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Abstract

Poker has become the subject of an increasing amount of sttity computational in-
telligence community. The element of imperfect informatmyesents new and greater
challenges than those previously posed by games such akechemd chess. Ad-
vances in computer poker have great potential, since reasamder conditions of
uncertainty is typical of many real world problems.

To date the focus of computer poker research has centredeatetlelopment of
ring game players for limit Texas hold’em. For a computer aanpete in the most
prestigious poker events, however, it will be required typh a tournament setting
with a no-limit betting structure. This thesis is the firshdemic attempt to investigate
the underlying dynamics of successful no-limit tournam@okter play. Professional
players have proffered advice in the non-academic polealiire on correct strategies
for tournament poker play. This study seeks to empiricadlijdate their suggestions
on a simplified no-limit Texas hold’em tournament framework

Starting by using exhaustive simulations, we first asseshkypothesis that a strat-
egy including information related to game-specific factpesforms better than one
founded on hand strength knowledge alone. Specifically, emeahstrate that the use
of information pertaining to one’s seating position, thgopents’ prior actions, the
stage of the tournament, and one’s chip stack size all dt&itowards a statistically
significant improvement in the number of tournaments won.

In extending the research to combine all factors we explanlitnitations of the
exhaustive simulation approach, and introduce evolutioalgorithms as a method of
searching the strategy space. We then test the hypothasia gtrategy which com-
bines information from all the aforementioned factors perfs better than one which
employs only a single factor. We show that an evolutionagpathm is successfully
able to resolve conflicting signals from the specified fast@nd that the resulting
strategies are statistically stronger than those prelyjialiscovered.

Our research continues with an analysis of the results, daaterret them in the
context of poker strategy. We compare our findings to pokéras’ recommenda-
tions, and conclude with a discussion on the many possildsions to this work.



Acknowledgements

First and foremost | would like to thank my supervisor, Dr ddlevine, for his con-
tributions and support in my research efforts. | feel vemtupate that | found a su-
pervisor who shared my passion for the subject over the hasetand a half years.
Additionally, I wish to thank Dr Dave Robertson for providimuch needed guidance
at several junctures.

For making the PhD experience enjoyable and memorable, lddide to give my
appreciation to all the staff and fellow students within 818Vithout them the journey
would have been far lonelier.

Finally | owe my biggest debt of gratitude to my partner, soate, best friend, and
financial sponsor, Ruth Mitchell. Without her | would not kdvad the opportunity to
undertake this research, nor the kicks up the backside sege® complete it.



Declaration

| declare that this thesis was composed by myself, that th& wantained herein is
my own except where explicitly stated otherwise in the terg that this work has not
been submitted for any other degree or professional quatidic except as specified.

(Richard G. Cartey



To Ruth



1

Table of Contents

I ntroduction 1

1.1 OVerviewW . . . . . e 1

1.2 Motivation. . . . . . . . e 1

1.3 AimsandScope . . . . . . . . ... 3

1.4 The Organizationofthe Thesis . . . . .. ... .. ... ....... 4

Poker 6

2.1 IntroductiontoPoker . . . . .. .. ... .. .. .. ... .. ...,

2.2 TexasHoldemPoker . .. .. ... .. ... .. ... ........

2.3 Approaches to Computer Game Playing . . .. .. .. ........ 9

2.4 Early Game Theoretic Investigations into Poker . . . . ...... .. 12

2.5 Computer PokerResearch . . .. .. ... ... ... ........ 14

2.6 Combining Game Theory with Learning . . . . .. .. .. ... ... 51

2.7 Non-Academic Poker Literature . . . . ... ... ... ....... 81
271 HandStrength . . ... ........ .. .. ........ 19
2.7.2 SeatingPosition . . .. ... ... .. .. . o o 20
2.7.3 Opponents’ Prior Actions . . . . . . ... ... ... .... 20

2.8 Summary ... e 21

All in or Fold Texas Hold’em Tournament Strategy 23

3.1 Texas Hold’em Tournament Rules and Structures . . . . .. .. 23

3.2 Strategic Factors in TournamentPoker . . . ... ... ... ... 26
3.2.1 TournamentLevel . .. ... ... ... ... ... ..... 27
3.22 StackSize. . . . . ... 29
3.23 TheGapConcept . . . .. ... .. . .. 30

3.3 Sklansky'sSystem . . . . .. ... 31

3.4 ICCM 2004 PokerBot Tournament . . . . . . .. .. ... ...... 34



3.4.1 TournamentRules . .. ... ... .. ... ... .. .... 35

3.42 ENtries . . .. .. 35
343 DumbBot. .. .. .. ... ... .. 36
344 Results . ... ... ... 36
3.45 ExtraTournaments . . . .. ... ... .. ... ....... 37
346 Comments . . ... ... . .. ... 38
3.5 KillPhil Strategies . . . .. .. ... ... .. ... 39
3.6 Summary . . ... e e 40

Initial Tournament Poker Investigations using Exhaustive Simulations 42

4.1 Exhaustive Simulations Experimental Framework . . . ...... . . 42
4.1.1 TournamentStructure . . . . . . . .. ... .. ... ..... 42
4.1.2 HandGroupings . . . .. .. .. .. 44
4.1.3 DecisionMaking . . ... ... ... ... ... ... ..., 46
4.1.4 TournamentOpponents . . . . . . . . . . . .. . ... . ... 47

4.2 Exhaustive SimulationResults . . . .. ... ... oL 48
4.2.1 HandStrengthOnly . .. ... ................ 48
4.2.2 Hand Strengthand CoinToss . . . ... ........... 50
4.2.3 Hand Strength and Seating Position . . . . . ... ... ... 53
4.2.4 Hand Strength and Opponents’ Prior Actions . . . . . . .. 57
4.2.5 Hand Strength and TournamentLevel . . . .. ... ... .. 59
4.2.6 Hand Strength and Stack Size . . ... ............ 61

4.3 Further Statistical Analysis of Exhaustive SimulatiResults . . . . . 64

44 Conclusions . . . . . .. 67

Evolutionary Algorithms 69

5.1 The Difficulties of Extending the Exhaustive Simulatiyoproach . . 69

5.2 Introduction to Evolutionary Algorithms . . . . . . . . . . ... .. 71

5.3 Subclasses of Evolutionary Algorithm . . . . .. ... ...... 73
5.3.1 GeneticAlgorithms . . . . . . .. .. ... ... L. 73
5.3.2 Evolutionary Programming . . . . . .. .. ... ... .... 73
5.3.3 Evolution Strategies . . . . . .. ... oL 74
5.3.4 GeneticProgramming . . .. .. ... ... ... .. ..., 74

5.4 Evolutionary Algorithms Appliedto Games . . . . .. ... ... 75

5.5 Evolutionary Algorithms Appliedto Poker . . . . . . . ... ... 78

5.6 An Example of Evolutionary Algorithm Design for a Toy Rok . . . 80

Vi



5.6.1 Jack-Queen-KingGame . ... .. .. .. ... ....... 80

5.6.2 Player Representation . . .. ... .............. 82

5.6.3 Implementingthe EA . . . . . . .. . ... ... ... 83

5.6.4 Resultsand Conclusions . . .. .. ... ... ........ 85
5.7 Summary . ... e e e 86

Discovering More Complex Strategies Using Evolutionary Algorithms 88

6.1 Evolutionary Algorithm Experimental Framework . . . . . . . .. 88
6.1.1 Strategy Representation . . . ... .. ... ......... 89
6.1.2 Population Initialization . . . . ... ... ... ....... 90
6.1.3 Selection and the Fitness Function . . . . . . ... ... .. 1 9
6.1.4 Reproduction . . .. ... .. ... ... ... 92
6.1.5 Termination. . . . . . ... ... . ... ... 96

6.2 Evolutionary AlgorithmResults . . . . . ... .. ... ....... 97

6.3 Statistical Analysis of the Evolutionary Algorithm Rétls . . . . . . 100

6.4 Conclusions . . . . . . . ... 101

Additional Analysisand Interpretation of Results 103

7.1 Recap and Comparison of the Evolutionary Algorithm aridatistive
SimulationResults . . . . . . ... 103

7.2 Comparison of the Evolutionary Results to Experts’ hamnent Strat-

egy Suggestions . . . . ... 108
7.2.1 SeatingPosition . . .. ... ... .. . o o 108
7.2.2 Opponents’ Prior Actions . . . . . . .. ... ... ..... 110
7.2.3 TournamentLevel . ... ... ... ... .......... 110
7.24 StackSize. . . .. ... 111
7.25 TheGapConcept. .. ... .. .. . ... ..., 112
7.3 Convergence in the Evolutionary Algorithms . . . . . . ... .. 114
7.4 The Relative Importanceof Genes . . . . . ... ... ... .... 151
7.5 Conclusions . . . . . ... 119
Further Work 120
8.1 Extending and Enhancing the Available Knowledge . . . ...... . 120
8.2 Competing Against a Range of More Realistic Opponents . . . . 125
8.3 Changestothe Tournament Structure . . . . . ... ... ... .. 126
8.4 Removal of the All In or Fold Betting Restriction . . . . . ... .. 126

Vii



C

D

85 Summary . ... ...

Summary and Conclusions
Texas Hold’em Starting Hands

Texas Hold’em Example and Five-Card Hand Rankings

B.1 ExampleHand . ... ...................
B.2 Five-Card Poker Hand Rankings . . . ... ... ... ..

Sklansky-Chubukov Hand Rankings

Published CIG 2007 Paper

Bibliography

viii

152



Chapter 1

Introduction

1.1 Overview

This thesis presents an investigation into the nature ascbdery of robust tourna-
ment poker strategies through the application of evolatipitomputation. Whilst re-
search into games is commonplace in the artificial inteti@ge(Al) community, work
on poker is nascent. Impressive results have already bémsevad through academic
research into the ring game format of poker, but tournamekepplay has so far been
neglected. This research aims to address this gap in themeatiterature.

1.2 Motivation

Games provide a common test bed for researchers into conguiémce due to their
well defined problem domains. The goal of such research isdilp to develop the
strongest possible programs, and the rules of the gamedardixed bounds within
which this goal can be achieved. Poker is of particular edesince it provides many
different challenges for machine intelligence which ar¢ foond in the more com-
monly researched games such as chess and draughts. A stropgter poker pro-
gram needs to display a range of intelligent behavioursdg tile game successfully,
such as handling imperfect and incomplete information, petng against multiple
adversaries, opponent modelling and risk management [Uahy of these compe-
tencies are found in other problem domains. Results fronsthdy of poker may
prove beneficial in a wide variety of other areas such as bargpproblems, financial
trading and forecasting, where reasoning under conditbngcertainty is present.
To properly define a domain for research into the applicatibAl techniques to
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poker we are required to specify the:

e Poker variant,
e Betting structure,
e Game format (i.e. ring game or tournament), and

e Number of players.

If we consider the ultimate aim for research into computeékep@s the develop-
ment of a player which is able to successfully compete forvihdd championship,
then we can select choices which align with this goal. By camragreement the
poker world champion is deemed to be the winner of the $1H0§Ein no-limit Texas
hold’em tournament, played during the World Series of Pakéas Vegas every sum-
mer [59]. Therefore a poker player that is capable of wintiegworld championship
needs to be able to play:

e Texas hold’em poker,
e With a no-limit betting structure,
¢ In a tournament setting,

e Against any number of opponents.

When we investigate the research that has previously bedgriaken in computer
poker we see that the last three of these targets have yefgimperly addressed. The
present state of the art tackles Texas hold’em as playedaithit betting structure in
a ring game format, and typically against only one other ogpd. This study marks
the first academic attempt to research poker as played inraament setting, with
no-limit betting, and against multiple opponents.

The non-academic literature, comprising books and astietétten predominantly
by professional poker players, contains suggestions fongttournament poker play.
The strategies which they espouse are the result of the @uthen experiences, and
as such are usually more anecdotal than scientific in natangerforming this study
we shall compare our results with such authors’ recommenatto see whether the
professionals’ advice can be demonstrated empirically.
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1.3 Aims and Scope

This central intent of this thesis is to better understamdrtament poker strategy. The
goal is not, therefore, to produce the strongest possilageps; rather we wish to

comprehend some of the necessary elements of a strong .pliayerthen expected

that these strategic elements can be incorporated intodker programs of future

researchers who do seek to develop highly competitive ctenppoker strategies.

Since this research does not directly build upon any prevébudies, we must first
create a framework for the experiments. Texas hold’em ixaemely involved game,
and therefore certain simplifications are introduced toerthk problem of understand-
ing tournament strategy as practical as possible with@ingpall of the complexity.

First of all we limit the number of competitors to ten. In alreaurnament it is
possible to have literally thousands of entrants. All suaimpetitions are eventually
reduced to a final table of around ten players, though, asddhins the starting point
of our research.

To simplify the betting actions available to the playersim no-limit tournaments
we restrict their options to either all in or fold. In real hoit poker a player may
decide how much they wish to stake in a bet. Replacing thisipitisy with a choice
of all or nothing shifts the focus to the more general and irtgi strategic question
of when to bet, rather than how much. An additional benefithef simplification is
that we only need concern ourselves with one round of bettattper than the four
found in authentic Texas hold’em. This greatly reduces tragjs strategy space to a
more tractable size, thus facilitating its investigation.

Lastly we choose to neglect opponent modelling. This is drtee@most crucial
elements of a real player's poker strategy: all strong pkygkecide upon a course
of action by incorporating knowledge of their opponent®\pous betting patterns.
However, whilst it is extremely important, opponent mouhgjlis a secondary strategic
element to the more fundamental aspects of tournament ppikgmvhich we seek to
address. Opponent modelling can be thought of as an adalitiayer built upon a
foundation of correct tournament strategy. This kernel mdarstanding is not only
required when competing against unknown opponents, bugrigzepually essential in
guiding a tournament player’s general strategic consiogrs.

Having built a framework upon which to investigate tournaty@ker strategy, we
must finally decide which technique from the Al library to doyp To find strategies
which maximize the number of tournaments won we start ouueeieg with small
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problems for which the testing of all permissible strategsefeasible. For this method
we use the term exhaustive simulation. As we expand the @mablve find that this
procedure is no longer practical, and instead seek to ughemappropriate technique.
The tackling of an optimization problem in which potentialigions can be thought
of as candidates within a population leads us naturally ¢éoutbe of evolutionary al-
gorithms (EAs). We recognize that this choice was not mamgaand that other
techniques such as simulated annealing or hill climbin@[H8ight alternatively have
been employed. As we shall see, though, EAs have been usaussly in similar
studies into computer games and appear an appropriateotablef task.

