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Abstract—For many players in financial markets, the price
impact of their trading activity represents a large proportion
of their transaction costs. This paper proposes a novel machine
learning method for predicting the price impact of order book
events. Specifically, we introduce a prediction system based on
performance weighted ensembles of random forests. The system’s
performance is benchmarked using ensembles of other popular
regression algorithms including: liner regression, neural networks
and support vector regression using depth-of-book data from the
BATS Chi-X exchange. The results show that recency-weighted
ensembles of random forests produce over 15% greater prediction
accuracy on out-of-sample data, for 5 out of 6 timeframes studied,
compared with all benchmarks.

I. INTRODUCTION

Over the last two decades almost all stock and derivatives
exchanges across the globe have transitioned to electronic
trading using limit orderbooks (LOBs), creating the need
for a new breed of quantitative models to describe such
markets. In particular, for large players that regularly transact
in these markets, the price impact of their trading activity
represents a large proportion of their transaction costs which
are in turn considered a substantial determinant of investment
performance [I]. As well as affecting the performance of an
active investment strategy, they also affect how rapidly assets
may be converted into cash. As such, it is vital that firms are
able to quantify and predict the potential impact of their trading
activity.

To address this challenge, this paper presents an empirical
model for predicting the short term price impact in a limit
orderbook of events that alter the best available prices in the
book. Such events include any market orders or limit orders
at the current best prices, as well as cancelations that remove
all volume at the best quoted price. Henceforth, we refer to
such situations simply as “events”. Specifically, we develop a
model, based on performance weighted ensembles of random
forests, to forecast the relative change in price 1, 5, 10, 60 and
600 seconds after an event. The model is trained and tested
on 100 days of full depth of book data from the BATS Chi-X
exchange.

While other studies have investigated the predictive power
of more tradition regression techniques, currently, no study
has explored the use of performance weighted ensemble to
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predict the short term price impact of order book events. We
demonstrate that an ensemble of recency-biased, performance-
weighted random forests is able to predict the price impact of
events more consistently and with greater accuracy than linear
regression, neural networks, support vector regression and a
single algorithms or combines as ensembles.

The paper is structured as follows. Section M gives an
overview of the relevant literature. Section I describes the
features and the feature selection algorithm used to refine the
inputs to the model while Section M describes the prediction
algorithm itself. In Sections M and M1 the experiments are
described and results summarised while Section MII gives
concluding remarks and discussed potential future work.

II. LITERATURE REVIEW

One of the dominant questions of market microstructure
analysis regards how trading activity leads to price changes.
The impact of incoming orders is an integral part of the
price formation process as it translates changes in supply and
demand into changes in price. The early market microstructure
literature describes this concept with a focus on specialist
markets. In such markets, prices are quoted by a centralised
market-maker who receives orders from brokers and updates
her quoted prices as according to the incoming order-flow that
she witnesses. From the viewpoint of the broker, the price
impact of his orders is a cost paid to the market-maker for her
continued obligation to accept his orders [], i.e. a cost for
immediacy. From the viewpoint of the market-maker, some
information about the future prices of assets is inferred from
the order-flow of the brokers. This information is then captured
in the market-maker’s quotes in a process reflected by the
permanent market impact [3]. The difference between the price
that an order obtains and the best prevailing quote is termed
the immediate price impact and is an increasing function of
order size. The temporary price impact is then defined as the
difference between the immediate and permanent impact of an
order.

Although specialist markets have mainly been replaced
with electronic LOBs, the same price impact terminology is
still used. However, due to the decentralised nature of LOBs,
it is much harder to disentangle temporary and permanent
price impact. Some efforts have been made to describe price



impact in LOBs with a theoretical economic model. This
approach requires complete knowledge of all traders’ utilities
and strategies in order to derive order-flow dynamics. Even
though this may be possible in some highly stylised markets,
such models commonly involve many free parameters and tend
to be intractable, limiting their practical applicability [Z].

