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Abstract—Price information enables consumers to anticipate
a price and to make purchasing decisions based on their price
expectations, which are critical for agents with pricing decisions
or price regulations. A company with pricing decisions can
aim to optimise the short-term or the long-term revenue, each
of which leads to different pricing strategies thereby different
price expectations. The choices between the two optimisation
objectives consider the maximal revenue and the robustness of
a chosen pricing strategy against market volatility. However
the robustness is rarely identified in a volatile market. Here,
we investigate the robustness of optimal pricing strategies with
the short-term or long-term optimisation objectives through the
analysis of nonlinear dynamics of price expectations. Bifurcation
diagrams and period diagrams are introduced to compare their
change in dynamics. Our results highlight that period adding
bifurcations occur during the dynamic pricing processes studied.
These bifurcations would challenge the robustness of an optimal
pricing strategy. The consideration of the long-term revenue
allows a company to charge a higher price, which in turn
increases the revenue. However, the consideration of the short-
term revenue can avoid period adding bifurcations, contributing
to a robust pricing strategy. This allows a company to harvest
a good revenue through a robust pricing strategy in a volatile
market and to satisfy regulations of a control in price volatility.

Index Terms—Border collision bifurcations, optimal price
choices, reference price

I. INTRODUCTION

Price transparency due to information technology, especially
the internet, influences strongly on consumer purchasing de-
cision [1]. Consumers tend to use online travel agents or
meta-search engines to facilitate purchasing decisions of an
airline ticket [2]. Price information, which can be conveniently
accessed over the internet, allows consumers to compare the
price from different channels and to anticipate a price as a
reference point to support purchasing decisions [3].

When the anticipation of the price is based on historical
prices, the price anticipation is called the internal reference
price [4] or simply reference price in short.

The reference price acts as a benchmark for consumer
purchasing decisions [3], [5]–[7]. While a sales price lower
than a reference price is perceived by the customer as a gain,
a sales price higher than the reference price is perceived as
a loss. An experience of receiving a gain renders consumers
to be more likely to make a purchasing decision. However,
consumers who experience a loss tend to reject a purchase. The
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effect of the perceived gains/losses on the demand is called the
reference effects [7].

Owing to reference effects, a decision maker with pricing
decisions could set a lower price to attract a higher volume
of consumers and to receive the increased short-term revenue.
The decision maker, however, may suffer losses considering
the long-term revenue: a low price decreases consumer refer-
ence price, which in turn makes them less likely to accept a
higher price in the future [5].

Although the long-term revenue is critical, subjective rea-
sons may influence the decision maker to emphasise the short-
term revenue such as the quarterly earning expectations or the
subjective job security cf. [8].

Another reason to focus on the short-term revenue is the
computational complexity found in the associated optimisa-
tion problem. An analytic solution is possible for the task
optimising the short-term revenue [3], [9].However, when
consumers behave asymmetrically towards gains and losses,
a demand function becomes non-smooth, which challenges
the optimisation of the long-term revenue. So far, no explicit
analytic solution is yet available for this type of problem [3],
[6], [9]. Only numerical approximations can be obtained [3],
[9].

One natural question that arises from the analytic and
computational advantages of the short-term revenue strategy
is that:

Can a decision maker benefit from a short-term revenue
strategy and simultaneously gain insights from its detailed
analysis to guide the pricing decision process for the long-
term revenue?

Answering the question includes two criteria to evaluate an
optimal pricing strategy: the maximal revenue obtained from it
and its robustness against the volatile market and optimsiation
objectives. To date optimal pricing strategy between the goal
of the short-term and the long-term revenue have already been
compared regarding to the maximal revenue [5]. However,
the comparison neglects the robustness of the optimal pricing
strategy. Optimisation based on an altered environment, how-
ever, requires more than the revenue alone to be considered.
Therefore, in practice, a decision maker needs the robustness
to evaluate optimal pricing strategies except for the maximal
revenue [10], [11].

Also, consumers asymmetrically respond to gains and losses
[3], [5], [6]. This leads to two different tangent slopes at the
point in the demand curve where the reference price equals the



sales price in the demand function. As a result, the demand
function is non-smooth .

Owing to the non-smoothness of the problem, border colli-
sion bifurcations have been reported in mathematical models
underlying dynamic pricing processes [3]. Border collision
bifurcations or grazing bifurcations are also widely observed
in other systems such as impact or friction oscillators [12],
[13], and financial market [14].

Period adding or period incrementing bifurcations are the
cornerstones of border collision bifurcations [14]–[16]. For
period incrementing bifurcations, the period either increases or
decreases by a positive integer; for period adding bifurcations,
the period follows the Farey summation rule with changing
bifurcation parameter [14]–[16]. According to the Farey rule
period-m + n solution can been observed between the bi-
furcation parameters which generate period-m and period-n
solution.