1.4 The Organization of the Thesis

Chapter 2 gives an overview of the game of poker, focusingtiqular on the Texas
hold’em variant. We discuss previous academic researchgames generally, and
poker specifically. The chapter concludes by highlightimg televant non-academic
literature on poker strategy, stressing the importanceeafiisg position and hand
strength knowledge to a competitive player.

Following this Chapter 3 provides a more detailed discussidournament Texas
hold’em. Acknowledging the non-academic literature wecdss the significance of
information related to the stage of the tournament and ostaisk size in a player’s
decision making. We then talk about all in or fold systemsgtaying in a Texas
hold’em tournament, and show how such a method fared in aanaed computer
challenge.

Our initial tournament poker investigations using exhaessimulations are pre-
sented in Chapter 4. We show how the four game factors higieiehin the two previ-
ous chapters can be used in conjunction with hand strengtivlkedge to build strong
tournament poker programs. We demonstrate statistidadtydlayers who are able to
utilize this additional information fare better than thagkeo base decisions on their
hand strength alone.

Given the limitations of the exhaustive simulation appigarge turn to evolution-
ary algorithms in Chapter 5. We detail the different classeEA, and show how
they have been used in previous academic enquiries. Weumbnthe chapter with
an example of how a genetic algorithm can be used to encoglerpléor a toy poker
problem.

Chapter 6 returns to empirical methods, by using the EA tiecias of the pre-



Chapter 1. Introduction 5

ceding chapter. After an explanation of the experimengahgwork we employ evolu-
tionary computation to find poker strategies which utilineaalgamation of the game
factors assessed individually in the exhaustive simulatitJsing statistical hypothesis
testing we show that players who employ the complete inftionaet score a signif-
icantly larger number of tournament wins than the strategreviously discovered in
Chapter 4.

Further analysis of the results of this research is predant€hapter 7. We com-
pare the strategies found by evolutionary computation thitise from the exhaustive
simulations, then interpret the numerical data from oureexpents in terms of poker
strategy. We conclude with a comparison of our findings tcstretegic recommenda-
tions in the non-academic poker literature.

Chapter 8 contains many suggestions for ways in which thikwould be ex-
tended by future researchers in the field, towards the gaaleaiting a world champi-
onship winning computer poker player.

The thesis concludes with Chapter 9, which summarizes thdy sind discusses
the contributions of this thesis to computer poker research
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Poker

This chapter gives a general introduction to the game of pbledore focusing specif-
ically on the variant known as Texas hold’em. We introducemof the jargon that is
used in discussing the game, and give an example of how a ldedas hold’em pro-
ceeds. Next we examine recent methods of building compateeglaying programs,
looking at some of the different artificial intelligence bedques that have been used.
Following this we discuss academic investigations intogsokrhen we see how an
approach combining game theory and opponent modellingodyming the strongest
computer poker players at this time. Finally we survey the-academic poker litera-
ture, and discuss some of the strategic considerationsognegbby professional players

to guide their decision making.

2.1 Introduction to Poker

Poker is a generic term covering hundreds of different Wiana of card games, in
which players with fully or partially concealed cards betjsentially against each
other to win a communal pot of money. Poker is a highly ski@anbling game in
which strategies and techniques can be learnt and appliddféat one’s opponents.
As with most popular card games, however, an element of ehsnaresent in poker
due to the random deal of the cards.

The history of poker is not accurately known, but it is moshooonly believed to
be derived from the gambling card game of primero [122]. Taise was popular in
ltaly in the 16" century, before moving across western Europe to Englarkerfadso
shares similarities to the Persian game of as nas and théskmgime brag, and it is
possible that these pastimes and others have influencedibbgment of the present
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games.

Whilst there are many forms of poker, most share several cami@atures. A
single poker game may contain any number of players, tylgié@m two to ten. A
standard 52-card deck of playing cards is most often usetth, avprescribed dealer
responsible for shuffling between hands and overseeingaheeg The right to deal
is passed clockwise with each hand, and play proceeds vatpletyer to the dealer’s
immediate left.

On the commencement of a hand of poker, one or more players@uied to post
a forced bet into the pot, known either ablind or ante depending on the specific
form of the game. The dealer then gives each player the apptepumber of cards
one at a time, and these may eithenlvate (dealt face down and seen only by their
recipient), orpublic (dealt face up for all players to see).

After the deal, a betting round occurs in which players satjialy wager money
against each other. Typically there are three options @ailto each player, with
different terminology depending upon whether money hasadly been entered into
the pot in that betting round. Assuming no money has beereddqse. the pot is
unopenedla player may choose teet by placing money into the potheck(a bet of
zero chips), orfold. A player who folds takes no further active part in the hand an
gives their cards back to the dealer. If the pot has been opeseh player may either
raise by increasing the size of the beall by matching it, or again fold. A betting
round ends when all active players (i.e. those that have aided) have wagered
exactly the same amount.

After the initial betting round, additional cards are deatt some poker games as
a replacement for existing cards - again followed by a rounbletting. Most poker
games contain from two to four such stages of dealing anithigettf in any round a
player’s bet or raise is not met by at least one caller, thetg wins the pot outright
and is under no obligation to reveal his hand. If two or mosg/ets remain active on
completion of the final betting round, they must declarerthands in ashowdown
The holder of the best hand, determined by a relative rankfregl possible hands,
wins all monies posted into the pot.

2.2 Texas Hold’em Poker

At present the most widely played poker variant is Texas 'baid(also known as
hold’em or holdem). It is this form which is used as the maierévin the annual
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World Series of Poker [59], and is played in many casinos amdéhgames across the
world. Hold’em is believed to have been invented in Texah@eaarly 1900s, and its
popularity has spread due to it being one of the most stictgicomplex forms of
poker. A game of Texas hold’em can be played with up to 22 p&yedthough it is
more usual to see from two to ten players at a single table.

The objective in a standard game of hold’em is to win the pberé are two ways
that a player can succeed in this aim. Firstly, a player mas ltae best hand in a
showdown. Alternatively, a player wins the pot if all othdayers have folded their
cards.

Play commences with the two players to the dealer’'s immediit posting forced
bets, known sequentially as teenall blindandbig blind. The size of the big blind is
typically twice that of the small blind. This blind moneyfiaites the pot for which all
players compete.

Two cards are then dealt face down to each player, and coertpias player'iole
cards These cards are private, since only the player to whom tteegesalt knows their
identity. Hole cards can be classified gsadr (two cards of the same ranlgplited(two
cards of the same suit), offsuit (two non-paired cards of different suits). There are
1,326 unique two-card starting hands in Texas hold’em, bettd the equivalence of
suits this number can be reduced to 169. A fuller discussiohexas hold’em starting
hands can be found in Appendix A.

Once all cards are dealt the first betting round, calledpieeflop round, takes
place. Here the player to the immediate left of the big bliots dirst, with play con-
tinuing clockwise. Each player in turn may either call thepous bet, raise it, or fold
and release his cards.

After the pre-flop betting, three cards are dealt face up enntiddle of the table
to form theflop. Cards dealt publicly in this way are known @smmunity cardand
form theboard, and may be used by all the players in constructing their fiaalds.
The flop is followed by another betting round, starting thmset with the first active
player to the left of the dealer. Once complete, anothelsicard (theturn) is placed
on the table, and a third betting round takes place. A finalmamnity card (theiver)
follows next, then a last round of betting.

During any of the four betting rounds it is possible for onenwore players to
becomeall in. This term denotes the situation where a competitor hasglad of
their chips into the pot. An all in player takes no part in theidual betting rounds,
but otherwise play continues as normal.
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If two or more players remain - all in or not - at the conclusadrthe final betting
round, a showdown determines the winner. In a showdown ekgfempselects his
best five-card poker hand from the seven available: his twe bards plus the five
community cards. There is no stipulation on the number ads#éinat must be used
from either one’s hand or the board. The pot is passed to tldehof the best hand, as
determined by the ranking of all possible poker hands. Ireptional circumstances
two or more players may have equally ranked hands, in whisk t@ pot is shared
out equally.

Texas hold’em typically employs one of three different faraf betting structure:
limit, pot-limit, or no-limit. In limit hold’em, the size of the bets are fixed amounts. In
the first two betting rounds each bet or raise is equal to tteecithe big blind. In the
final two rounds the fixed bet size doubles. In pot-limit held’ a player may wager
any amount between the size of the big blind and the size ggaheNo-limit hold’em
allows each player to bet any amount from the size of the biglhip to the amount
that they have in their stack. Pot-limit and no-limit pokee aommonly referred to as
big betpoker.

As with all poker games, hold’em can either be played asg@game(also known
ascash gamgor in atournament In a ring game the players contest pots with real
money and no predetermined end time. A poker tournamenth@mther hand, is
played with tournament chips and ends once the game has bdeced to a preset
number of players (usually one). In a ring game players mayioally enter and exit
the table, and players who lose all of their chips are ableutclse more to bring
onto the table. By contrast, in a tournament the playersliysiiay a set number of
tournament chips before the game, and are eliminated frentdimpetition if their
stack size reaches zero.

Appendix B gives an example of the play of a hand of no-limita®hold’em, and
contains the ranking of all possible hands used in a showdown

2.3 Approaches to Computer Game Playing

Having introduced the game which forms the basis of our rekeave now step back
and look at the categorization of games and some of the tgabsithat have proved
useful in their investigation.

A game can typically be assigned to one of four differentgaities, depending on
whether it is deterministic or not, and on whether or not itains perfect informa-
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tion [17]. By definition, deterministic games contain no eba element. Such games
include checkers and chess. The outcome of a determinestneglepends solely on

the skills and abilities of the competitors. By contrastpa4tleterministic game admits
a chance element, usually through the roll of dice or thef&haf cards. Backgammon

is an example of a non-deterministic game.

Games can also be of either perfect or imperfect informatidhis distinction
depends upon whether the competitors have all the infoomadélating to the present
game state Checkers and chess are perfect information games, sirtbeptayers
can see the complete state of the game on the board. Conserilve players of an
imperfect information game, such as bridge or battleshpsst act under conditions
of uncertainty.

As with all poker variants Texas hold’em is an example of a-deterministic
game of imperfect information. The randomization broughdw by shuffling the
cards introduces non-determinism, whilst the concealddreaf the players’ hole
cards leads to the state of imperfect information.

The classification of several well known games is given inganl.

Perfect Information | Imperfect I nformation

Deterministic Chess, Checkers, GpBattleships

Non-deter ministic | Backgammon, Ludo| Bridge, Poker

Table 2.1: The classification of several games.

Researchers have had tremendous successes in recent fleamgesgtigations into
games of perfect information. The first major triumph for guter game programs
was Jonathan Schaeffexzhinook[103], designed to play checkers. The then-world
champion Marion Tinsley competed agai@tinookin 1994, but was forced to with-
draw before completion of the match due to ill health. Subsegto thisChinook
inherited the title of “Man versus Machine Champion of therld/o

Some of the most notable successes of computer game progeasm$deen those
developed for chess. The well documented defeat of Garrp&tas by IBM’s Deep
Blue in 1995 [25] was the first time that a reigning chess weHdmpion had been
beaten by a computer under regular time controls. Kasparoséif predicted in the

LFormally, a game of perfect information is one in which a# ihformation sets of the game tree
contain a single node.
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mid-1990s [29] that a computer would be capable of beatimgdnuopposition to the
world championship title by 2010.

In the cases of checkers and chess, the complete game dtatais to both par-
ticipants at all times during the game. No potentially intpat decision relevant in-
formation remains hidden. With this presence of perfedrnmiation a minimax search
coupled to a position evaluation function is able to seleécingier moves than a typi-
cal human opponent by looking deeper into the possible cpsees of each action.
Such brute-force search continually yields stronger @ogras increases in compu-
tational power allow the machine to examine a larger numbg@otential positions.
Deep Blue was reported to be able to analyse up to a maximur8®fr8llion posi-
tions per second [25].

Brute-force search is not yet able to defeat human oppasiti@ll games of per-
fect information. The ancient Chinese game of Go is stiltextely challenging for
researchers into computer game playing due to the size sttimeh space [86, 87, 88].
A comparison of the game space size of Go to the more famibardgames of check-
ers and chess can be made by approximating each game’szeed kis can be done
by raising a game’s average branching factor to the numbardofidual moves (or
plies) in an average game.

Estimates of the game space sizes for checkers, chess, aae Glbown in Table
2.2.

Game Board | Pieces | Branching Factor | Game Space
Checkers 8-by-8 32 81020 5x10%°
Chess 8-by-8 32 35 10120
Go 19-by-19| 381 250 10360

Table 2.2: Game space sizes (taken from [43]).

The approach that has proved successful for checkers asd isheot practical for
non-deterministic games of imperfect information such@sepand bridge. The game
trees of these card games are also very large but includelttigomal complication of
the random deal leading to multinodal information sets.sThanifestation of imper-
fect information means that a player can never be entirely auwhich exact node in
the game tree they are at during the play of a game. Compudigrdaresearch [55] has
a greater historical precedent than that of poker. Methadsdbon planning [50] have
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had some success thus far, but the advance of computer pridgeams is reported to
be slow [54].

The non-determinism of a game is not necessarily a barrgucoessfully creating
a strong computer player. Indeed, the stochastic naturaakdigammon was beneficial
to Gerald Tesauro’s development of TD-Gammon [118]. Theadenetwork used
trains itself to be an evaluation function through selfypldemporal-difference (TD)
learning seeks to reduce the error between the learnersrduprediction and the
next prediction at the next time step. The non-determinifimackgammon aids this
process since the algorithm is able to visit many differedes in the game tree and
thereby produce more rounded estimates.

We can see, therefore, that the nature of the game can dftedetision of which
Al techniques to use in its investigation. Before lookingret computational methods
that have been applied to poker we next review the first séiemvestigations into
the game by the pioneers of game theory.

2.4 Early Game Theoretic Investigations into Poker

The earliest academic investigations into the game of polee undertaken in the
mid-twentieth century. Such luminaries as Kuhn [80], Nasll &hapley [89], and
von Neumann and Morgenstern [120], employed greatly sitedlipoker variants to
formulate a framework for strategy selection in non-coapiee environments. The
toy pokers that were examined were typically only two- oe#iplayer games, and
used pared decks of cards to reduce the space of possililegssa Much of this
early work on poker formed the foundations of game theoryisaigline which has
grown substantially over the last half-century. Applioas of game theory are now
commonplace in many diverse fields, including economicsiosagy, and political
science [52].

The motivation for the research of von Neumaetral. was not to derive winning
strategies for pokeper se rather they had the wider aim of seeking to understand
which strategies should be selected by rational, rewanifmaing individuals when
the potential payoffs to their actions are dependent upenctivices of competing
players.