Given the shortcomings of theoretical market microstruc-
ture models, statistical price models have gained significant
interest [8]. Such statistical approaches are made possible by
the availability of detailed orderbook data. As such, empirical
studies of price impact are often differentiated according to
the type of data used: proprietary data from a single firm
regarding its own orders, or public exchange data that contains
anonymised orders from all market participants.

Many academic studies have worked only with proprietary
datasets that contain the orders of, typically, just one firm (see
[6]). Such datasets are information rich, containing detailed
information on each order including the parent trade that each
order is part of. With this information, smaller orders, that
were submitted to an exchange, can be aggregated into larger
trades that describe a firm’s intentions. Also, this kind of data
allows one to model parent order transaction cost or impact
as a function of its size, as well as other parameters that are
not included in publicly available exchange data. While most
studies using proprietary data agree that the price impact of an
order is a monotonically increasing function of its size (e.g.,
see [B], [[]), their reliance on such data is prone to several
criticisms. Firstly, there are a number of factors that affect
price impact but are difficult to control in a proprietary dataset,
including the trading venues and algorithms used to execute
a trade [R]. Second, the trader of the orders is able to stop
an execution during unfavourable circumstances, introducing
significant selection bias [H]. Thus, the ability to model the
price impact of parent orders is important, but the criticisms
mentioned above make it difficult to draw generalisable con-
clusions based on proprietary data.

An alternative approach is to use anonymised publicly
available data from exchanges that includes all of the orders
placed by all traders. However, until a short time ago, al-
most all studies focussed exclusively on marketable orders,
analysing correlations between various order parameters and
succeeding price movement [[I], [TT]. These studies found
the same conclusions as those that used proprietary data: the
temporary impact of of a marketable order is an increasing
concave function of order size. However, a major problem
exists with the use of only marketable orders in the study
of price impact. It has been reported that marketable orders
account for only 10% of orders that reach exchanges [I7],
likely due to fast algorithmic trading strategies using passive
limit orders to reduce costs [[[3]. Thus, a model that describes
only the impact of marketable orders gives a somewhat limited
description of the price formation process. More recent studies
have considered the impact of marketable and passive orders,
and relate their impact to a variety of factors including standing
limit orders, order arrival rate, daily volume and cancelation
rate [I4], [I5]. The statistical models used in these studies
reveal complex interactions between the dynamics of order
flows in a limit orderbook and the resulting high level price
dynamics.

Correspondingly, modern machine learning techniques lend

themselves perfectly to capturing complex interactions in data.
As a result, many such techniques have been applied to
prediction with financial data including: neural networks [[f],
support vector machines [[/] and evolutionary learning [IX].
However, many of these methods have been shown to be prone
to overfitting the training data.

Random forests, on the other hand, have been shown to
always converge such that over-fitting does not occur [T9] and
by their very nature have proved successful across a range
of variety of domains including: image classification [20],
ecological prediction [2T], gene selection [?2] and finance
[23]. A method that shows particular promise is the online
generation of performance-weighted random forests, which
was shown to perform consistently well in out of sample test
when predicting the daily return of stock prices [24].

Against this background, we propose an adaptation to the
system specified in [24] for the application of a performance
weighted ensemble of random forests to predicting price im-
pact. Specifically, we address the potential overfitting problem
common to financial data by using random forests and tackle
the non-stationary element of data by generating random forest
in an online fashion.

III. FEATURE SELECTION

In order to make meaningful predictions we wish to capture
the state of the LOB at a given time with a number of features.
These features then form the input to the prediction system.
Given the richness of information available in depth of book
data, we propose the exploration of more than 100 features
that can be broadly divided into three categories:

Price  These features provide information about the
log-normalised best bid/ask price series. This in-
cludes various technical analysis indicators such
as: moving averages of the last n prices before
a trade, price oscillators and the relative strength

index (RSI) over the last IV price changes.

