to indicate this origin.

The subsequent ‘death’ at time 7; 4+ 7; would result from
limit orders arriving inside the spread, such that the new spread
is at most c:

o I,> paT1+T — ¢ for a limit order to buy; or

o [, < p%l 4, + ¢ for a limit order to sell

where [, is the price of the incoming limit order.

C. Survival analysis for modelling durations

Survival analysis is a method used to model the time until a
particular event occurs, such as the failure of some component
or the death of an individual. It is useful in that:

e It can be used in situations where there can be cen-
sored observations, i.e. where the event of interest does
not occur during the observation period. For example,
when studying the lifetime of mechanical components,
we may have that at the end of the observation period,
some of the components are still working, in which
case the only information we have about them is that
their lifetime exceeds the observation period.

e It can be incorporated into a regression framework,
and we can thus explain some of the variation in the
variable of interest through explanatory covariates.

In this chapter, we intend to use the technique to model
the duration of the deviations of the spread from the (median)
threshold value. Let us assume that these observations have
an associated probability density function f(¢) and cumulative
density function F(t) = P(r < t) = f; f(t)dt. From these,
we can calculate the survival function S(t) = 1 — F(¢), i.e.
the probability that the deviation still holds after a duration ¢,
and hazard function h(t) = % which is the instantaneous
rate of death, given that it had survived up to that point.

If all observations were uncensored (and independent and
identically distributed), then we could simply estimate the
model via standard maximum likelihood estimation, where
for a given parameter vector 6, the likelihood function is
L\ ...7) = f(r1...m]0) = [, f(7:]0). However, be-
cause of the presence of censored observations, the calculation
of the likelihood function has to be adapted to reflect this.

For a censored observation, we only know that the lifetime
7; exceeds the maximum observation time Tp — T;, as we
assume that censoring is non-informative (that is, the time
of censoring is independent of the time of failure). The
contribution to the likelihood of this event is then

Li=S(Tp - Ty) ey

If we assume for these observations that 7; is independent
of T, — T;, we can then obtain the likelihood function as
follows:

L=l Li =1y f(m) [1e S(Ta - T3)

where U and C' are uncensored and censored observations,
respectively.

In practice, for a given fixed threshold ¢, once the i-th
exceedance at time 7; occurs, there is no guarantee that the
liquidity process would ever return back through this threshold
within the trading day. We do, however, assume that given
enough time, the event of interest (i.e. the liquidity measure
returning below the threshold) would eventually occur i.e. the
liquidity process is mean reverting. Without this assumption,
the density we specified for the survival times f, that models
the distributions of the durations, would be improper, as it
would not normalise to unity on its support. We would then



have to calculate the density conditioning on the event actually
occurring.

There are two main methods used in survival analysis for
modelling these durations:

1)  With a Cox Proportional hazards model, in which
the model covariates affect the duration through the
hazard function h(t)

2)  With an Accelerated Failure Time (AFT) model, in
which the model covariates affect the duration by
shifting the baseline distribution of 7

For a thorough description of both see [20]]. In this paper
we use an AFT model, which has the distinctive feature that
the model covariates have a multiplicative influence on the
survival time. In the simplest case, we can model the log of the
i-th exceedance above the threshold level, using the following
simple linear regression:

log(r;) =x/B+¢
Then we have:

7; = exp (x;8)70.4

In this case, both the covariates and the parameters are
fixed. Depending on the distribution we assume for &;, we
get different parametric models. In this paper, we assume for
simplicity that ¢ ~ N(0,02), and thus have a log-normal
distribution for the durations. We considered other choices
for the distribution of the duration random variables also,
including the generalised gamma distribution. However, we
chose the log-normal case as it is easier to fit and allows us
to explore a large number of model structures.

In the log-normal case, the observation random variables
have the following distribution function and survival function:
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We estimate the parameters via MLE, with a Newton
gradient descent method, using standard optimisation packages
in R.

The AFT regression framework assumes that we can relate
the dependence of the durations on a combination of common
covariates and threshold specific covariates directly, through
a rescaling of time. The sign of the coefficient for a given
covariate indicates the direction of the partial effect of this
variable on the conditional probability that the spread deviation
duration will exceed a time ¢.