One example of early poker research was that conducted by [8@fon a simpli-
fied two-player poker. The game requires each player to ar@e@ioit, before receiving
a single card from a deck of three uniquely numbered 1, 2 arhad tBie single betting
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round the players must either bet one unit or pass. If a plagsses after his opponent
has bet the opponent wins the pot. Two successive bets aplessl to a showdown,
with the highest numbered card determining the winner.

The benefit of choosing such a reduced form of poker is thaakes the number
of possible plays and strategies far smaller than that ofraalvariant. Using lin-
ear programming [119] the resulting game matrix is easilyesbto produce optimal
strategies for both players. The results take the form ofchstrategies, such that a
player should randomly employ a specific weighting of hislatée pure strategies.

This simple form of poker is typical of the toy games that hfmrened the test bed
for much poker research. Borel's poker [19] and von Neurmmpoker [120], both
of which pre-date Kuhn’s work, use real numbers from the umérval as “cards”.
As with Kuhn’s poker, limitations are placed on the avaiéabétting actions to facil-
itate tractability. Recent work co-authored by a world cp&nship winning poker
player [44, 45] extends the Borel model to solve games witlelabet sizes, multiple
betting rounds, and more elaborate betting possibilities.

Research which examines extensions to such toy pokers imoanm the litera-
ture. Additional game features are routinely incorporatednake the variant more
complex and often more realistic. Cutler’s poker [34] akkdar pot-limit betting, Kar-
lin and Restrepo [70] introduce a model incorporating npldtibetting rounds, and
Nash and Shapley [89] investigate a three-player gameie&dt al. [53] calculate
solutions for poker variants mentioned in the work of von Menn and Morgen-
stern [120].

Interestingly, some of the results from the studies on tdyep® have highlighted
strategies which are applicable to real poker variants agchexas hold’em. For ex-
ample, the optimal strategy for the first player in von Neuntapoker reveals that he
should bet with both his very best and very worst hands. Bgttiith a hand which has
no possibility of winning in a showdown is referred toldaffing This action creates
greater uncertainty of a player’s cards in his opponentisdynand can often win pots
with an inferior hand through the opponent folding. Bluffiisgseen to be used in all
regularly played forms of poker.

The major problem in applying game theory to real poker vasidnas been due
to the size of their game trees. Given the combinatorial remobpossible deals and
betting actions over multiple rounds, it is calculated tiha number of nodes in two-
player Texas hold’em is over i®[8]. For the multi-player game this number will be
palpably far larger.
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More than fifty years after the initial mathematical invgations, much of the
present advances in poker research employ game theory gear land more realis-
tic forms of the game. This work has been made possible bgasers in computing
power. Prior to looking at this we discuss some of the othermatational techniques
that have been employed by poker researchers.

2.5 Computer Poker Research

Several different methods have been used in the attemptatestrong computer
poker players. The first to use computers in poker researsiNicholas Findler [46,
47]. A simplified form of draw poker was used for testing thaypbf humans against
intelligent machine systems that played according to ks&osi and simple statistical
features. The primary purpose of Findler’s study was to tstdad how humans make
decisions under conditions of uncertainty, for which pokes simply the test bed.
The computer players he designed were overly simplistietpractically competitive,
and their betting behaviours too revealing.

A Bayesian network-based approach [77] has been used tol iiveleard stud
poker. This methodology enabled the computer player tmlger game and its single
opponent’s strategy by continual updating. The resultshisf tesearch were mixed,
and whilst the program had some success playing againskesprgbabilistic and rule-
based computer competitors, it was found to be deficiennaghuman opposition. It
appears that the hand classifications used were too broddhanthe updating was
unable to adapt to deceptive opponents.

Following the previously mentioned success of Tesauro plyapg a reinforce-
ment algorithm to backgammon, Dahl [35] investigated theeafghese techniques to
a simplified two-player Texas hold’em game. In this work helaks that a value-
based approach such as TD or Q-learning is not applicableitagerfect information
game such as poker, since the value of the game cannot beatstimith sufficient
accuracy during play. Instead he applied a gradient sezashd reinforcement learn-
ing algorithm to a much simplified poker variant. This metlooglated a player which
was seen to learn and improve against its opponents, butiagphis technique to the
far larger search space of a full-scale poker will requiremgreater research efforts.

Daphne Koller and Avi Pfeffer [75, 76] created a new algantior finding optimal
randomized strategies in two-player imperfect informagames, such as poker. Their
Galasystem represents games in sequential form, an alterrtiatiie commonly em-
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ployed matrix (normal form) and graphical (extensive fomepresentationsGala is
able to specify and solve a larger class of problems than weasqusly achievable.
They report in their research, unfortunately, that the siztae game tree in full-scale
poker is still beyond the capabilities of this system.

The most advanced and successful work on computer poket@ldgte has been
produced by the Game-playing, Analytical methods, Minirsaarch, and Empirical
Studies (GAMES) Group at the University of Alberta. JonatBahaeffer’'s group have
been responsible for some of the most important advancesnpeter games player
development generally, and are now focusing much of thértsftowards poker.

The GAMES Groups’ poker research started with the developofdoki[13, 14,
15, 16, 37, 94]. This program is designed to play ten-plaiyeit [Texas hold’em in
a ring game, and employs a combination of statistical measand expert rules to
effect decision making. Thieoki system was re-written in 1999, and christerexi.

In this version the opponent modelling mechanism was clhifrgen using statistical
updating to a neural network [38, 39Poki also incorporates a more advanced de-
cision making procedure, with selective-sampling pravigihe ability to search the
game tree in real timePoki still determines its betting actions with reference to an
expert-defined rule base, but it selects its action randdmoly a distribution over
each possible action. This means tRakiis less predictable than its predecessor.

At the time of their development,oki andPoki were arguably the most advanced
computer poker players. Their reliance on expert rules gdvew could be said to lessen
the achievement of the GAMES Group in these systems. It maydtesome pre-
conceived strategies are actually incorrect, and thusibapdhe computer player’s
abilities. Techniques which assume no prior knowledge te@se been applied to
computer poker, and will be examined thoroughly when weesgthe application of
evolutionary computation to poker in Chapter 5.

2.6 Combining Game Theory with Learning

The end of the last century saw a return to game theoretisiigations of poker, due
to the advances in computer technology. Alex Selby [106] thasfirst to success-
fully apply game theory to a variant of Texas hold’em. In hisrky Selby solved the
two-player pre-flop limit version of the game. This ressithhe game to a single bet-
ting round, after which the remaining community cards araltdeut and the winner
determined. The size of the resulting game tree is smallgimbube mathematically
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tractable. The solution takes the form of a table of mixedtegies for each player
depending on their starting cards and how their opponest bet

Shi and Littman [107] built upon the work of Selby to prodube bptimal strat-
egy for a multi-round variant of Texas hold’em, which theyistened Rhode Island
hold’em. Their approach reduced the size of the two-playangtree by utilizing
several abstraction and bucketing techniques. The reguttiodels were then small
enough to be solved by linear programming, with the solioterpreted in the con-
text of the original game.

The success of this work led to the most significant recerdvations in deriving
optimal strategies for a real poker variant by Billingtsal [8] at the GAMES Group.
Billings applied Shi and Littman’s reduction techniquesvto-player ring game limit
Texas hold’em, to derive what they term “pseudo-optimalatgtgies within the pro-
gramPSOpti This program was tested against a world-class poker phaitarre-
markably good results. Eventually the human player was tabfend weaknesses in
PSOptj and adapted to beat it. Although unable to compete at thehighest level,
tests against weaker human opposition have confirmed tlreggestrength oPSOptis
play.

Whilst this effort of the GAMES Group is highly noteworthize benefits to learn-
ing the optimal strategy for any given game are limited. Imgaheory, an optimal
strategy in a two-player zero-sum game is one for which eeigitayer can increase
his reward by unilaterally deviating. Knowing the optim#&lasegy in a game only
provides the best worst-case across all the opponent’shih@sdrategies. If the op-
ponent also plays his optimal strategy, the game rests itil@gum. If the opponent
deviates, though, there may be a chance to increase theteappy/off by also play-
ing non-optimally. By considering the opponent’s origidaliation to be a strategic
mistake, a sub-optimal reply which increases the expedagdfpis an exploitation of
this mistake. Hence to play poker profitably it is not necglgsan optimal strategy
that is required, but a maximal one. This is a strategy whieximizes its payoff
against all the opponents’ strategies. Determining a mab@tnategy requires the use
of opponent modelling.

The need for opponent modelling in games of imperfect infdiom is highlighted
in the creation of computer players for RoShamBo (commoelgrred to as “Rock,
Paper, Scissors”). In this game, two players must simuitaslg select from the choice
of the three objects, and an intransitive relation amongsibssibilities decides the
winner: rock beats scissors, scissors beats paper, and lpagts rock. The optimal
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solution for this game is to select all three actions rangaant with equal probability,
and no counter-strategy is able to defeat this play in thg fan. The drawback to this
approach is that in a pairwise league competition betweanymhayers, the optimal
strategy will only produce middling results. It will scorgemagely well against all
opposition, whereas the programs at the top of the leaglibavie been able to exploit
most of their opponents’ weaknesses.

An optimal strategy is sub-maximal if one’s opponent is plgysub-optimally. To
illustrate this, suppose that a particular RoShamBo plagkscts paper with certainty.
Then the optimal strategy will equally win, lose and draw ¢imed of the time. An
alternative program which always selects scissors agtiisstalways paper” strategy
will ensure the maximal result. The winner of the First Inttonal RoShamBo Pro-
gramming Competition [9]ocaine Powdef42], was designed to exploit its opponents
where possible, only reverting to the optimal strategy asfaudt.

The rationale behind knowing the optimal strategy for a géstleat it first creates
a “no lose” strategy. For the program to produce better tesuheeds to be able to
model its opponents and exploit their mistakes. So as B#licorrectly points out [8],
knowing the optimal strategy for a given poker variant foarstrong foundation upon
which to build. The creation of a maximal player from an ogtirane centres wholly
on opponent modelling. By learning and understanding th@ooent’s strategy, the
program will then be able to adapt its play and improve itsiltss

With this in mind, the GAMES Group followed the creation BEOptiwith the
programVexBot[12]. This newer model is also designed to play two-playeg game
limit Texas hold’em. The methodology behivdxbotimproves upon the solely game
theoreticPSOptiby incorporating real time opponent modelling into its gatrese
search. The superiority of this approach was demonstratéekibots defeat ofPSOpti
in the 2003 Computer Olympiad [10]. Sin&SOptis strategy is not precisely opti-
mal, Vexbotwas able to identify and exploit weaknesses in its play. Hsellts from
this methodology are extremely encouraging, and it woulhsdékely that further
advances in this direction (for example, by allowing for tipié opponents) would
produce even more impressive results.

Recent efforts by the GAMES Group specifically target thaafeopponent mod-
elling [65, 116]. There are many difficulties in achievingegdate learning during the
play of poker. The critical issue is how to model an oppondtatr @nly a few hands
of play, when the space of all possible hands is vastly largerother challenge is
in maintaining an up-to-date model when the opponent coeldvaitching strategies
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mid-game.

If a game of poker can be divided into the components of a foresteal mathe-
matical understanding plus opponent modelling, then ttierle&s undoubtedly a great
obstacle to creating a world class program. However, thefiisrof a highly compe-
tent opponent modelling function are lessened without &l smmprehension of the
underlying physics of the game. Given that two-player liffékas hold’em is now
almost solved, attention for this specific variant has tighirned towards opponent
modelling. For other forms of poker, such as no-limit bejtamd tournament play, the
foundational groundwork has yet to be established acadsiyic

2.7 Non-Academic Poker Literature

Several books have been written on correct strategy foriplajng game limit Texas
hold’'em [22, 26, 31, 63, 64, 68, 83, 99, 121]. Due to the coxipleof the game,
all poker texts contain overgeneralizations in the advifered. The guidance put
forward is almost entirely based on anecdotal evidencéd, thié possible exception of
one author. David Sklansky’s books [108, 109, 111], are gdlyethe most scientific
in their approach, and often include brief sections on thmiegtion of game theory to
idealized poker situations.

Much of the non-academic poker literature sets out ther@itdhat a hold’em
player should use in deciding upon his strategy once the darids have been dealt.
Hilger [64], for example, lists amongst other factors:

e Strength of starting cards
e Position
e Number of callers

¢ Raised/unraised pot

The last two factors can be grouped together into knowledgeeoopponents’
prior betting actions. Hand strength, seating positiod, thie opponents’ prior actions
are the three factors which are most commonly heralded ag lreportant for basing
betting decisions on in Texas hold’em. In the following s@ts we examine each of
these in more detail.
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2.7.1 Hand Strength

In the long run all players receive exactly the same distidiouof starting hands in
Texas hold’em. Whilst it is often observed that any two carais win an individual
hand, some of these figure to be profitable if played regylang others not. The skill
in poker is in playing the right hands for a particular sitoat and folding the rest. As
Hilger [64] puts it:

Winning players play mostly strong hands while losing ptayglay
both strong and weak hands.

In a hold’em showdown the highest ranking hand wins. Theeetbe potential
for success with two given hole cards must be assessed. d@wfkihe context of a
particular situation, all starting hands have a certairirigic value. Many poker au-
thors have sought to simplify this evaluation by groupingetther hands of similar
strength [26, 64, 68]. In formulating his hand strength giags, for example, Sklan-
sky [108] used these six interrelated criteria:

e What are the chances of making the best hand?
e What are the chances of making a flush? (Are the cards suited?)

e What are the chances of making a straight? (Are the cardse tdosach other
and in the middle ranges?)

e What are the chances of flopping top Bdir in the case of a pair in the hole,
what are the chances that no overcéasll fall)?

e What are the chances of making a hand that figures to win a bigppoause the
players will tend to make second best hands)?

e What are the chances of making a hand that might well justrioseey since it
will be second best?

He assigns 72 of the 169 different starting hands to one dit ggpups, with the
remainder deemed unplayable.

Sklansky then explains that, in the context of a specificasibun, a hand’s true
value is heavily dependent upon other game factors. The timgcipal considerations

2Flopping top pair means that the highest ranking card on tiperflatches one of the player’s hole
cards, thus making a pair.
3An overcard is a card higher in rank than that paired in a play®le cards.
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that he and all other authors cite are one’s seating posiohthe opponents’ prior
actions.

2.7.2 Seating Position

The seating position of a player relative to the dealer id saibe a highly signifi-
cant factor in the decision making process, according teppkofessionals. Indeed,
Miller’s [83] opinion is that:

Position is the second most important component of hande\gour
own and your opponents’ cards are the most important).