Spread  These features aim to provide information about
relative changes in the bid/ask spread. Again,
many technical analysis indicators are used here,
with time series data normalised by the minimum

allowable price increment for a particular stock.

These features contain information about the
apparent liquidity of the book. E.g. relative depth
of each side of the book, order arrival and
cancelation rates, and modal order price relative
to best bid/ask price.

Liquidity

Clearly, not all features will have the same predictive
power. Thus, in the interests of dimensionality reduction and
computation, we wish to eliminate those features that have
little or no impact on the performance of our random forest
based prediction model. One simple method for selecting
features is to choose the subset of features that is most
highly correlated to the target variable. However, this is likely
to generate a highly collinear feature space and impair the
performance of the learning algorithm. As a result, we use
a method of feature importance ranking, first suggested by
Breiman [IY], to eliminate irrelevant variables.



In more detail, to rank the features, a single random
forest is first trained on the training data. While doing so,
the root mean squared error (RMSE) is recorded for each
tree, on the out-of-bag portion of the data®. The same is
done after the values of the features are randomly permuted.
The difference between the errors are then averaged across
all trees and normalised by the standard deviation of the
differences. This represents the signal-to-noise ratio of the
difference between the RMSE before and after permutation
of the features. Specifically, the importance of feature j, VI;,
is calculated as:

Y1 (€05 = €0.ns)
VI;= @)
O.

where © is the number of trees in the forest, eg ; is the RMSE
of tree 6 without permuting j, eg ~; is the RMSE of that tree
after permutation of j, and & is the standard deviation of the
differences between ey ; and eg ;. Features that produce larger
VI values are considered more important than features that
produce smaller values.

g

For feature selection, we propose a backwards elimination
method as it has been shown that such methods provide a
stronger variable subset than similar alternatives [Z5]. Our
feature selection algorithm is described fully below:

1: Train a single random forrest on the training data using
all J features

2: Compute average RMSE of model on cross validation
(CV) data

3: Rank features according to performance as defined by

equation [

for each subset of variables J;, =J —1,J—2,...1 do
Train a new forest using .J; features with highest VT
Compute average RMSE of model on CV set
Rerank the features

end for

Determine which J; yielded the smallest RMSE

O Dk

This algorithm was applied to the training and CV data
and a plot of the RMSE at each stage of the elimination is
shown in Figure 0. As this figure shows, there is a slight
initial increase in performance (decrease in RMSE) as features
are eliminated. Following this, there is a swift decline in
performance as features that are essential for prediction are
eliminated (from right to left). The algorithm yields the optimal
set of 76 features listed in Table [ in the appendix.

IV. THE MODEL

This section describes an adaptation of a predictive system first
proposed in [24] for predicting daily changes in stock prices.
Our modified system consists of an ensemble of models, that
is used to predict the price impact of events that alter the best
bid/ask prices. The price impact is measured by taking the
price changes at 1, 5, 10, 60 and 600 seconds after the event
normalised by the pre-event price. A separate ensemble is used
for the prediction of each time interval. An overview of the
model structure is given in Figure D.

'As each tree in a random forest is constructed using its own bootstrap
sample of about 60% of the data, the remaining data may be used to generate
an unbiased error estimate.
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Fig. 1. Plot of RMSE for each round of the feature elimination algorithm. It
can be seen that, as features are removed, there is an initial, slight improvement
in performance before a rapid decline.

To that end, the prediction system described in this section
is based on an ensemble of random forest regressors that will,
from here on, be referred to as experts. Specifically, every
fifteen minutes, three new experts are trained on the previous
1, 2 and 3 hours of data and added to the ensemble in an online
fashion. That is, new experts are trained and introduced into
the ensemble continuously, even during out of sample tests.
The ensemble is capped to a maximum number of experts,
E\yaz, and once the maximum number is reached the poorest
performing expert is dropped upon each new addition.