D. Model LOB Covariates

We consider the following covariates in our model struc-
tures. In the following, a ‘level’ of the LOB is defined as one
in which there is at least 1 resting limit order. Thus the first 5
levels of the bid are the 5 levels closest to the quote mid-point,
where there is available volume for trading.

e The total number of asks in the first 5 levels of
the LOB at time ¢, obtained according to :chl) =

Z‘?:l ‘Vf’i (where || is the number of orders at a
particular level), and is denoted ask hereafter

e The total number of bids in the first 5 leve%s of
the LOB at time ¢, obtained according to :E,E ) =

5
2im1

e  The total ask volume in the first 5 levels of the LOB
at time ¢, obtained according to zg Zl LTV,
denoted askVolume

e  The total bid volume in the first 5 levels of the LOB
at time ¢, obtained according to xg Zl 1 TVt ,
denoted bidV olume

e  The number of bids x£5) in the LOB that had received
price or size revisions (and were thus cancelled and
resubmitted with the same order ID), denoted by
bidM odi fied.

e  The number of asks x£6) in the LOB that had received
price or size revisions, denoted by askM odi fied.

e The average age (in ms) x§7) of bids in the first 5
levels at time ¢, denoted by bidAge.

e The average age x( ) of asks in the first 5 levels at
time ¢, denoted by askAge.

e  The instantaneous value of the spread at the point at
which the z’ th exceedance occurs, which is given by
9 b,1
( )= pt -p — L
e  For the 9 previously defined covariates, we also in-
clude exponentially weighted lagged versions. For ex-
ample, in the case of the ;vgs) covariate, the respective
lagged covariate value is then given by:

Z wal? | 2)

where for a time ¢, we consider w = 0.75 is the
weighting factor, d = 5 is the number of lagged values

EWLa{® =



we consider and A = 1s is the interval between the
lagged values. These covariates are hereafter denoted
with the ‘I’ prefix.

e  The number of previous deviations in the interval [t —
0,t] above the threshold level, with 6 = 1s, denoted
by prevezceed.

V. RESULTS AND DISCUSSION

For the empirical evaluation of the explanatory power of
our model regarding the variation in the durations of spread
deviations, we adopt the AFT model formulation described in
Section[[V-C] Our dataset consists of an 82-day trading sample,
and, in order to fit our model, we can either assume stationarity
of the spread deviation durations over the entire period, or
only for a single day. We find that the former would not be a
good assumption, as the coefficient values for the fitted model
vary over the period. For two of the covariates used to explain
the duration of spread deviations, we show the variability of
the coefficients over the four month period in Figure 4] The
coefficients in the fitted daily models vary, and thus we cannot
assume stationarity over the sample period.

Previous exceedance coefficients

0.5
00 o * o™ o« * o had

—-0.5 . o’ .

Lagged bid coefficients
L]
.
o
L]

T T
Jan Feb Mar Apr
Date

Fig. 4. The variation in the fitted daily model of the coefficients of the number
of previous deviations and the (lagged) number of bids over our sample period

A. Model selection

In statistical modelling, one of the most prominent issues
is finding the best regression equation, which entails choosing
a subset of covariates that optimises some selection criterion
[13]. Including additional covariates always increases the ex-
planatory power of a model, but may result in overfitting. A
common approach used for model selection is thus to penalise
the least squares of log likelihood scores, such that they
take into account model size. This favours more parsimonious

models and examples of criteria are Mallows’ C),, and Akaike’s
Information Criterion.
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Fig. 5. The adjusted r-squared values over time

The explanatory performance of our models was assessed
in terms of the adjusted coefficient of determination (adjusted
R?), which we briefly explain here. The coefficient of deter-
mination is Sg

- Ss,

which corresponds to the total variation explained by the
regression model, where SS, and SS; are, respectively, the
explained sum of squares and the total sum of squares. When
introducing additional explanatory variables, we would always
expect the R? value to increase. The adjusted R? is often used
in its place, as it penalises larger models:

N-1
N—-k-1

R2

R, =1—(1-R?%

adj

We find that our model has substantial explanatory power,
when compared to regression models aiming to explain the
variation in LOB quantities of interest. We show in Figure [3]
that the adjusted R? results obtained from fitting the model
every day for the four month period are above 15% on many
days, with scores above 20% on some days also. As this is
the result for the full model fit, we should be able to improve
on this result also, by selecting the subset that maximises the
adjusted R2.

This, however, poses a computational problem. In a re-
gression model with p covariates that can be included in a
model, we have 2P — 1 possible models to choose from. As p
increases, an exhaustive search of the entire space of possible
models would thus be exponential in p. Although strategies to
improve the efficiency of this search have been discussed, e.g.
in [[13]], for a large value of p, an exhaustive search through
all possible models is prohibitive in terms of computational
power.

In order to search through the model space, we thus employ
a modification of the leaps package in R [23], which uses
an efficient version of the branch-and-bound algorithm first
described in [12]. The algorithm can offer vast performance
improvements, by eliminating large sections of the search
space. It is guaranteed to terminate, yielding the subset that
maximises our selection criterion.



A brief description of the general algorithm is as follows:
For a given set of models in a partitioned model space, the
algorithm proceeds by calculating upper and lower bounds for
the selection criterion, for a supermodel and submodel of that
set, respectively. If, during the search process, another model
has been identified that has a higher selection criterion score
than the upper bound, the given set can then safely be ignored,
as it cannot give rise to a better performing model. Otherwise,
the set is partitioned further. This process and partitioning
is repeated until we have a singleton model, which is then
evaluated.