Although dynamic pricing models are generally nonlinear
with a nonsmooth demand function, their bifurcation structures
have not been studied to the best of the authors knowledge.
Here we aim to uncover these structures for the short-term and
long-term revenue and introduce the bifurcation and period
diagrams to study the robustness of optimal pricing strategies
and answer the abovementioned question.

II. MODELS

A. Reference price

Following a dynamic pricing process, the reference price
evolves via

rn+1 = αrn + (1− α)pn (1)

where rn is the reference price at period n, pn is the sales
price at period n, and α ∈ [0, 1] represents a memory factor.

For a given initial r0, Eq. (1) can be transformed to

rn+1 = αn+1r0 + (1−α)(αnp0 +αn−1p1 + · · ·+α0pn) (2)

In an extreme case when α = 0 in Eq. (2), consumers
only remember the latest price; for α > 0 consumers start
remembering past prices but slow down their adaptions to the
past until for α = 1, consumers memorise only r0. Here,
being consistent with Hu et al. [3], we define r0 ∈ [0, U ] and
pn ∈ [0, U ] with U being the maximal price that a decision
maker is allowed to charge.

B. Demand

Following Hu et al. [3], the demand d(pn, rn) is composed
of a linear base demand and nonlinear reference effects via

d(pn, rn) =


b− apn + γg(rn − pn), if rn > pn, (3a)
b− apn, if rn = pn, (3b)
b− apn + γl(rn − pn), if rn < pn. (3c)

Here, Eq. (3b) represents the base demand, a and b are
parameters of the base demand, and γg and γl stand for the
sensitivity of consumers to either a gain or a loss, respectively.

When γg 6= γl, the demand becomes non-smooth. Hu et
al. [3] restricts their study to the special case of γl = 0. Yet,

this assumption can result in losses [3] and should therefore
be avoided from a management point of view. A more general
scenario would be required to better understand the dynamics
and to avoid losses. We therefore define the new parameter
β to act as the relative sensitivity of consumers to losses and
gains,

β = γl/γg : (4)

• If β = 1, then γg = γl, and consumers are neural and
become equally sensitive to gains and losses;

• if β ∈ [0, 1), then γg > γl, and consumers are gain-
seeking; if β = 0, then γl = 0, and consumers are
insensitive to losses; and

• if β > 1, then γg < γl, and consumers are loss-averse.
Gain-seeking consumers are observed in the market with
promotion driven consumers or highly stockable products [3].
In line with this observation, we focus here on gain-seeking
consumers and assume β ∈ [0, 1). In this setting, the demand
becomes non-smooth due to being non-differentiable at the
point pn = rn (cf. Eq. (3a)-(3b)). Other scenarios (neutral
and loss averse consumers) require different modelling and
optimisation procedures and are therefore not considered here.

C. Short-term revenue

Suppose a decision maker aims to optimise the short-term
revenue, then the optimal price choices are provided through

p∗n = arg max
pn∈[0,U ]

Π = pnd(pn, rn). (5)

Lemma 1: The reference price evolves via

rn+1 =


αrn + (1− α) γ

lrn+b
2(a+γl)

, if rn ≤ R ≤ RU
αrn + (1− α) γ

grn+b
2(a+γg) , if R < rn, R ≤ RU , and

αrn + (1− α)U if R > RU
(6)

where R = b

a+
√

(a+γg)(a+γl)
, RU = 2(a+γl)U−b

γl , cf. [3].

D. Long-term revenue

When a decision maker focuses on the long-term revenue,
the optimal price choices are determined by the following
equation

max
pn∈[0,U ]

∞∑
n=0

ωnpnd(pn, rn) (7)

where ω ∈ (0, 1] represents a discount rate, which is a rate
to evaluate the present cash value of the discounted future
revenue [3].

Numerical approximation p∗n of Eq. (7) here is based on
dynamic programming, which is described in more detail in
[3], [9]. Plugging p∗n into Eq. (1), we get a map that describes
the evolution of the reference price for the long-term revenue
scenario.

Bifurcation diagrams summarise the entire behaviour of the
system as it changes a significant parameter [17]. Bifurcation
diagrams can analyse the change in the amplitude of the
steady-state solutions as well as the change in the complexity
of the solution. However, bifurcation diagrams may fail to



Fig. 1. Bifurcation diagram of reference price against memory factor in the
case of optimising the short-term revenue.

Fig. 2. Period diagram of reference price against memory factor in the case
of optimising the short-term revenue.

detect the change in dynamics for border collision bifurcations
[18]. Period diagrams record the period of solutions with the
changing bifurcation parameter [19]. Period diagrams allows
examining the robustness of steady-state solutions and allows
comparing the optimisations with the short-term and the long-
term revenue.