A. The Base Learner

Each expert in the ensemble is represented by a random
forest regression algorithm. In this paper, a random forest is
an ensemble of many regression trees designed to produce
accurate predictions without overfitting the training data [T9].
Regression trees use their tree structure to recursively subdi-
vide the features space such that the subsets of the feature
space are manageable enough to fit simple models to them.
Thus, a tree model has two portions: the recursive subdivisions
and a simple model for each partition. Each of these partitions
is represented by a terminal node (leaf) of a tree, and is
attached to a simple model which applies only to that partition.
An example of a decision tree trained on the inputs listed in
Table M is given in Figure B. To generate a prediction for a
new data point we begin at the root node of the tree (EMA
book vol.) and answer a series of questions about the feature
values. For example, a data point with an EMA book vol. of
0.2 and an EMA spread of -0.6 would generate a prediction
of 0.14 for the normalised price impact.

To train a random forest, bootstrap samples are drawn
from the training data in order to construct multiple trees.
Importantly, each tree is constructed using a randomised subset
of features. In detail, we produce forests of regression trees
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Fig. 2. An overview of the prediction system. The inputs given in table
Table O are used to train three new random forests (experts) every fifteen
minutes. Each expert makes a prediction about the price change after an event
and the expert weighting layer aggregates these predictions using the method
described in Section N=B.

using the procedure below, where the training set is defined as
D ={(x1,11),---,(Xn,yn)} with the aim to find a function
f+ X — Y, where X is the space of features and Y is the
output. Further, let M denote the number of features.

1)  Randomly select n observations from D with replace-
ment to form a bootstrap sample.

2)  If there are M features, select m < M features such
that, at each node, m features are selected at random
and the best split (measured using Gini impurity) on
these m is used to split the node.

3)  Grow each tree to the largest possible extent without
pruning.

By using a random subset of features among which to select
the best split and growing the tree without pruning, random
forests are able to maintain high prediction accuracy while
encouraging diversity among trees [[Y]. Moreover, a random
selection of features reduces the potential for correlation
between tree predictions, keeping overall model bias low. An

EMA book vol

<=0.11 >0.11
ROC best
price ‘ EMA spread
T I
<=0.67 >067 >-04  <=-04

number of
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>0.8

Fig. 3. Example of a simplified regression tree for predicting the price impact
generated using the features in Table .

ensemble of such trees seeks to also reduce variance.

On presentation with unseen observations, the random
forest produces a prediction by averaging the predictions of
all the individual trees in the forest. In the rest of this paper,
this prediction is denoted by S; ;, where ¢ is the random forest,
and ¢ is the time of the observation.

The features given in Table [ form the input to the random
forest prediction algorithm. In our study, the goal of the
random forest is to generate a function of the features given
in Table O that predicts the relative price change at particular
intervals after an order book event that alters the best bid/ask
price (as described in Section [).

B. An Ensemble of Ensembles

The previous section describes the process of training and
predicting with a single (random forest) expert. In order to
improve performance of the prediction system, we propose an
ensemble of such random forests that is generated in an online
fashion. In this study, three experts are trained every fifteen
minutes on a moving window of 1, 2 and 3 hours of training
data to generate an ensemble of experts. The outputs of all
of the experts are then combined using an expert weighting
algorithm to generate a prediction about the price change after
an event.

The expert weighting algorithm described in this study
is based on an algorithm suggested by Creamer and Freund
[26] that produces a prediction by taking an average of the
predictions of all the experts weighted by their training error.
The formula that they use for calculating weights is derived
from a weighted majority algorithm first introduced in [27].
We explore a modification of Creamer and Freund’s algorithm
that, instead of using the complete historical performance of
each expert, uses a recency-biased performance measure.