In our case, for every model subspace M;,i = 1...p,
where M; contains all possible models with ¢ parameters
-C (’z’) = ﬂ(ppiii)! models in total - we are searching for
the model that maximises the adjusted R? criterion. Our
modification to the leaps package is in the presentation of
the results, so that it distinguishes between covariates that are
selected to be part of the model (‘Present’), and covariates that
are significant in particular models (‘Significant’), in Figure [§]

From this, we observe the covariates that are consistently
present as we move across subspaces. This is interesting
because it gives us a relative measure of the contribution of
that covariate across different assumptions of parsimony for
the model. Particularly for higher model subspaces, some of
the covariates in each subset model are not significant, and we
distinguish between the covariates that are significant or not,
at a 5% level of significance.
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Fig. 6. The best model for each subspace M ... M, fit to a single trading
day for stock Alstom SA. The models are ranked by the best adjusted-R?
value, and we see that in this case, the best scoring model is obtained using a
subset of 13 covariates. We differentiate between covariates that were found
to be significant, or not. Out of the 13 covariates in the best model, only 9
are found to be significant at the 5% level.

The best models for each model subspace are ranked by the
adjusted R? value, although there are very small differences
in the best model in the first 11 rows (they only differ at most
in the third decimal point of the score). The vertical lines in
the graph represent the covariates that are consistently part
of the best model for every subspace. We observe that the
spread and number of previous deviations are covariates that
are consistently part of the best model for every subspace.
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Fig. 7. Coefficients of the best models of any size (in terms of the adjusted

R? values) for Alstom SA. The width of every boxplot is proportional to the
square root of the number of times that the covariate appears in the best model
over the four month period.

In order to compare the relative effect of each covariate, we
first normalise the covariate values so that they have the same
mean and standard deviation. We perform the analysis above
for every day in our dataset, and select the best performing (in
terms of the adjusted R? score) model each time. We show in
Figure[7)the values of each coefficient in the fitted models over
time, also indicating the frequency with which each covariate
is selected to be part of the best performing model.

Regarding the values of the coefficients, the coefficient of
the ‘spreads’ covariate, which tracks the spread immediately
after a deviation even, is generally positive, indicating that it is
associated with an increase in the duration of spread deviations.
On the other hand, the coefficient of the number of previous
observations (spread deviations) in the last second is negative,
indicating that it is associated with a decrease in the duration
of spread deviations. Finally, we note that the coefficients
of covariates tracking the number of orders in the first 5
levels that have had price or size revisions (‘bidModified” and
‘askModified’) are also found to be generally positive.

These results match our intuition: It would take a larger
spread a longer time to return to a threshold value. In addition,
we would expect the duration of the deviation to be shorter,
when the spread has been fluctuating around that level in the
near past. We see in Figure [/| that ‘spreads’ and ‘prevexceed’
covariates are most frequently found to be significant in
explaining the variation in the observation variables.

We observe a reduction in the number of covariates found
to be consistently significant in higher model subspaces. A
possible explanation for the covariates being less significant in
these subspaces would be that some are positively correlated,
leading to multicollinearity and a reduction in the significance
of individual covariates. To assess this, we calculate all pair-
wise correlations between the covariate for the four month
period , which we present in Figure [8] and we indeed find that



there are some pairs that are positively correlated.
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Fig. 8. Correlation plot of the covariates in the model for the entire 77-day
dataset for stock Vallourec SA. The blue ellipses indicate positive correlations,
while red ellipses indicate negative ones, and the narrower the ellipse, the
stronger the correlations between the two covariates.

VI. CONCLUSION

We have presented a flexible survival regression framework
to model the duaration of intra-day spread fluctuations. This
allows one to incorporate variables from the LOB and to make
short-term predictions about spread deviations under different
LOB regimes. Importantly, we have shown that such a class
of models has good explanatory power in capturing features
of these durations. In addition, we show that the conditional
relationship between the spread deviation durations and the
LOB structure is non-stationary inter-daily, as reflected by the
change in the coefficients of the explanatory covariates. In
the future, one may wish to introduce additional features to
this modelling framework, in order to capture the time-series
structure.

The covariates found to contribute most to explaining the
variation in these durations were the size of the spread when
a deviation event occurred and the number of previously
observed deviations in the last second. The former was found
to increase the expected duration of the deviation, an indication
that the LOB takes longer to recover from a larger shock to
the spread. The number of orders in the LOB that have had
price or size revisions were also found to contribute positively
to the duration. In contrast, the number of previous deviations
in the recent past was found to be associated with a swifter
return to the threshold level.

These covariates, amongst others, were consistently se-
lected in the estimation of the best fitting models in a range
of model subspaces and were statistically significant at the 5%
level. Thus, these covariates could, for example, form the basis
of recommendation for models of trade execution, where the
trading algorithm could estimate the time between subsequent
tranches of a large order.
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