To generate the bifurcation and period diagrams, we assume
the following parameters to be constant [3]:

b = 582, a = 569.4, γg = 2671.2, ω = 0.9, U = 1, (8)

and choose the memory factor α and β as the bifurcation
parameter, respectively.

III. DYNAMICS IN THE SHORT-TERM REVENUE STRATEGY

Next the dynamic behaviour of the reference price as
evolved via Eq. (6) is investigated through numerical simula-
tions. We focus on the reference price rather than the optimal
price choices for two reasons. From Eq. (6), the dynamic
behaviour of the optimal price is in line with that of the
reference price. Also, the evolution of the reference price
provides critical information for a regulator to identify the
behaviour of a company in the market.

A. Variation of the memory rate α

In this section the relative sensitivity β = 0 is fixed and the
memory rate α is varied which would be a conventional way
of studying this type of equation [3].

Fig. 1 depicts the results in form of a bifurcation diagram.
When α ≤ 0.813, the reference price converges to three
branches, however, when α ∈ (0.813, 1], more branches with
the decreasing amplitude of reference price emerge until a
constant value is reached. Jumps in the bifurcation diagram can
indicate the occurrence of either subcritical Hopf bifurcation
or boder collision bifurcation [12], [20].

Fig. 2 depicts a period diagram. Except for a small interval
α ∈ [0.012, 0.017] where the period changes from 3 to 8
and then 5, the number of periods remains constant at 3.
Complex changes in periodic behaviour emerge from around
α = 0.813 up to unity, indicating the occurrence of border
collision bifurcations [16], [21].

Fig. 3. Bifurcation diagram of reference price against the memory factor in
the case of optimising the short-term revenue. Zoom in of Fig. 1. The branches
in the window marked as ‘b’ are an overlap of its ‘left’ side branches marked
as ‘a’ and its ‘right’ side branches marked as ‘c’.

Fig. 4. Period diagram of reference price against the memory factor in the
case of optimising the short-term revenue. Zoom-in of Fig. 2 shows period
adding cascades. Between the period-16 and the period-13 solutions, its sum,
a period-29 solution, emerges.

To investigate the dynamics in more detail as α ∈ (0.813, 1],
we zoom into both, the bifurcation diagram of Fig. 1 and the



period diagram of Fig. 2. The results are shown in Fig. 3 and
Fig. 4.

Fig. 3 shows overlaps of branches. The window marks with
‘b’ is the result of an overlap of branches in ‘a’ with those in c.
Fig. 4 reveals in detail these period adding cascades [22]. The
period adding cascades within the period-13, period-16 and
period-29 window are called period adding bifurcations as a
result of border collisions [22]–[24]. According to this adding
rule, there is a period-45 window between the period-16 and
the period-29, and so forth.

For the short-term revenue, the reference price is robust to a
change in the memory rate of consumers such that α < 0.813,
leads to a robust period-3 optimal pricing strategy. However,
as α > 0.813, period adding bifurcations emerge. This leads
to the maximised revenue generated from a periodic pricing
strategy with a frequent change in its period.

Fig. 5. Bifurcation diagram of reference price against relative sensitivity of
consumers in the case of optimising the long-term revenue.

Fig. 6. Period diagram of the reference price against the relative sensitivity
in the case of optimising the long-term revenue. The the window marked with
an ‘a’ highlights a U-cascade which contains pairs of opposed period adding
bifurcation cascades; the window marked by ‘b’ represents an S-cascade which
only consists of period adding cascades of increasing order.

B. Variation of the relative sensitivity β

Next we set the the memory factor to be α = 0.85, and alter
the relative sensitivity β as shown in Fig. 5. As β increases,
the amplitude of the reference price decreases until a constant

value is reached. Again, cascades of period adding bifurcations
are observed. In the following Fig. 6 illustrates two scenarios
of period adding cascades as β increases:

1) For the window marked as ‘a’, the lowest period lies in
the middle of the period adding cascade which is called
in the following a U-cascade. In a U-cascade the period
of its right-hand side is greater than that of left-hand
side.

2) For the window marked with ‘b’, we observe an S-
cascade of which period adding cascades have layers
of increasing periods.

For the short-term revenue strategy, period adding bifur-
cations are observed only when β < 0.795. As the relative
sensitivity to losses and gains approaches unity, the reference
price becomes a period-2 solution, which is robust to the
change in the relative sensitivity.

Fig. 7. Bifurcation diagram of reference price against the memory factor in
the case of optimising the long-term revenue.

Fig. 8. Period diagram of reference price against the memory factor in the
case of optimising the long-term revenue.