Specifically, we denote the historical performance of expert
1 at time ¢ by k; ¢, giving more weight to experts with larger
values of k; ;. We define k; ; as:

ki =Mmit—1+ (1 — Nk (2)



where 7; ;1 is the RMSE of the last prediction made by expert
i at time ¢t — 1 and )\ is a smoothing parameter that allows us
to control the recency weighting of the performance measure.

As mentioned previously, a greater weight is given to
experts that have a higher k; ; as this represents better historical
performance. As such, we use the exponential weighting
algorithm described in [26] for generating weights for each
expert. Specifically, the weight of the expert trained first is
given by:

ki 4—
Wyt = exp (%) 3)

The weight of all following experts is then defined as:

ki1
Wy ¢ ramp( ) - exp ( —r ti) 4)

where I; is the weight assigned to a newly generated expert

and is the mean of all current experts’ weights; ramp(t —

t;) = min ( t’:i tﬂ 1) allows new experts to be brought in

cautiously; and ;47 is the time at which the next expert will
be added.

The combined output of the ensemble of random forests
at time ¢ is then a weighted average of the predictions of all

expert at time ¢:
P ZZ Si,twi,t

gt = " 5

where S; ; is the prediction of expert ¢ at time ¢, n is the
current total number of experts and P, ; is a prediction of the
relative price change.

V. EXPERIMENTS

The analysis in this paper is based on historical depth-of-book
data from the BATS Chi-X exchange using the 25 most actively
traded stocks over 100 days of trading from 12" February 2013
to 3™ July 2013. This raw data contains details on all events in
the book, that is: order arrivals, executions, modifications and
cancellations, with each item timestamped to the millisecond.
We consider only the regular trading time between 9:30 -
16:00, and all other periods are discarded. Prior to conducting
experiments, the data is split into training, cross-validation
(CV) and test sets as follows: 60 days training, 20 days CV
and 20 days test. It should be noted that no parameters are
tuned using the test set. This set is used only to report the
performance of the model found to perform best on the CV
data.

The experiments reported in Section Ml  were
conducted according to the following proce-
dure:

1: for all parameter settings do

2:  for all stocks do

3: Generate features from data. As in Section III.

4: Iterate through training set generating three new ex-

perts every 15 minutes with a moving windows of
data sized 1, 2 and 3 hours.

5: Monitor the prediction performance of each expert,
updating the weights after every event according to
Equation (8).

6: Upon reaching the CV data, an ensemble prediction
is made for each event using Equation B.

7: At the end of the CV period, store the average RMSE
of prediction across the CV set for current stock.

8: end for

9:  CV performance is reported as the average RMSE of

the model across all 25 stocks.
10: end for
11: The model with the best CV performance for each stock
is kept and run on the corresponding stock over the test
set.

The experimental procedure outlined above is used to
determine the optimal parameterisation of our model, as well
as the benchmarks, using only the training and CV data sets.
Once the optimal parameterisations are found, the performance
on test set is reported. For the random forests themselves, there
are only two parameters of interest: the number of trees grown
in each forest (n_trees) and the number of features randomly
chosen when splitting a node (m). For n_trees, the larger
the better. We find no improvement in performance above
n_trees = 250 and thus use this value throughout our experi-
ments. Similarly we find no improvement in performance over
a maximum number of experts, F,,,., greater than 500. It is
generally thought that lower values of m lead to a reduction
of variance but also an increase in bias. We thus use cross
validation to find optimal values for this parameter.

In addition to finding optimal values for m, cross validation
is used to explore values of the recency bias, A, for the
performance metric described in Equation D. To asses the
performance of these variables we perform a two dimensional
grid-search of the parameter space. The experimental pro-
cedure above is performed for each point in the parameter
space to generate an average RMSE across all stocks for each
parameterisation.

As the benefits of this method of expert weighting have
been demonstrated in [24] we explore the effectiveness of
random forests as the basis of the prediction system. To this
end, we compare the predictive performance of the system
described above with a multitude of base learners including:
random forests, ordinary least squares regression, multi-layer
feed-forward neural networks with backpropagation and sup-
port vector regression with Gaussian kernels. The parameters
of each of the base learning algorithms optimised using multi-
dimensional grid search on the CV data sets. Results are
reported as the performance on the previously unused test set.