The seating position of players in a hand of Texas hold’enegabn increased
noteworthiness since the order in which players act remaweriant, unlike some
other poker games. The players to the immediate left of takedare said to be i@arly
position. The first two such players must post the small agdobinds respectively,
with the active betting in the pre-flop round commencing wite third around from
the dealer. In the three later betting rounds the bettinghaggarts with the first active
player to the dealer’s left. The dealer himself and the pay@his right are classed as
being inlate position.

Poker authors contend that there is a benefit to being seatatkiposition. The
more betting rounds there are, the greater the advantagaceHgith four betting
rounds, seating position in Texas hold’em is exceptionatigortant. Late position
is said to confer an informational advantage, since a plegated there is able to act
based upon knowledge of how those seated in front of him héeg@. An early
position player suffers from the opposite disadvantage.

2.7.3 Opponents’ Prior Actions

The non-academic poker literature regularly states tharal’s worth is highly de-
pendent upon the betting actions that have already occuRedexample, low pairs
are often said to be worth playing after several callersnotijust one or two. Other
hands, like high offsuit cards, are believed to lose valud wvery additional oppo-
nent. A player who observes his opponents’ actions is ableséathis information in
evaluating his hand'’s strength and suitability for thatipatar situation.

The most common message from the professional playeresdiatthe reduced
number of hands that should be played once an opponent fexee@ihe pot, particu-
larly with a raise. According to Sklansky [111], after an oppnt has raised:
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You should usually reraise or fold, with folding being muclona
prevalent.

His sentiment is echoed by Jones [68], who simply states that

You need a stronger hand to play in a raised pot.

According to the literature, the rationale behind this m@ie. The most likely
reason for an opponent to bet in poker is because he has g st@od. Therefore one
must always be more wary of playing a hand in an opened pos dafer to release
marginal starting cards than play them after a raise, pdatity for non-expert hold’em
players. The expected value of a fold is zero, and this isuigatly the maximum of
all the available betting options when acting behind a raise

Note, that the consideration of one’s opponents’ priorcandiis closely tied to the
preceding factor of seating position. The later the seadosition of a player, the more
of his opponents’ prior actions he can observe.

2.8 Summary

Research into correct play for ring game poker has advangestantially over the
last half-century, benefiting from increases in computatigpower. The early inves-
tigations by the founders of game theory on toy pokers hawe Ioeen updated to
address real poker variants. Different computational owatthave been applied with
the aim of developing strong poker programs. Many of theltieguprograms now
contain highly accurate game theoretic strategies, antl is@dvancing on opponent
modelling techniques to improve their play even further.

Almost all academic research on Texas hold’em has centrddninbetting in
a ring game environment. None of the studies published te date been directed
towards the tournament form of poker, and none have addtelsseno-limit form of
the game. These are striking omissions, given that the nmestigious events in poker
are played within a no-limit tournament setting. Clearly aasearcher wishing to
develop a player which is able to compete for the world chamghip will need to
frame their program within the no-limit tournament context

The most palpable reason for the lack of progress into na-tonrnament poker
are the additional complexities to those needed to produoritaring game player.
Firstly, in limit betting each player need only decide wteetho fold, call or raise
at each turn. If a player raises in big bet poker, he must ateidd by how much.
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Also, the dual objective within tournament poker of both ming pots and survival
poses a harder challenge to researchers than creating garmg computer program.
Since tackling the real life complexities of a no-limit Texhold’em tournament is
non-trivial, we seek to simplify the task whilst keepingfstiént features of the game
intact.

In the next chapter we address the strategic issues suimgutadirnament Texas
hold’em more closely, and look at game simplifications whiedke experimental work
feasible.



Chapter 3

All In or Fold Texas Hold’em

Tournament Strategy

In this chapter we elaborate on tournament poker, explgithia rules and structure of
such a competition. Following this we consider the diffeesbetween tournament
poker and the ring game, and consider how these distinctiopact on a player’s
betting actions. Next we give an example of a complete gjyater no-limit Texas
hold’em tournaments, as set out by poker professional agarigt David Sklansky.
We then show how we used his all in or fold system to competéenl€CM 2004
PokerBot World Series event against more complex compualanprograms.

3.1 Texas Hold’em Tournament Rules and Structures

In a Texas hold’em ring game players bring real money to thie ta the form of poker
chips. The betting structure is fixed, meaning the blind am®do not alter throughout
the duration of the game. It is common to see a spread of ringegaffered both in
live play and online, with the price level often denoted by #izes of the small and
big blinds. At a typical internet poker site Texas hold’emgrgames can vary in price
level from $0.05/$0.10 up to $1,000/$2,000 [1]. This sprabtolws players to find a
game which is in keeping with their bankroll and, since bgtlayers typically play
for higher stakes, their ability.

The competition in a ring game is limited to the number of peapho can be
seated around the table: typically ten. A ring game playéreis to exit at any time,
whether in profit or loss. If he loses all his chips he mustezitleave the table or
purchase more chips to continue playing. A ring game has rmeal fend point and

23
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players frequently drop out of the game to be replaced as beabme available. The
profit or loss of a ring game player is simply the aggregatelte$ wins and losses on
every hand played.

Poker tournaments employ the same underlying game rulestéondine the play
of each hand, but differ in their overall structure. Each petitor buys-in for a given
starting stack amount, but unlike in a ring game the chipsate direct replacement
for cash and have no value outside of the tournament. So fompbe, a competitor
entering a tournament with a $50 entry fee may actually vec®b,000 in tournament
chips. Note that such a player stands only to lose theirmalg50.

Tournament entrants must continue playing until they hatheelost their stack or
have won everybody elsé’sTournaments can be played with any number of players,
from two up to several thousand. Tournaments with more tharbtrants involve the
use of many tables. The number of seats around each is limbit¢ads individuals get
knocked out continuing players are taken from other talddl the gaps. In this way
the number of active tables in a tournament is eventuallyaed to dinal table

To ensure an expedient finish, tournaments employ a risiimgl Iskchedule. This
means that after either a specified number of hands or a gimennterval the size of
the blinds increases according to a pre-specified programme

The payoff in a tournamentis determined by the reverse andehnich players lose
all of their chips. Hence those players who survive longesstii highest. Normally
a player must finish in the top 10-20% of the competitors t@ireca prize. Most
tournaments use the progressive payback method in whidhigher placed finishers
receive an increasingly larger share of the prize money.

All of the above discussion on the structure of a poker tomerat, and the differ-
ences with a ring game, are summarized in Table 3.1.

Following this we present an example of a typical low-stdkeg hold’em tour-
nament in Table 3.2. In this tournament it is supposed thatofdpetitors each pay
$20 in real money and start with $1,000 of tournament chippradygressive payback
applied to this same tournament shows the potential payoffse entrants in Table
3.3.

The structural differences between tournament and ringegaoker lead to distinct
objectives for players in each event. Paramount amongse thiéferences are the con-
trasting ways in which players win or lose money. In a ring ganoney is collected

The exception to this is a rebuy tournament, which allowyeris to purchase additional chips
during a prescribed opening period of play. For the remainfi¢his thesis we assume a tournament
which does not allow rebuys.



Chapter 3. All in or Fold Texas Hold’em Tournament Strategy

Game Feature Tournament Ring Game

Entry Fee Fixed tournament cost Variable

Chips Game tokens Real money replacemen
Blinds Rising schedule Fixed

Number of Players Unlimited Limited by table seats

Game exit No more chips remaining | Player discretion

Profit and Loss

Based on finishing positionDetermined on each han

Table 3.1: The structural differences between tournament and ring game poker.

Table 3.2: Typical limit tournament poker structure (from [117]).

Duration Blind Sizes
15 minutes $15/$30
15 minutes $30/$60
15 minutes $50/$100
15 minutes $100/$200
15 minutes $200/$400
Interval Interval
15 minutes $300/$600
15 minutes| $500/$1,000
15 minutes| $1,000/$2,000
15 minutes| $2,000/$4,000
15 minutes| $3,000/$6,000

d
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Place | Prize Money | Percentage
18t $376 40%
2nd $216 23%
31 $113 12%
4th $85 9%
5th $56 6%
6t $47 5%
7th $28 3%
gth $19 2%

Table 3.3: Typical limit tournament poker payout structure (from [117]).

or forfeited with every hand played. This means that it isastralways correétto
choose the betting decision which has the highest expected YEV) amongst the
alternatives in ring game play. In this way it is often saidtth ring game player’s long
term winnings are simply the accumulation of the EV for eaebision he makes.

Whereas the basic structural unit of a ring game is an indaliland, a tournament
is the unit in itself. Money is only collected for finishing the prize places in a
tournament. In this format each player must weigh the EV eirttecisions in terms
of tournament chips with their EV in terms of prize money.

3.2 Strategic Factors in Tournament Poker

Players are continually forced to win chips to survive in@art@ment. This is because
as a tournament progresses the players are regularly eedoipost blinds, which rise
according to a schedule. The process of losing chips thrtugkontinual posting of
blinds is known as beingnted-away It is not usually enough, however, to simply
aim to survive in a tournament. Players also need to accuenalaps to ensure a
greater chance of finishing in the prize money. The dual ebgsof survival and chip
accumulation make tournament play strategically more dexihan that required in
aring game.

There are many ways in which these objectives manifest telesin a tourna-
ment player’s actions. To ensure survival a player mightesqositive EV on a hand

2The exception to this is due to meta-game consideratianspne may make a sub-maximal play
to deceive one’s opponent in the expectation that it willlleagreater winnings in a future hand.
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if he believes that it maximizes his expected prize. Conttiae, a player with only a
few chips may choose to bet an inferior hand and accept aive@a if he believes it
improves his chance of receiving prize money over foldingn&ally speaking, com-
petitors wishing to protect their chips and survive willylaore conservatively than
in the identical ring game situation. Likewise, a playerhiung to accumulate chips
will pursue a more aggressive and potentially riskier cewfsaction.

Texas hold’em literature for ring game play abounds, asudised in Section 2.7.
However, a lesser amount has been specifically written f@miment strategy [24,
60, 61, 81, 110, 114, 117]. The reasons for this may be duesttath that tournament
poker is only a relatively recent phenomenon in the UnitedeSt from where the vast
majority of books are authored, or it may simply be due to tivedased complexity of
tournament play.

Since an individual hand within a tournament uses exactdystime rules as those
of a ring game there are very clear similarities between #iare of successful strate-
gies in both formats. The factors of hand strength, seatositipn, and opponents’
prior actions are still as important in the decision makingcess. However, the non-
academic tournament poker literature contains many ifitisins of how overall tour-
nament strategy differs from that required for a ring gamiégetl [64] states that:

You will need to make many adjustments to your ring game inrtau
ments to consistently end up in the money.

This advice is repeated by Reuben and Ciaffone [99], whaorclai

Playing in pot-limit and no-limit money games does not coetglly
prepare a person for tournament play. A formal competitasisgomewhat
different strategy, and vastly different psychology.

Within the literature there are three commonly cited faxtoelieved to influence
correct tournament strategy, in addition to those disaifsering game play. These
are the presence of rising blind levels, the importanceasfissize, and a phenomenon
known as the “Gap Concept”. These are explained in turn ifidh@ving sections.

3.2.1 Tournament Level

The style of a poker player can be crudely evaluated withreefee to two comple-
mentary scales. One measures how many hands a player plaist,the other gauges
how often a player bets and raises.
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A player who bets with a great many poker hands is said ttobse At the
other end of the scale teght player is one who frequently folds. There are several
ramifications depending on the looseness of players in arggdk®@e. A competitor
who is very loose is likely to be playing hands which are weakeaverage than his
opponents. Therefore he bears a greater risk of facing aongpp with a stronger
hand. However, when a loose player himself holds a very gtt@and his previous
frequent betting action often proves to be a profitable dsguAlso, a loose player
may pick up many pots through his constant betting.

A very tight player usually only bets withremiumhands. These are the highest
ranking two-card holdings. The deficiency with this strgtég that opponents are
usually quick to notice when a player frequently folds, sattWwhen such a player
does bet they signal a strong hand. The clever tight playeitlan use this to their
advantage by occasionally betting with weak hands, andrmmakp pots unopposed.

The second scale on which poker players are often measuatelsrto their propen-
sity to bet the hands they play. Aaggressiveplayer will typically bet and raise,
whereas gassiveplayer prefers to check and call. Aggressive players likake
a lead in the betting action. They reason that betting givesitan extra way to win a
hand that calling does not: their opponents may fold. Alnadigirofessional poker au-
thors advocate a tight-aggressive strategy for ring garkerpdhat is to say, a player
should not play many hands, but when they do they should iatgrbet and raise
with them.

With specific reference to tournament poker, the non-acadésrature also coun-
sels the tight-aggressive approach, but with one signifiadjunct. This rider is the
necessity for increased looseness and aggression as anmmhprogresses. Poker
authors maintain that a player should be very tight and castin the early stages
of a tournament, and gradually become less tight to take mgks as play proceeds.
Since the initial blinds are very small as a percentage ofthding stacks, there is
little incentive to try to win pots with all but the very bedtstarting hands. Once the
blinds escalate, players must start to win pots more fretiyuém survive and hence
their starting requirements should be lowered.

Likewise, players in the later stages of a tournament shbaldnore willing to
bet and raise their hands, rather than simply call their oppts’ bets. The greater
chance of causing opponents to fold and steal blinds by begpboth looser and
more aggressive is believed to offset the increased charnoeimament elimination
by coming up against a stronger hand.
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Harrington [60] sums this up by saying:

As long as the cut-off point for prize payouts is distantyptaoceeds
normally. As the number of players shrink and gets close éopttize
cutoff, play changes dramatically. Good players becomesraggressive.

3.2.2 Stack Size

According to the poker literature, chip stack sizes are gy in both ring game
and tournament play, particularly in big bet games. Stazksstake on even greater
significance in tournaments due to the fact that players atarmaplenish their chips.
Once a player loses all of their stack they are eliminateohfitee tournament.

In no-limit poker the correct betting decisions are ofteid $a be determined by
the amount of chips the active players hold. This effect istimoticeable towards the
end of a tournament. For example, a player with a sizeabfesthck at the final table
is often wise to avoid confrontations with the other largecks. The reasoning is that,
although the player may have a positive EV on the hand beengepl, the downside to
losing the hand and missing out on larger prize money oftekesd correct to fold.

In a comprehensive book written on limit Texas hold’em t@aments, Buntjer [24]
details what he believes should be the overriding stratsmicerns in a player’s deci-
sion making at different stages of a tournament. These wiamghare reproduced in
Table 3.4.