IV. DYNAMICS IN THE LONG-TERM REVENUE STRATEGY

This section investigate the nonlinear dynamics of reference
price for a decision maker aiming to optimise the long-term
revenue.



A. Variation of memory rate α

The parameters used here are the same as those in section
III-A but a different objective function is used: The decision
maker obtains the optimal price from the solutions to Eq. (7).

Fig. 7 depicts the bifurcation diagram; again bifurcations
in branches add until α reaches a value of about 0.6, where
the branches start merging into three main branches. This
convergence is followed by the emergence of many branches
and the shrinking amplitude until a constant value is reached.

However, when comparing the y-axis of Fig. 1 and Fig. 7,
we find that for the same α, the reference price in the case of
the long-term revenue can be higher than in the case of the
short-term revenue. The result is consistent with observations
in [5]. A company chooses usually a higher sales price to
increase future reference prices and thereby to grow its long-
term revenue.

Fig. 8 depicts the change in dynamics with α. As α ∈
(0, 0.222], the reference price becomes a period-2 solution.
As α ∈ (0.222, 0.592), period adding bifurcations occur.

However, comparisons between the short-term (cf. Fig. 2)
and the long-term revenue (cf. Fig. 8) in the interval α ∈
[0, 0.813) shows the robustness of the short-term revenue. The
former is almost a period-3 solution and no evident period
adding bifurcations. In contrast, the latter observes evident
period adding bifurcations.

From the comparisons between the behaviour of the refer-
ence price regarding the amplitude and the period, a decision
maker can charge a higher price when aiming to the long-term
revenue. However, opposed to the short-term revenue strategy
for values α < 0.813, the consideration of the long-term
revenue renders scenarios that the reference price becomes
prone to period adding bifurcations.

Fig. 9. Bifurcation diagram of reference price against the relative sensitivity
in the case of optimising the long-term revenue.

B. Variation of relative sensitivity β

The parameters are the same as section III-B. The optimal
price is approximated according to Eq. (7).

Fig. 9 shows the bifurcation diagram as the relative sensitiv-
ity changes. Similar to Fig. 5, the branches show bifurcation
adding cascades. Comparisons between Fig. 9 and Fig. 5

Fig. 10. Period diagram of reference price against the relative sensitivity in
the case of optimising the long-term revenue.

further validate our observations: we can achieve a higher
reference price for the long-term revenue strategy than in the
short-term revenue strategy. Also, U-cascades shown in Fig. 10
is not so obvious as in Fig. 6. This observation indicates that
the consideration of the long-term revenue reduce the variation
in the period of the periodic reference price.

A reduced variation is due to a clairvoyant perspective in
solving the optimisation problem in the case of the long-
term revenue. The underlying assumption is that the system
does not follow any drift terms, evolves according to given
equations and that the ‘maximal generating revenue’ price
path is chosen. The decision maker has full information of
the market evolution.

This information helps the decision maker to reduce un-
necessary transitions to steady-state solutions. As a result, the
long-term consideration reduces the amplitude of the change
in dynamics when the period adding bifurcations emerge both
in the short-term and the long-term revenue strategy.

V. CONCLUSION

We have studied bifurcation and period diagrams to examine
the nonlinear dynamics in a dynamic pricing model consider-
ing reference effects. Comparisons between a short-term and
a long-term revenue strategy have been conducted. Period
adding bifurcations are observed as the market environment
changes. According to the order of the left and the right hand
side of the period adding cascades, we classify two types
of cascades: the U-cascade and the S-cascade according to
Granados and Huguet [25]. These two types of cascades enable
us to identify different bifurcation structures which belong to
different revenue strategies. The classification of cascades can
further be used to characterise period adding bifurcations into
different evolution of rotation numbers.

The consideration of optimising the long-term revenue has
two advantages over optimising the short-term revenue. A
decision maker could charge temporarily a higher price to
increase the reference price. Also, the long-term revenue
strategy induces a less variation in the period. Further, this
reduced variability lowers the amplitude of the period of the
reference price.



However, optimising the long-term revenue breaks a sup-
posedly robust pricing strategy in some situations (here α ∈
(0.222, 0.592)). In this situation, the short-term revenue gen-
erates a robust periodic solution with a fixed period, which
avoids period adding bifurcations. Knowing of such a robust
period would enable a decision maker to reduce price volatility
and manage consumer price expectations.

Our focus is on the periodic solution of the reference price
and solutions with a period smaller than 300 using period
diagrams. This limitation, however, renders it difficult to
distinguish between higher periodic, quasi-periodic or chaotic
solutions. Symbolic analyses or order pattern recurrent plots
and associated quantifiers may provide further condensation
of the complex information contained in bifurcation diagrams
[26].
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