VI. RESULTS

The results of the parameter grid-search for our model are
shown in Figure V1. It can be seen that the best parametrisation
for the recency-weighted model lies in the vicinity of A = 0.85
and m = 18. This value for m is equivalent to using all possible
features for each node split, and it has been shown that such a
parametrisation is often optimal for random forest regression
[28]. A value of A = 0.88 is also interesting as it is a very
commonly used value for exponential moving averages and is
very close to the value used by the financial risk management
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Fig. 4. Heat map showing results performance of our ensemble model over
the gridsearch space. Higher values represent better performance.

TABLE 1. A COMPARISON OF THE PERFORMANCE OF VARIOUS
ENSEMBLES OF REGRESSION MODELS AND A SINGLE RANDOM FORESTS
ALGORITHM IN PREDICTING THE RELATIVE CHANGE IN ASSET PRICE
t=1,5,10,60 AND 600 AFTER AN EVENT. ASTERISKS SIGNIFY A
STATISTICAL SIGNIFICANCE COMPARED TO OUR MODEL OF p < 0.05. OUT
PUTS OF ALL REGRESSION ALGORITHMS ARE COMBINES AS DESCRIBED IN
SECTION =R

Model RMSE at t =
1 5 10 60 600
Training Phase
Single random forest 0.22%  0.28%* 0.29 0.33 0.43

Linear regression ensemble ~ 0.18*%  0.22*  0.26%*  0.34*  0.49*
Neural Network ensemble 0.13%* 0.19% 0.23* 0.31%* 0.41%*

SVR ensemble 0.13*  0.18%  0.20*  0.31*%  0.40*
Random forest ensemble 0.15 0.20 0.26 0.32 0.40
CV Phase
Single random forest 0.23*  0.28%  0.31* 0.35 0.44

Linear regression ensemble ~ 0.21*  0.26* 0.32% 0.38*%  0.50*
Neural network ensemble 0.22% 0.29%* 0.31* 0.40%* 0.45%

SVR ensemble 0.24*  0.29%  0.35*  0.36*  0.42*
Random forest ensemble 0.15 0.22 0.25 0.33 0.40
Test Phase
Single random forest 0.19*  0.30* 0.31* 0.35 0.46*

Linear regression ensemble ~ 0.24*  0.27* 0.31* 0.42*%  0.59*
Neural network ensemble 0.24%* 0.28%* 0.31* 0.37* 0.50%*
SVR ensemble 0.40*  0.39*%  0.39*  045%  047*
Random forest ensemble 0.15 0.23 0.24 0.34 0.40

firm RiskMetrics”™ for their moving average estimation of
volatility [29].

Table 0 shows the results of the comparative performance
of the various base learners outlined above in predicting the
price of stocks at various time point after best-price-altering
events. The inputs for all algorithms are those listed in Table [.
Experiments were performed as described above with results
averaged across all stocks.

It can be seen that our recency-weighted random forest
ensemble outperforms all other models on out-of-sample data.

While the random forest based ensemble produces higher error
values on the training data, the proven ability of random forests
to avoid over fitting allows the ensemble of random forests to
produce significantly superior out of sample results to all other
models on 4 out of 5 time intervals. A distinct advantage of
online ensemble generation can be seen when comparing the
results of a single random forest to the ensemble of random
forest. Introducing online training of experts improves the
performance of the model across all 5 time periods, with 4
of 5 results proving significant at p = 0.05