Phase Starting | Playing | Player | Your | Opp. | Your

Hand | Position | Type | Image | Stack | Stack
Early 60 20 10 10 0 0
Middle 20 15 30 10 10 15
Last 2-3 tables 15 15 15 15 15 25
Last table 20 20 15 5 20 20
3-4 players 5 10 10 5 30 40
Heads-up 5 0 5 10 40 40

Table 3.4: The relative importance of strategic factors in a limit Texas hold’em tourna-
ment (from [24]).

The conclusions to be drawn from this include:
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e one’s starting hand begins as the most important reasoratoghand in the
early stages of a tournament, but then becomes almostvargléowards the
end,

e chip level, both one’s own and one’s opponents’, beginsrakeirant but gradu-
ally becomes the most important factor in the play of a hand

A player with a large stack benefits in at least two ways. HKirste is able to
wait until he receives strong cards before playing a hamtesihe does not risk being
anted-away. Secondly, he may choose to habitually raisegpsnents, even with
weak hands. This tactic can prove to be profitable since anrayg may then prefer
to fold a mediocre hand rather than play back, realizingtiingit tournament survival
could be at stake. The big stacked player may thereby pickamymncontested pots.

The situation facing a player with a relatively short stagloften critical. Such a
scenario often dictates that the player should be willingagbwith any and all hands,
especially if the pot is unopened. Although they may faceiglation if called and
beaten, the potential for success makes it preferable taltbative of being anted-
away. One of the many skills of a strong poker player is det@ng the point at which
a bet with a weak hand should be attempted.

A series of three books detailing no-limit Texas hold’emrtmament strategy has
been written by Dan Harrington [60, 61, 62]. The author is ofiie most successful
poker players of all time, having won the World Series of Rakain event in 1995
and reaching the final table in both 2003 and 2004. Harringtvoduces many new
concepts within these books.

In the second of his trilogy [61] he comments that:

The most important single number that governs your play tdsvthe
end of tournaments M, which is simply the ratio of your stack to the
current total of blinds and antes...As yddrdrops, your play needs to get
more and more aggressive.

He then develops strategies which depend upon the diffposstible values of this
number.

3.2.3 The Gap Concept

The need to preserve chips and avoid confrontations in arpokenament contributes
to the Gap Concept, a term coined by David Sklansky [110]. észdbes his informal
theory thus:
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You need a better hand to play against someone who has atvypadgd
the betting than you would need to open yourself. The diffeesbetween
the hand you need to call an opener with, and that with whiahwould
open yourself, | call the Gap... In a tournament this Gapteroéxtremely
high... As important as the Gap Concept is anytime in a touem, it
becomes more important still with the Gap usually wideniagremore
during the last stages of the tourney.

So for example, a player with a relatively weak holding of & pasevens seated
halfway around the table may be correct in betting into anpened pot, but they
would require a stronger hand (say, a pair of jacks) if an oppbhas already bet. The
“gap” is the difference between these two hands. The Gap &pamtso states that this
gap typically increases as a tournament progresses. Heraarnament progresses
weaker hands are sufficient to open a pot, but even strongsrane required to call or
raise a prior bet.

A corollary of the Gap Concept is that it is seldom correct pemthe pot with a
call (also known aéimping) in a poker tournament. This is especially true in the later
stages when the blinds have risen. The reason for this is tfzége will very often win
the blinds, since the remaining players will fold many moaadis to a raise than they
would to a call.

3.3 Sklansky's System

In the same book that introduced the Gap Concept, David Skjareveals the basis
for a simplistic strategy for no-limit tournament Texasdiem. A casino owner had
entered his daughter into the $10,000 World Series of Poleém event, but she had no
previous experience of playing the game. The owner appesh8klansky one week
before the start of the tournament and asked him to help highdar learn how to
play. Given her lack of proficiency and the short time avaddbr training, Sklansky
developed what he terméthe System
Sklansky’s instructions were simply:

¢ If someone has raised in front of you, move all in with acesgkj or ace-king
suited. Otherwise fold.

¢ In no one else has raised in front of you, move all in with any, @ay ace-other
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suited, ace-king (suited or offsuit), or two suited conedotard3, except for
four-three or three-two.

¢ Do not play any hands in the first few rounds of the tournament.

There were two main reasons behind the given strategy.lyrigklansky wanted
to keep the specifications as simple as possible since thdnkatinever played poker
before. He felt that the more complexity he put into the deaisules, the bigger the
chance that she would err. The second basis for playing im aweay is that it would
make her extremely difficult to play against. By committirigcd one’s chips before
the flop, it removes the necessity to act on the final threénigetbunds. Experienced
tournament poker players can use these rounds to make iegproferences about
their opponent’s likely holdings. Sklansky8ystermegates this advantage.

Since there are 1,326 possible two-card starting handSysienadvocates an all
in move with 13.1% of these (see Table 3.5). With a ten-plagble, an individual
needs to win the blinds at least 10% of the time to avoid bemgdraway. Assuming
an average distribution of cards, a player who employsystenwill therefore be
competing in a sufficient number of hands.

Hand Combinations
Any pair 78
Ace-king (suited or offsuit) 16
Any ace-other suited 44

Two suited connectors (except 43 and 32) 36
Total 174

Table 3.5: Playable hands in Sklansky’s basic System.

The downside to employing such a strategy is that at some stagiser will be
faced with an opponent who is prepared to call an all in bethéfopponent has a
larger stack then th&ystenplayer must win the hand to ensure survival. Unfortunately
for the casino owner’s daughter she found herself in thigtiposagainst an opponent
holding a pair of aces, and she was eliminated towards thefthe first day.

3Suited connected cards, also referred te@ited connectorsr zero-gaphands, are two cards of
adjacent rank in the same suit. By extensimme-gapandtwo-gaphands are those whose cards are two
and three ranks apart respectively.
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Sklansky’s book next includes a chapter entitled “Imprgvirhe Systefn The
author points out the two major flaws in the simple strategyoexded:

e It did not take into account stack size versus blind size.

¢ It did not take into account how many players were yet to act.

The first of these points was behind Sklansky'’s instructionta employ the strat-
egy at the start of the tournament. His reasoning was thakathghter would be risking
losing all her $10,000 stack for blinds totalling only $7%elrisk/reward ratio in such
a case is too unfavourable. The second flaw with the origgatentomes from real-
izing that it is far safer to make an all in bet at a poker tabtbere are less players to
act behind oneself. The fewer the number of remaining ptaybe lower the chance
that somebody has a playable hand sufficient to call a bet.

Sklansky seeks to ameliorate his strategy by addressirsg ttveo defects. The
foundation of the improve®ystenremains the same: the user will either go all in or
fold in the pre-flop betting round. If an opponent has alreedyed the pot then the
improvedSystenagain dictates that a player should re-raise all in with a plaaces,
a pair of kings, or ace-king suited. Otherwise one should.fdVith no prior raise
Sklansky bases his decisions around a “key number”. To lekethis value, a player
must first divide the total amount of the blinds into his stackount. The resulting
figure is then multiplied by the number of players yet to aotl{iding the blinds).
With no prior players in the pot, the calculated key numbands. Withn preceding
callers, the key number should be multiplied (o 1).

The rules determining the acceptable all in starting handie improvedsystem
after a prior raise are given in Table 3.6. All other handsusthbe folded.

As an example of determining play using the impro®agtemsuppose that the
blinds are $160 and $320, and we are d&&I& with a stack of $8,400. One player
has already called the big blind, and there are two playérlact after us. Here, the
key number is calculated to be:

k= 1595 x 2% (1+1) =70

From Table 3.6 our hand requires a key number of less tham@0s@awe should
fold. Note, however, that without the limper an all in woulel &ppropriate:

k= 1595 x 2x (04+1) =35
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Key Number Playable Hands
> 400 AA only
[200, 400) | As above plus KK
[150, 200) | As above plus QQ, AK
[100, 150) | As above plus JJ, TT, AQ, KQ
[80, 100) | As above plus any pair, any ace suited, zero-gap suited dod# t

[60, 80) As above plus any ace, any King suited, any zero- or one-gégdsu

[40, 60) As above plus any king
[20, 40) As above plus any two suited cards

<20 Any two cards

Table 3.6: Sklansky’s improved System.

Sklansky does not provide any assessment of the superafiitis improvedSys-
temover its predecessor, but by the nomenclature employeddaglglassumes that
the extra information incorporated into the decision ruheseases its strength.

Wishing to gauge the strength of the improv@&gstenin a recent computer poker
competition we took the opportunity to encode and entetatthe ICCM 2004 Poker-
Bot Tournament.

3.4 [ICCM 2004 PokerBot Tournament

In July 2004, the International Conference on Cognitive Blbdg [93] held the “Poker-
Bot World Series” in which entries were solicited to play isexies of no-limit Texas
hold’em tournaments between computer players. The purmidbe competition was
to study and evaluate cognitive models within an environmarich is simple yet rep-
resentative of many real world situations. The organigsetsd the cognitive abilities
required for playing strong poker as:

e Reasoning under uncertainty (one’s opponents’ cards)
e Dealing with probabilistic outcomes (the future cards)
e Decision making with multiple options (the chips used fotshe

¢ Individual differences (different styles of play)
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¢ Inference of intent (from opponents’ bets)

¢ Intentional deception (bluffing)

e Pattern recognition (detecting trends from the flow of theagp
e Social and emotional aspects (dealing with winning anchigsi

e Economic behaviour (factoring the impact of amount of bets)

The tournament administrators specifically chose commaker as their experi-
mental domain because it provides a challenging problereraay a broad range of
cognitive abilities, yet remains more tractable than anrenment based on human
interactions.

3.4.1 Tournament Rules

Entries were required to conform to a pre-specified protaoad were accepted in the
form of an executable program. Each competitor commencedianit Texas hold’em
tournament with $10,000 in chips. The blinds started at $id) $20, and doubled
every 100 hands. The response times of each entry wereditoiten aggregate of 100
seconds per 100 actions to ensure fairness. The winner afraaiment was simply
the player who won all of the chips. The results of the evenmeveggregated over 104
such tournaments.

3.4.2 Entries

Unfortunately the response to the tournament invitatios p@or, and from 50 initial

expressions of interest only five working programs wereredte The reason for the
low numbers was believed to have been due to the restricthe hetween the con-
ference notification and the tournament date. The five coenglayers entered, and
their programmers, were:

e AceGruber- Stanislav Sokorac (University of Toronto)

Carleton- Terrence C. Stewart and Robert West (Carleton University)

Dbot - Dan Bothell (Carnegie Mellon University)

DumbBot- Richard Carter (University of Edinburgh)

YesterdaySushiMaxim Makatchev (University of Pittsburgh)
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3.4.3 DumbBot

Our entry into the PokerBot competitiobumbBot encoded the improvesystenset
out by David Sklansky explained previously. Since theseésttatrules were designed
for full-table play against nine opponents, an adjustmest wmade for play against
three or fewer opponents. This was done to accommodate gposed requirement
for playing more hands later in a tournament, discussedatic@@e3.2.1.

When entering an unraised pot in such a situati@ambBotwould play as per
Sklansky’s instructions. However, if the pot had alreadgrbeaised before its turn,
DumbBotwould perform a hand evaluation and only go all in if it possesa suffi-
ciently strong two-card starting hand.

To perform the evaluation, the hole cards were compared é&mking of all 169
possible starting hands and its percentile placing notde: naive listing used ranks
all hands based on their expected win percentages agacisodzer. The minimum
rankings required for an all in move dependent upon the nummbepponents were
chosen to be:

e 3 opponents: 0.90
e 2 opponents: 0.85

e 1 opponent: 0.80

The selection of these values was arbitrary, but again métietlne desire to play
more hands against fewer opponents.

3.4.4 Results

The overall winner of the PokerBot tournament was StaniSkakorac’sAce Gruber.
It won 44 of the 104 tournaments, placing it comfortably aball other entries. The
number of tournament wins within the competition are shawhigure 3.1.

The strategy thaf\ce Gruberimplemented was the most complex of all the com-
petitors. The program was based on the architecture of tihestsity of Alberta’sLoki
andPoki. It enumerated over the possible future cards in a hand, asdile to eval-
uate its present holding in terms of how the hand might dguefosuperior inclusion
in Ace Grubers encoding was its opponent modelling. The program maiethprob-
ability tables for each opponent, representing the likedththat each competitor held
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Figure 3.1: ICCM 2004 PokerBot Event #1.

any feasible hand. This allowed the program to learn its oppts’ playing styles, and
in this regard was unique amongst the entrants.

One significant difference betweéwe Gruberand its GAMES Group predeces-
sors was its ability to play no-limit poker, sinteki andPokiwere only designed for
limit betting. Possible bet sizes were grouped into “smélbig”, and “giant”, and
treated as distinct actions.

3.4.5 Extra Tournaments

In addition to the main competition, the organizers ran gpkmentary event which
included an extra player of their own design. This prograamedMr-Al, simply
pushed all in every time it was its turn to act. The purposerzeincluding this
program was to see how well such a simple strategy would perfand also to notice
whether the other players were able to adapt against it. @hdts of this extra event
are shown in Figure 3.2.

The results from these 68 extra tournaments reinférceGrubers dominance
over its competitors. Sokorac’s program won 34% of the taorents, again well
ahead of the second placed program.

The results foDumbBotshow a marked difference between the first and second
events. Placing only fourth out of five for the first competiti the program improved
to second place out of six in the extra event. One plausitdeam for this is that
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Figure 3.2: ICCM 2004 PokerBot Event #2.

the increased number of opponents suibagnbBots strategy better. As we have
noted, Sklansky’Systemwas only meant for full-table play and he expected that it
would be inappropriate for fewer than nine opponents. Tiugiadal player made the
tournament slightly more appropriate for tBgsteris intended setting.

Whilst itis unreasonable to expect that a simple pre-flomatt fold strategy could
outplay a sophisticated program suchfag Gruber, the results of this competition do
support Sklansky’s assertion that such an approach is otie ehost effective simple
ways of participating in a no-limit Texas hold’em tournarnen

3.4.6 Comments

Using theZ-test for a proportion (binomial distribution) [123], it possible to deter-
mine the number of tournament wins that are required totréjemull hypothesis that
a program scored a naive average proportion of victories: fifth in the first event,
and one sixth in the second. The test statistic is given by

7 — (P—Po)

(sl

wherep is the observed proportiomy the assumed proportion, andhe number of
observations.
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Given n and pp we can find what values gb are required such that > 1.65,
the 5% one-tailed significance level. Multiplying thesepgmdions up by the number
of tournaments in each event yields the values 28.0 and 16.8Scoring 44 and 23,
Ace Gruberis statistically far better than average.

The results of these events bolster the argument that oppomedelling is the
single most important facet of a strong computer poker plajtewould have been
interesting to note the difference Ace Grubers performance with its opponent mod-
elling turned off.

It is not accurately known to what extent each program useddime factors previ-
ously discussed in their decision making procedures. At s -DbotandDumbBot
- used some form of ratio of bet size to blind sizes in selgdieir actions.

The second competition results are very encouraging in stgolaow many tour-
naments it is possible to win by using an all in or fold strgte§jithough the strength
of the competitors cannot be objectively measured, it ajgptbat such a strategy can
perform adequately against more realistic opposition.

3.5 Kill Phil Strategies

One of the most recently published books on tournament pstkategy is that co-
authored by Blair Rodman and Lee Nelson [101]. This workdsiiipon Sklansky’s
Systento make a collection of four no-limit Texas hold’em tournantsestrategies.
The different approaches are entitled “Kill Phil RookieKill Phil Beginner”, “Kill
Phil Basic Plus”, and “Kill Phil Expert”, and are ordered ircreasing levels of sophis-
tication. All share the common premise of being all in or fetthtegies. The Kill Phil
Rookie strategy is given in Table 3.7.

The authors argue that there are essentially two methodsdmabe utilized in
playing a no-limit poker tournament. They call these “srball” and “long ball”. The
first of these strategies is identified as being the most cexgid difficult to master. It
is symbolized by playing many hands and trying to win smatsghbrough outplaying
one’s opponents in all betting rounds of a Texas hold’em evers the strategy that
the top professional poker players employ, and it allowstlh@ amass many chips in
the early stages of a tournament without putting a signifipaoportion of their stack
at risk.

Long ball poker is the opposite technique, being far simjgleealize and requiring
much less subtlety. A player using the long ball strategy piay very few hands, but
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Tournament Stage No Prior Bet Prior Bet
Early AA, KK AA, KK
Middle Pairs, AK, any ace-suited,AA, KK, AKs

suited connectors 54s or
higher
Final 4-6 players | Pairs, A7 or highé, KT or | Pairs 66 or higher; AT or
higher, any ace-suited, suitechigher

connectors 54s or one-gaps
64s or higher

Final 3 players Pairs, any ace or king, suitedPairs; A7 or higher, KJ or
connectors 54s or one-gapsigher; any ace-suited
64s or two-gaps 63s or higher

Final 2 players Move in every hand Move in every hand

aNote that the term “A7 or higher” means a hand with an aceaeasta 7.

Table 3.7: Kill Phil Rookie Strategy.

when he does he will often commit all of his chips to his demidbefore any of the
board cards have been dealt. This approach is far more lamabgcause it constantly
puts the player at risk of elimination. However, success$el of the long ball game can
be an effective way to maintain chips by stealing blinds, @isd scores the occasional
“double-up” when one is called and wins the pot.

Like Sklansky, Rodman and Nelson argue that the all in orfieédhod is an effec-
tive approach for a tournament poker player wishing to redhe disparity between
his abilities and those of more experienced opponents. bhbgve that their strate-
gies, especially the more sophisticated ones, are sufigistnong to give their users
a good chance of positive returns from real Texas hold’enmmments.

3.6 Summary

In this chapter we introduced tournament poker, and higkdid several of the ways
in which it differs from its ring game equivalent. We discedghe ramifications of
the tournament structure, and examined some of the stcategsiderations that are
deemed crucial for strong decision making.
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The factors previously discussed for ring game play - harehgth, seating posi-
tion, and opponents’ prior actions - are still importantontament play. In addition
to these, knowledge of the tournament level and chip stassshould also be ac-
counted for.

In seeking to understand tournament poker play, we haveesti&klansky'sSys-
tems and shown through application in the ICCM 2004 PokerBotriiament that all
in or fold strategies do have some merit. We have seen thadrgstournament poker
player requires opponent modelling to achieve top reshiisthat all in or fold sys-
tems which incorporate some of the factors mentioned abangerform adequately
against more elaborate opposition.

Given the relative success of the above methodology, andgithplifications it
makes to encoding a strategy, we continue our research loyieixa the importance
of the aforementioned strategic factors in an all in or foéxds hold’em tournament
domain.



Chapter 4

Initial Tournament Poker
Investigations using Exhaustive

Simulations

We have seen how an all in or fold strategy can be used wittonedde success in
no-limit Texas hold’em tournaments. In this chapter weHartinvestigate this ap-
proach by performing simulations of different strategigaiast three static opponents
from the non-academic literature, and gauging the impadinofviedge of certain
game factors. Specifically we seek to determine whethemitiasion of knowledge
of seating position, opponents’ prior actions, tournanhevel, and stack size leads to
improved tournament performance over strategies basedrmhgirength alone.

4.1 Exhaustive Simulations Experimental Framework

4.1.1 Tournament Structure

In our experimental work we wish to discover whether thetegig considerations
noted by poker authors in Sections 2.7 and 3.2 can be demtegstmpirically. To do
this on a full scale no-limit Texas hold’em tournament wohtvery difficult given
the complexity of the game. Therefore we seek to make siroalitins to full scale
poker, but still retain a sufficient amount of realism.

One of the first restrictions we can impose to reduce thecgjyadpace to a tractable
size is to limit the players’ betting actions to all in or foldn real poker a player
choosing to bet may decide the amount he wishes to stakeaéteglthis possibility

42
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with the binary choice of all or nothing shifts the focus te tmore general and im-
portant strategic question of when to bet, rather than howhmWe commented in
the previous chapter that pre-flop strategies have beerogeddor use in real poker
tournaments. We also noticed that such a system can scogaificsint number of

tournament successes when we entered one into a compugrqoukpetition.

The use of the all in or fold restriction for the competitaesroves the necessity for
the final three betting rounds in Texas hold’em. This is beeall active players will
have committed the whole of their stack to the pot in the pyp-Betting. Since the
poker professionals’ recommendations relate to the futhgathey implicitly apply
to the first, pre-flop round of betting. Concentrating on tihe-flop form of Texas
hold’em should not therefore affect the applicability o# #uthors’ advice.

All of the subsequent experiments employ all in or fold Tekatd’'em between
ten players with a winner-takes-all prize format. Whilgsitnore usual for ten-player
tournaments to employ a percentage payout structursatiediteformat is also some-
times employed. This design only credits a player for fimgfHfirst, and hence second
place is equivalent to finishing last. Formulating the cotitipas in this way ensures
that we assess each strategy’s ability to win tournamendisnat just their capacity for
tournament survival Also, by solely concentrating on whether a given stratemgs\a
tournament or not we are able to cease a simulation once stuplgg/er is eliminated.
This condition saves a large amount of computation time.

In our experiments all players commence with $1,000 in taorent chips. The
blind structure is based on the number of hands played. a#enry ten hands the blinds
rise through a possible eleven levels according to the sdbepven in Table 4.1. If
reached, the blinds stay at the final level until the tournatteeessation. The structure
chosen is very similar to those used in ten-player pokemnments found online.

The deals in each tournament are seeded so that each expeusas the same card
ordering. However, the nature of tournament poker predymecise comparison of
two players in separate tournaments. As chips move betwlagarg and competitors
are eliminated, the situations faced by two test playersnmulsaneous tournaments
will start to differ. For example, once a player is elimircafeom a tournament the first
card that he would have been dealt had he survived autortatieesses to the next
remaining player with a predetermined deck. This offset tgplies to all subsequent
cards. Seeding the deals only keeps comparable tournasieritar until such an

lwith a percentage payout format profitable strategies wittewhich win few tournaments but
score a sufficiently high number of®and 3¢ place finishes. The satellite format allows us to sharpen
our definition of what constitutes a successful strategy.
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Level | Small Blind | Big Blind
1 $5 $10
2 $10 $20
3 $25 $50
4 $50 $100
5 $100 $200
6 $200 $400
7 $300 $600
8 $500 $1,000
9 $1,000 $2,000

10 $2,000 $4,000
11 $5,000, $10,000

Table 4.1: Blind sizes at each tournament level.

inevitable divergence.

The computer code used in performing these experimentsgacated much of
the GAMES Group’s publicly available Texas hold’em pokesawerces [92]. Their
framework was designed for limit Texas hold’em in a ring gase#ing, and so sev-
eral modifications and new classes had to be written to alewo-limit poker in a
tournament format. The random number generation usedghoau our experiments

for the card shuffle is an implementation of the Mersenne fBwi6], which ensures
unbiased sampling.

4.1.2 Hand Groupings

Appendix A details how the 1,326 possible two-card startingds in Texas hold’em
can be reduced to 169 using suit equivalence. Due to thehafgime required to

run a sufficient number of poker tournaments on all of thesel®#he list was further
condensed. This reduction is non-trivial since startingdsan Texas hold’em do not
readily conform to a total ordering, and are best concepelas a partially ordered
set.

To illustrate this point, take the three starting hands:

202, JAT &, andARK <.
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Calculating the pairwise expected win percentages of thasds yields:

Pairing Winner L oser
202& vs. JATA | JATH (54.0%) | 202& (46.0%)
202& vs. ARKSO | 2028 (52.6%) | A&K< (47.4%)
JATA vs. ABKS | ARKSO (58.8%) | JAT & (41.2%)

Table 4.2: Pairwise expected win percentages of three Texas hold’em starting hands.

Hence we see that the hands possess an intransitive relation

There is no doubt amongst poker players that some startingshare superior to
others. By far the most desired starting hand is a pair of,ao&s similar high pairs
are also strongly coveted. Several attempts have been madek the starting hands
by strength value, although all such listings are inheydtdived due to intransitivities
as noted above. One very recent book [112] contains a plausibking of all 169
possible starting hands. For the complete ranking of thelijaand an explanation of
how this list was prepared, refer to Appendix B.

Given this total ordering we split the hands into thirteeougps, each contain-
ing thirteen elements. Group one contains the strongestsharoup two the next
strongest, and so forth down to the weakest in group thirt@drese groupings are
shown in Table 4.3.

Note that there are some general comments that we can makethbstrength of
hands within these rankings. Firstly, high cards and pagswore likely to be found
near the top of the listings. These hands have a high chaneoing in a showdown
without any improvement from the board cards. Secondly,swited cards are always
stronger than the respective offsuit hand due to the inetkabances of making a
flush. Finally we see that zero-gap hands are generally mghtylrated than similar
one- and two-gap hands due to their straight potential.

It should also be noted that although these groupings eatthiodhirteen elements
they are not all of equal size with regard to unique startiagds. This is due to the
different frequencies of pairs, suited, and offsuit hamdsgxplained in Appendix A.

Although the classification employed is coarse, it helpstwigle a distinction be-
tween the strengths of starting hands and reduce the strep@ge to a more tractable
size.
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Group Starting Hands #
1 AA, KK, AKs, QQ, AKo, JJ, AQs, TT, AQo, 99, AJs, 88, ATs 82
2 AJo, 77, 66, ATo, A9s, 55, A8s, KQs, 44, A90, A7s, KJs, ASs 84
3 A80, Ab6s, A4s, 33, KTs, A70, A3s, KQo, A2s, A50, A6o, Ado, KJd10
4 QJs, A30, 22, K9s, A20, KTo, QTs, K8s, K7s, JTs, K90, K6s, QJo 94
5 Q9s, K5s, K80, K4s, QTo, K70, K3s, K2s, Q8s, K60, J9s, K50, Q300
6 JTo, K40, Q7s, T9s, Q6s, K30, J8s, Q5s, K20, Q80, Q4s, J90, Q300
7 T8s, J7s, Q70, Q2s, Q60, 98s, Q50, J80, T90, J6s, T7s, J5s, Q4d.00
8 J4s, J70, Q30, 97s, T8o, J3s, T6s, Q20, J2s, 87s, J60, 980, T70 108
9 96s, J50, T5s, T4s, 86s, J4o, T60, 970, T3s, 76s, 95s, J30, T2s| 92
10 870, 85s, 960, T50, J20, 75s, 94s, T40, 65s, 860, 93s, 84s, 950| 108
11 T30, 760, 92s, 74s, 54s, T20, 850, 64s, 83s, 940, 750, 82s, 73s| 100
12 930, 650, 53s, 63s, 840, 920, 43s, 740, 72s, 540, 640, 52s, 62s| 108
13 830, 42s, 820, 730, 530, 630, 32s, 430, 720, 520, 620, 420, 329 140

Table 4.3: The 13 groups of the 169 possible starting hands used within the experi-
ments. The suffices “s” and “0” denote suited and offsuit hands respectively. The final

column shows the number of unique starting hands contained within each group.

4.1.3 Decision Making

All of the experiments performed in this chapter associdteeean all in or fold bet-
ting action to a test player’s starting hand depending onraba&r which governs the
playable groups. This threshold value has a minimum of zedoeamaximum of thir-
teen. So for example, a strategy which has a threshold of tWowve all in with any
hand from the first two groups shown above and fold all hanats tihe lower eleven.
Hence a player using a threshold of zero will fold all hana&] ane with a threshold
of thirteen moves all in every time.

For the first set of experiments utilizing hand strength althere are fourteen pos-
sible strategies. We can denote these by the threshold @glueherex € [0, 1, ...,13].

The simulations which follow on from these use hand strengtdonjunction with
one of the decision making factors discussed in the prewwaschapters. The four
factors we examine in this manner are seating position, @S’ prior actions, tour-
nament level, and chip stack amount.

For parsimony the experiments treat each of these factoasbazary variable as
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follows:

e Seating position: The test player is in an early/late positvith respect to the
dealer.

e Opponents’ prior actions: There are no bets/at least ongitat to the test
player’s action

e Tournament level: The decision is made early/late in a teonent

e Chip stack amount: The test player has few/many chips

The precise definitions of these distinctions are made atetire following sec-
tions.

In accord with our previous notation, a strategy within texpanded framework
can be represented by the tugley), with x,y € [0,1,...,13]. The x-value denotes
the threshold hand group when the binary variable is in it tate, and thg-value
gives the minimum playable hand group when the binary végishn its second state.
Therefore in each of these experiments our search spacaasesito yield a total of
196 possible strategies.

In all of the experiments our test player competes againstidientical opponents.
The player then plays numerous tournaments against thesmepts, and the number
of wins totalled. We perform multiple tournaments for thengastrategy to reduce
the effects of luck. The more tournaments played, the moreavebe sure of the
effectiveness of a given strategy.

In each suite of experiments we sequentially cycle our teyep’s strategy through
all allowable threshold values: there are fourteen suclsipidisies based on hand
strength alone, and 196 with the inclusion of a binary vdeiatd/e use the term exhaus-
tive simulation to convey the fact that all permissible t&gées within our framework
are enumerated over.