VII. CONCLUSION

In this paper we apply, for the first time, performance weighted
ensembles of random forests to the prediction of the price
impact of order book events. In more detail, random forest re-
gressors are continually generated, at fixed time intervals, and
added to an ensemble of such experts. Upon the occurrence of
an event that alters the best prices of the orderbook (limit order
at the best price, market order, cancellation or modification),
each expert makes a prediction and an expert weighting system
averages the predictions of all experts weighted by their recent
performance. A separate ensemble is used to predict the price
change at t = 1,5,10, and 60 seconds after an event. This
performance of random forest ensembles is then benchmarked
against ensembles of linear regression, neural networks and
support vector models as well as single random forests. The
models are trained using 60 days of data, cross-validated using
20 and tested using 20. Reported results are an average over
the 25 most liquid stocks from the BATS Chi-X exchange.

In out-of-sample trading simulations, the performance-
weighted random forest ensemble outperforms all other models
across all time intervals. Specifically, our model outperforms
all other models by around 20% when predicting the price
change at 1, 5, and 10 seconds. Above this, performance
of all models fall substantially. This demonstrates the ability
of the online-generated ensemble to make predictions in the
highly non-stationary orderbook environment. In addition to
the increased prediction accuracy, the continual addition of
new experts to the random forest ensemble has a number of
other advantages. Firstly, new experts are trained separately
to the ensemble and added seamlessly without the need to
stop the system or close out any open trades, a necessity
for a quantitative trading applications. Secondly, each random
forest, and thus the entire ensemble, is composed of human
readable and visually representable decision trees. Thus, there
is no ‘black box’ and, as such, simple visual analysis can give
managers and regulators insight into the risks involved in such
a trading strategy.

In future work we intend incorporate this approach into
optimal trade scheduling algorithms and test its performance
across a wider range of securities.
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APPENDIX

TABLE II. TABLE DESCRIBING FEATURES USED FOR THE MODEL
ENSEMBLE OF RANDOM FORESTS MODEL. PRICE FEATURES ARE ALL
NORMALISED BY THE PRICE PRECEDING AN EVENT, WHILE SPREAD
FEATURES ARE NORMALISED BY THE MINIMUM PRICE INCREMENT
ALLOWABLE IN THE BOOK.

Indicator Parameters

Price features

Exponential moving average of the last n observa- n=16
tions of best prices

Bollinger bands of the last n observations of best

. n =32
prices

Mumenrum of the best prices over the last n obser- n =12, and 24
vations

Acceleration of the best prices over the last n obser-

. n =18
vations

The rate of change of the best prices over the last n n =992
observations
The MACD of the best prices f=12,s =24

The relative strength index of the best prices over the

. n = 20 and 32
last n observations

The fast stt'lchasnc K of the best prices over the last n = 12 and 18
n observations

The Chaikin volatility of the best prices over the last

n observations n=10

The accumulation/distribution line -

The Chaikin oscillator ni1 = 3, and ne = 10
Spread features

Exponential moving average of the last n observa- n=10

tions of spread
Momentum of the spread over the last n observations 18

The rate of change of the spread over the last n

. n = 10, 16 and 22
observations

The MACD of the spread f=12,5s=30

The relative strength index of the spread over the last

. n =14
n observations

The fast stochastic K of the spread over the last n. . _ 15 .04 0y
observations

Liquidity features

Exponential moving average of bid/ask book volume

. n =22
over the last n observations

Exponential moving average of volume at best bid/ask

‘ . 12 and 36
price over the last n observations

3
Il

Momentumof bid/ask book volume over the last n

; n = 12,24 and 36
observations

Number of price improvements in the last n obser- n =25, and 50
vations

Number of trades in the last n observations n = 50
Number of bid/ask quotes arrived in the last n obser- n =50
vations
Number of bid/ask cancellations in the last n obser- n =50
vations

Current modal bid/ask price relative to best bid/ask
price

Current mean price increment between order prices -




	Introduction
	Literature Review
	Feature Selection
	The Model
	The Base Learner
	An Ensemble of Ensembles

	Experiments
	Results
	Conclusion
	References