4.1.4 Tournament Opponents

There are three different opponents used in all the sinarati These encode the
original and improved Sklanskgystemsand the Kill Phil Rookie (KPR) strategy.

We refer to the former as Sklansky Basic (SB) and Sklanskydwgd (Sl) strategies.

All three are termed “static opponents” to reinforce the that these strategies are
rule-based and unchanging.
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The first two strategies are taken from the book “TournamekePfor Advanced
Players” [110], and were previously discussed in Secti@n Bo recap, the Sklansky
Basic strategy is highly restrictive, and will only bet thery best starting hands once
another player has already opened the pot. If no other pleg®yet bet, this strategy
will move all in with a slightly larger subset of hands.

The Sklansky Improved strategy is similarly restrainedni@ hands it will play if
an opponent has entered the pot. Where this strategy diftarsthe first is in its use
of a key number to determine playable hands when no otheeplas yet made a bet.
The key number is calculated primarily as the ratio of they@is stack to the total
amount of the blinds. Each starting hand is given a threstallde, and a comparison
between this value and the key value determines whethetalienshould move all in
or fold.

The third opponent employed is based on one from “Kill Phil0]]. This book
contains several strategies of increasing complexity,camgexperiments use the sim-
plest “Rookie” strategy , met previously in Section 3.5. Eamto the two Sklan-
sky strategies, the Kill Phil Rookie strategy containsmnstions on which hands are
playable depending upon whether or not an opponent has yettb¢he pot. The ma-
jor difference in this strategy is that the classificatiormplafyable hands is determined
by the number of players remaining and the tournament level.

For our experimental purposes the Kill Phil Rookie tournatstages “early” and
“middle” shown in Table 3.7 were interpreted as the first dredfbllowing two levels
respectively. Where the table cites the “Final 4-6 playersd extended this for any
number of players greater than or equal to four. This is bezaus possible to have
more than six players remaining after the first three levels.

4.2 Exhaustive Simulation Results

4.2.1 Hand Strength Only

The first suite of simulations seek to determine how well ggiaan fare when their
betting action is based solely upon knowledge of their owndsa These results are
important to form a baseline for comparison with the futuxperiments, in which
extra information is combined with hand strength in the sieci making process.
Each simulation contains a test player with a strategy stingi of a simple thresh-
old representing which groups of hands are playable. If gnedithey are dealt is
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contained within a group numbered less than or equal to getific threshold value,
the player will move all in. Otherwise, they will fold.

Within this framework there are fourteen possible straggand each was tested
over 1,000 tournaments against each of the three opporterdgsy individual competi-
tion contained nine such opponents, and a record was maasvahlany tournaments
the test player won.

The results from this experiment are shown in Figure 4.1.

T T
—— Sklansky Basic
—— Sklansky Improved
— Kill Phil Rookie

Tournament Wins (out of 1000)
/
/
/
/
/
I / |
il f f
| | | |
f f f {
1/ / |
f—t f {

6 7
Groups Played

Figure 4.1: Tournament wins with corresponding 95% confidence intervals against the

three static opponents using hand strength knowledge only.

The first point to note about this graph is that there app@abeta clear ranking
in the relative strength of the opponents. The most wins \aefeeved against the
Sklansky Basic strategy, followed by the Sklansky Improaed then the Kill Phil
Rookie ones. This result shows that the win rates of the tbpmsing strategies
mirror their own relative complexities.

Trends are clear in the results against all the opponentenwib hand groups are
played the test players unsurprisingly fare poorly. Agetihe Sklansky Improved and
Kill Phil Rookie strategies the test players never win a tament. Fortuitously, the
test player does win three tournaments against the SklaBakic strategy by never
betting a hand. This outcome can be explained by the streiofulournament play. A
player who is all in on posting his blind is still able to conpé the showdown, and
hence retains the chance to win the pot. Although highlykeh)i we see here that it
is possible for a player to win a tournament solely throughning sufficient hands in
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this manner.

The best results for each player occur when they play withrestiold of four.
These strategies relate to moving all in with approximataky top 30% of starting
hands. Playing more or fewer hands than this causes a declihe test players’
scores. The explanation for this result is straightforwaddtting with too few hands
means that the test player will frequently be anted-awayhbyricreasing blind struc-
ture employed. At the other end of the spectrum, a player vet® too many hands is
employing a high risk strategy, and will eventually face @panent with a playable
hand who knocks them out.

It should be noted that the trend within the Kill Phil Rookieagh is not pre-
cisely monotonically decreasing to the right of the optimuatue. The results for
the points representing thresholds of eight and nine agthiissstrategy would appear
to be anomalous. The reason for this is almost certainly duéé inherent noise
contained within the experiment. It is expected that a reging rate larger than the
figure of 1,000 tournaments used here would correct thigutegity, although this was
not attempted.

4.2.2 Hand Strength and Coin Toss

Following on from the previous experiments we now includgainformation in ad-
dition to hand strength for the test players to base theiobtdld decisions on. These
extra criteria take the form of a binary variable, and allbe player to make a differ-
ent decision depending on the variable’s state. Unlike theipus experiments where
there were a total of only fourteen possible strategieyrpmrating the state of the
binary variable squares the strategy space to 196 possiiliDue to the increased
computational burden of simulating over this higher numtiex re-sampling rate for
this and all subsequent experiments in this chapter wasahtode 200 tournaments.
This figure was selected to keep the run-times down, whilsigdarge enough to elicit
trends in the results. On a Pentium IV 2.60GHz machine thiiatian of, for exam-
ple, a single Sklansky Basic counter-strategy over 200n@mments takes an average
of approximately four minutés

Before we start to include game knowledge that we believe beyseful in a
player’s decision making, we first experiment with a piecel@ihmy information for
use as a control experiment. In these first simulations weiimegthat the test player

2The length of a single tournament varies since a tournarmelstence the test player is eliminated,
meaning different numbers of hands are required in diffecages.
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(a) Sklansky Basic: maxima of 40 out of 200 at (1,8) and (5,4).
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(b) Sklansky Improved: maximum of 32 out of 200 at (3,5).

Tournament Wins (out of 200)
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Groups Played: Heads
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(c) Kill Phil Rookie: maxima of 18 out of 200 at (2,9) and (8,2)

Figure 4.2: Tournament wins against the three static opponents using hand strength

and the outcome of a coin flip.
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flips a fair coin before choosing his action. If the coin lam@sads, he compares his
hand to thex-value in his strategyx,y). Similarly, if the coin lands tails he uses the
y-value as his betting criterion. Clearly the result of thendoss is independent of
any information contained within the game. The results fthim experiment allow us
to gauge the impact of extra knowledge when we replace trapiwariable from the
outcome of a coin toss to other game-related information.

Figure 4.2 plots the number of tournaments won using hawrdgtn and the out-
come of the coin flip to make betting decisions against eadhethree opponents.
This figure contains three pairs of graphs, one pair for eddheothree aforemen-
tioned opponents. The left hand graph of each pair showdacsuplot of the number
of tournament wins for each of the 196 allowable strategibe.complementary graph
gives a two-dimensional depiction of the same data.

Since the outcome of a coin toss is independent of any gataedeanformation,
we would expect the scores along the- x diagonal to show a similar profile to the
hand strength only experiments. This is because a strategyalong the diagonal
uses the threshold valxgeregardless of the coin flip.

Previously we observed that the total number of tournamémd was reduced by
using a threshold value other than four in the hand strengfthexperiments. There-
fore in the limit as the number of tournaments rises, we waxlplect to see peaks
in all graphs at(4,4) and lower values elsewhere. All three pairs of plots do show
high scores around this value, but the globally highest paa& typically elsewhere.
This is due to the increased amount of noise resulting frosampling over just 200
tournaments in these experiments.

One way of testing whether the extra information conveyettébinary variable
has moved the maxima off-diagonal is by assessing the symuofdhe resulting plots.
If we consider a general stratedy,y) in these experiments, we note that with an
unbiased coin we would expect to select each threshold 50%eofime. This is
exactly the same for the corresponding strategy). Therefore we should expect to
observe a degree of symmetry in the diaggnalx, subject to noise.

Symmetry in the results can be tested for using the statlstiethod of paired com-
parisons. In this test the null hypothesis states that thenndéferencepy, between
paired observations is equal to zero. The test statistivendy

=0l
s/vn

whered; = zy — 7 is the difference in the paired observations, withy the score
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achieved by strategik,y). The value ofis the standard deviation of thug
The method for paired comparisons applied to the scoredtirgsdrom hand
strength and coin toss knowledge yields the p-values showable 4.4.

SB Sl KPR
P-value| 0.7459| 0.4653| 0.8615

Table 4.4: P-values for the method of paired differences test applied to the hand strength

and coin toss knowledge results against the three static opponents.

Since these values are so large we fail to reject the null thgsis that the mean
difference between paired observations is equal to zeromFRhis we conclude that
the inclusion of information relating to the toss of a cois Im@t moved the location of
the peaks off the diagonals with statistical significances aiNall return to this result
when considering the inclusion of game-related knowledghe following sections.

4.2.3 Hand Strength and Seating Position

Now that we have seen the impact of incorporating a dummyrpivariable into the
test player’s strategy we move on to replacing it with infatimn that we believe may
positively affect tournament poker decision making. Th& Buch piece of information
we include is seating position. The term seating positi@hisys used in the context
of a player’s location relative to the dealer. In these expents the binary variable
takes the values “early” or “late”, depending upon whethertest player is one of the
first or last to act on a particular hand. Recall that sinceltad passes with every new
hand the player’s relative position continually rotates.

The classification of the test player’s position dependsitpe number of players
competing in a hand. With an even number of competitors gxhetf of the players
are termed both early and late position in our experimehg& ddd number of players
remains we place the surplus player in the late classificatio

Table 4.5 shows the definitions used for all possible numbigotayers during our
single table tournaments.

Note that for three or more players the competitors postiegstnall and big blind
are classified as late position. In a regular Texas hold’emegthese seats are more
usually defined as being in early position, since in threeheffour betting rounds
the small blind player is the first to act. In our all in or folcainework, however, we
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Table 4.5: Classification of seating position as early (E) or late (L) position with respect
to the dealer by the number of players. SO represents the dealer seat, S1 the small

blind, S2 the big blind, and so on sequentially around the table.

are simulating Texas hold’em with only the pre-flop bettiogmd. Having posted the
blinds, the players in the two seats to the left of the dealertlze last to act on this
round. This explains their late position classification.

A further point to note is that when a tournament is reducetito players the
dealer becomes the big blind. This is a standard rule in Texé&Eem. In such a
situation the small blind acts first, followed by the big lolidealer. Therefore we
classify the small blind to be in early position, and the bligpdydealer to be in late
position.

We observed in Section 2.7.2 that seating position is oftentioned as being
important in the non-academic literature. There is a supgpbdenefit to being seated
in late position, since in this case a player gets to obsdm@ecttions of many more
of his opponents before it is his turn to act. Similarly, giribere are fewer players
seated behind him, a late position player is boosted by thecedd potential of strong
hands coming into the pot after him. A player in early positimas the least amount
of knowledge of his opponents’ likely holdings, and faceseatger risk of coming up
against a premium hand.

Graphs of the number of tournament wins resulting from tlodusion of seating
position knowledge against the three static opponentshemersin Figure 4.3.

Examining the plots shows that the best results come frogin@avery differently
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Tournament Wins (out of 200)
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(a) Sklansky Basic: maximum of 63 out of 200 at (8,2).

Tournament Wins (out of 200)
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Groups Played: Early Position
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Groups Played: Late Position 13713 Groups Played: Early Position

(b) Sklansky Improved: maximum of 43 out of 200 at (13,2).

Tournament Wins (out of 200)

3 4 5 6 7 8 9o 1.0 1
Groups Played: Early Position

(c) Kill Phil Rookie: maxima of 28 out of 200 at (8,1), (10,I)cx(11,1).

Figure 4.3: Tournament wins against the three static opponents using hand strength
and seating position knowledge.
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in either early or late position. If the test player is one loé first to act the results
suggest that many hands should be played, with between fdralathirteen groups
yielding the best scores. Conversely, only the top one orgreaps should be played
when sitting in late position.

These results appear to contradict those given in the nadesagic poker literature.
There we find repeated recommendations that a player sheuhddoe conservative
in early position, and be apt to play more hands in the latatsseThere are three
fundamental reasons why our results are at odds to the greddipoker professionals.
The first of these is a consequence of the simplification tdbttéing that we have
employed, the second is due to the nature of the opponemtshanhird is an effect of
limited information.

Late position players retain an informational advantagettghout all four betting
rounds in a hand of Texas hold’em. In the case of the all inlorfariant employed in
these simulations, however, there is only ever one roundttifig. Hence the restricted
nature of the betting in this game greatly reduces the positiedge.

All three of the opposing strategies play a different ranigeamds depending upon
whether or not one of their opponents has bet into the potifsgedly, all three strate-
gies are extremely tight if the pot has already been opened r€3ults show that the
test players in early position benefit from this. By bettimjdye anyone else acts, they
are able to “scare” their opponents into folding. This siggtallows the test players to
pick up the blinds uncontested. The “first-in vigorish” [68]often enough to pick up
a sufficient number of pots.

The third reason for the discrepancy between our resultstlamgrofessionals’
guidance is because the test players do not have the ben@iitsefving their op-
ponents’ prior actions. The non-academic literature’dguemce for late position is
primarily based upon the informational advantage gainealiyjh seeing one’s oppo-
nents act. Players in a late seating position with no pribtoa@re commonly advised
to attempt to steal the blinds with more marginal holdingsur @st players do not
know whether or not an opponent has already opened the pstsdfer, therefore, to
bet fewer hands in late position than early.

It is clear by observation that all plots are highly asymmgeatrabout the ling/ = x,
and this gives the first indication that the scores achievedi@pendent upon the extra
piece of information. We would expect that if the extra imh@tion was worthless there
would be a symmetry about the diagonal, as we observed watlptévious results
incorporating coin toss knowledge.
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Using the method of paired comparisons test explained pusly the results in
Table 4.6 show that there is a statistically significant asyatny in the results.

SB Sl KPR
P-value| < 0.0001| < 0.0001| < 0.0001

Table 4.6: P-values for the method of paired differences test applied to the hand strength

and seating position knowledge results.

In all three cases we can reject the null hypothesis that lthts pre symmetrical
abouty = x, and conclude that the inclusion of seating position kndgtehas im-
pacted the location of the highest scoring strategies.

4.2.4 Hand Strength and Opponents’ Prior Actions

All'in or fold hold’em simplifies the classification of oppams’ prior actions. In the
pre-flop betting of a real game there is the possibility ofaypl calling the big blind.
Here this option is unavailable. The binary variable we nmeborporate into our test
player’s decision making is whether at least one opposiagegplhas already bet into
the pot or not.

Figure 4.4 plots the number of tournaments won through tbkision of prior
action knowledge against each of the three static opponents

The shape of all three pairs of plots suggest very clearlyargreater number of
tournament wins results from playing only the best hand gsauhen an opponent has
already bet, and playing almost all hand groups in the atesefha prior bet. Whilst
there is undoubtedly noise in the results, the plots clestrtyw evidence that playing
many hands after an opposing bet, or failing to bet handsantonopened pot, leads
to a lower overall tournament win rate.

Evidence from these experiments is in accordance with recamled tournament
poker strategy, as discussed in Section 2.7.3. Experts$ fodine necessity for a player
to be more restrictive in the hands they play once someorehals bet into the pot.
Indeed, it is worth noting that the three static opponengsniselves incorporate this
facet into their own strategies.

What is surprising about these results are the very largebetsrof hand groups
played to achieve the best results in the cases of no priofbetfindings suggest that
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(a) Sklansky Basic: maximum of 143 out of 200 at (9,0).
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(b) Sklansky Improved: maximum of 53 out of 200 at (13,3).
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Groups Played: Prior Bet
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» Groups Played: No Prior Bet
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Groups Played: Prior Bet 13713 Groups Played: No Prior Bet

(c) Kill Phil Rookie: maxima of 29 out of 200 at (10,1), (10,2nd (12,3).

Figure 4.4: Tournament wins against the three static opponents using hand strength

and opponents’ prior bet knowledge.
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each of the three opponents’ strategies are possibly ttrictege, and that simply bet-
ting many hands and causing them to fold is the route to a lamgaber of tournament
successes against them.

Notice again that these plots are unlike those seen frormttiesion of coin toss
knowledge. The asymmetry about the main diagonal is ag&ileet; as it was with the
knowledge of seating position. Statistical significanci@impact of opponents’ prior
bet information is confirmed in the results of using the mdtbbpaired comparisons
test, shown in Table 4.7.

SB Sl KPR
P-value| < 0.0001| 0.0001| < 0.0001

Table 4.7: P-values for the method of paired differences test applied to the hand strength

and opponents’ prior bet knowledge results.

Again in all three cases we reject the null hypothesis thepthts are symmetrical.
Knowledge of opponents’ prior actions has moved the looadiothe highest scoring
strategy.

4.2.5 Hand Strength and Tournament Level

The next game-related information that we incorporate miotest player’s decision
making classifies the stage of the tournament. This factowalthe player to make a
different decision with the same cards dependent upon waiah has been reached.

The binary variable representing tournament level is adlbtihe two stages “early”
and “late”. With reference to Table 4.1 the former classifaraarises when the tour-
nament is in a level up to and including level six. The latt@ecion applies in levels
seven through eleven.

The purpose behind these experiments is to demonstratéevhetowledge of the
stage of a tournament affects the best strategy availalderttest player, and in what
ways. The non-academic poker literature reviewed in Se@i@.1 suggests that, in
general, a player should be more conservative in the eatyestof a tournament and
that only the best hands should be played. As a tournamegtgsees a player should
be more aggressive with a larger number of starting hands.

This strategy has an accompanying rationale. Small blihdlseastart of a tour-
nament tend to produce small pot sizes, and these are noedesorthy of risking
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Tournament Wins (out of 200)

Groups Played: Level > 6

2 3 4 5 6 7 8 9 1 1 12 13
Groups Played: Level <= 6

2 12 . -
Groups Played: Level > 6 13 13 Groups Played: Level <= 6

(a) Sklansky Basic: maximum of 80 out of 200 at (1,12).
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Tournament Wins (out of 200)
Groups Played: Level > 6

o 1 2 3 10 11 12 13

4 5 6 7 8 9
Groups Played: Level <= 6

Tournament Wins (out of 200)
Groups Played: Level > 6

2 3 10 11 12 13

4 5 6 7 8 9
Groups Played: Level <= 6

12 12
13 13 Groups Played: Level <= 6

Groups Played: Level > 6

(c) Kill Phil Rookie: maximum of 27 out of 200 at (3,12).

Figure 4.5: Tournament wins against the three static opponents using hand strength
and tournament level knowledge.
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one’s tournament survival for. As the tournament progressel the blinds increase,
then a player should become more willing to risk eliminatamce the pots won will
represent an increasingly larger percentage of the chipsin

The results of playing each of the 196 possible strategies 290 tournaments
against the three opponents are shown in Figure 4.5.

All three graphs show a remarkably similar shape. We cantssgtie maximum
number of tournament wins are achieved when limiting the lmemof groups played
to only the upper three in the early stages of a competitiarthé concluding levels
the test players that bet with a vast majority of their haraas best.

As more groups are played in the early levels performandeaifp drops. For the
late levels the results against all three static oppondraw | relatively steady and
high score for those strategies with a threshold of thirteerio five. However, the
win rate drops dramatically as the threshold increasddsgtiher. The players which
act in such a way are being knocked out of tournaments as tagyaveceive a hand
sufficiently strong enough to bet with.

Again the maxima in these plots are off-diagonal. P-valuemfthe method of
paired comparisons are presented in Table 4.8. These vWeafye should reject the
null hypothesis that the difference between paired scdrestahe main diagonal is
equal to zero against all three static opponents.

SB Sl KPR
P-value| < 0.0001| < 0.0001| < 0.0001

Table 4.8: P-values for the method of paired differences test applied to the hand strength

and tournament level knowledge results.

Hence from the strategies giving rise to the maximal resnlthese experiments
we observe a marked difference between the number of grbapstould be played
in early and late tournament levels. This distinction igme lwith poker professionals’
suggestions.

4.2.6 Hand Strength and Stack Size

The final piece of game-related information that we wish t®eas is whether and in
what ways knowledge of a player’s stack size affects theirtament performance.
For this set of experiments the binary decision variableesgnts whether the test
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player has few chips or many. To make this distinction we emplmethod for mea-
suring stack size previously mentioned in Section 3.2.2.

Harrington [60] refers to the ratio between one’s stack asizé the total value of
the blinds as the valud. Large and small values ™ signify that a player has a large
or small stack respectively. To make our decision variablaty, we classify a small
stack as one which has &hof less than or equal to five. This value is consistent with
the definition given in the book.

One potential criticism of using this ratio is that it inhetlg incorporates knowl-
edge about the tournament level, since the denominatht fims the blinds. How-
ever, we still use this method of determining stack sizeesihtcs commonly used by
poker practitioners. It is useful since it equates a playstack to their remaining
tournament life were they not to play a hand. If we assumettieblinds keep at a
constant level for long enougW represents approximately how many more orbits of
the table a player can survive before being anted-away.

As with the previous experiments, we scored the total nurab&urnaments won
by each of the 196 possible strategies by playing each in@@@aments against tables
comprising the three opposing strategies. The scores aphed in Figure 4.6.

Examining the plots shows that against all three opponéatsttategy which fares
best is to play very few groups with a larye but to play many more starting hands
with a smallM. The maximal results are typically to play the top two or ehgeoups
with a large stack, and anywhere between four and all thirggeups with a small
stack.

The non-academic poker literature suggests two differiyigs for a player with a
large stack. The first of these is to play more hands than ussgécially against oppo-
nents with a medium stack size. This is because these adesrsall often be faced
with a decision which could end their participation in thernmament if unsuccessful.
In this way the player with a large stack is capable of “bulgyi his opposition.

The second recommendation for a player with a large stackpsaly fewer hands
than normal. Here the reasoning is that such a player is remiyrimmediate danger
of tournament elimination from the increasing blinds. Hhava large stack therefore
allows that player the luxury of waiting for better hands aitdiations than normal.
Additionally, this method reduces the risk that they wiéochips due to bad luck.

From the graphs we observe the latter of these two tacticgdielece. Playing too
many hands with a large stack is seen to be detrimental todouent success.

The case with a small stack is clearer in the non-acadenai@tiire. Here all
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Tournament Wins (out of 200)
[ 5 9 2 N

Groups Played: M > 5

4 5 6 7 8 9 10
» Groups Played: M <= 5

12 M <=
Groups Played: M > 5 13 13 Groups Played: M <=5

(a) Sklansky Basic: maximum of 77 out of 200 at (5,0).

Groups Played: M >5

3 4 5 6 7 8 o 10 11 12 13
n Groups Played: M <= 5

12 - M <=

Groups Played: M > 5 13 13 Groups Played: M <=5

(b) Sklansky Improved: maximum of 41 out of 200 at (12,2).

Groups Played: M >5

4 5 6 7 8 9 10 11
Groups Played: M <= 5

12 12 o
Groups Played: M > 5 13 13 Groups Played: M <=5

(c) Kill Phil Rookie: maximum of 29 out of 200 at (8,2).

Figure 4.6: Tournament wins against the three static opponents using hand strength
and stack size knowledge.
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authors agree that such a player should be willing to makeardsiith a weaker
starting hand than usual. This advice is particularly appate for situations in which
the small stacked player is first to act. The benefit of bettirguch a circumstance is
that there is always the possibility that all subsequernygstawill fold, thereby winning
the pot uncontested. The results from these experimentthasd previously seen on
players in early seating position mirror this advice.

For completeness we show the p-values in Table 4.9 resutiimg the null hy-
pothesis that the mean differences between observatioresigay symmetry across
the diagonal are equal to zero.

SB Sl KPR
P-value| < 0.0001| < 0.0001| < 0.0001

Table 4.9: P-values for the method of paired differences test applied to the hand strength

and stack size knowledge results.

We reject the null hypothesis in all three cases. The cormariubat the test player’s
best strategy is affected by stack size knowledge paradhelse from the inclusion of
seating position, opponents’ prior actions, and tournadrieel information.

4.3 Further Statistical Analysis of Exhaustive Simula-

tion Results

The results presented in the previous subsections showhthatclusion of knowledge
related to seating position, opponents’ prior actionstrtament level, and stack size
affect a player’s best strategy in comparison to that fodradehand strength informa-
tion alone.

The counter-strategies leading to the best results aghmSklansky Basic, Sklan-
sky Improved, and Kill Phil Rookie strategies are summatireTable 4.10.

It is clear that the state of each binary variable polaritestest player's best
counter-strategy in all non-control cases against all oppts. As we discussed, the
interpretations of these strategies generally bear falmercomparison to suggested
tournament play in the non-academic poker literature.

To extend our analysis we now assess what quantitative intipaanclusion of the
extra information has on the highest scores achieved. Tablegives the percentage
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GameKnowledge | SB S KPR
Hand strength only  (4) (4) (4)
Hand and position| (8,2) | (13,2) | (8,1), (10,1) & (11,1)
Hand and prior bet (9,0) | (13,3) | (10,1), (10,2) & (12,3)
Hand and level (1,12) | (1,11) (3,12
Hand and stack (5,0) | (12,2) (8,2)

Table 4.10: Best strategies found by exhaustive simulations against the three static

opponents.

of tournaments won by the best counter-strategies in eattte@bove scenarios.

Game Knowledge

SB

S|

KPR

Hand strength only

21.2%+ 3.1%

14.8%+ 3.1%

8.5%=+ 3.1%

Hand and position

31.5%+ 6.9%

21.5%=+ 6.9%

14.0%=+ 6.9%

Hand and prior bet

71.5%=+ 6.9%

26.5%=+ 6.9%

14.5%=+ 6.9%

Hand and level

40.0%=+ 6.9%

20.0%=+ 6.9%

13.5%=+ 6.9%

Hand and stack

38.5%+ 6.9%

20.5%=+ 6.9%

14.5%=+ 6.9%

Table 4.11: Proportion of tournaments won by the best counter-strategies found by ex-
haustive simulations against the three static opponents, with corresponding 95% con-
fidence intervals. Note that the values in the first row are calculated based on 1,000

tournaments, whilst all other rows used 200 tournaments.

First we note the consistently diminishing trend in toureans won moving from
left to right across the three opponents. This effect mértbe opponents’ increasing
complexities.

Looking down the columns we observe that all best scoredtiegérom the inclu-
sion of game-related information are higher than thoseaséiand strength knowl-
edge alone. The greatest increases in tournaments wonsagdlithree opponents
come from the inclusion of prior bet information. AgainsétBklansky Basic strat-
egy there is a tremendous improvement of over 230%, whilsisgaf over 70% are
observed against both the Sklansky Improved and Kill Phdl&® opponents.

To formally evaluate these apparent gains we return tcs$ital hypothesis testing.
We wish to test whether there is a statistically significampiovement in the propor-
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tion of tournaments won by those strategies which incogogatra knowledge over
those that utilize hand strength information alone. To dewe use the&-test for the
equality of two proportions [69].

In this test the null hypothesis states that the proportmarendmo of tournaments
won from two populations are equal, based on one sample fammm gopulation. With
random samples of sizeg andny, and corresponding proportions of tournaments won
of p; andp,, the test statistic is

(pL—p2)

Z= 1
{Pa-p(i+s)}”

where

p — PinitP2n;
ny+ny

Under the null hypothesig is approximately distributed as a standard normal. To
test for an increase in the proportion of tournaments wonelecsthe one-tailed test.
At a 5% significance level the null hypothesis is rejectedZmalues greater than 1.65.

To improve the accuracy of the statistical tests we take bashcounter-strategy
and repeatedly play them against their respective oppsmoset a total of 5,000 tour-
naments. The effect of this is to increase the “signal-tsamatio” in the results above
those returned through only sampling 200 tournaments. Tdéygoption of tournament
wins from these new experiments are shown in Table 4.12.

Game Knowledge SB S KPR

Hand strength only

20.1%=+ 1.4%

11.3%+ 1.4%

6.4%+ 1.4%

Hand and position

28.3%+ 1.4%

14.3%+ 1.4%

9.2%+ 1.4%

Hand and prior bet

71.2%+ 1.4%

21.9%+ 1.4%

11.9%+ 1.4%

Hand and level

40.0%=+ 1.4%

14.9%+ 1.4%

11.5%+ 1.4%

Hand and stack

32.7%=+ 1.4%

16.4%=+ 1.4%

10.7%=+ 1.4%

Table 4.12: Percentage of tournament wins of the best found strategies against the
three static opponents, with corresponding 95% confidence intervals. Note that all val-

ues are calculated based on 5,000 tournaments.

Before continuing with the statistical analysis, we firghiight an issue found by
comparing these values with those in Table 4.11. It shoulddied that we would
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not always expect the best counter-strategy found over @0thaments to score a
similar proportion of successes over 5,000 tournamenthiofgh 200 tournaments is
sufficient to differentiate between good and bad stratedisspossible that the highest
scoring counter-strategies have had a relatively largeuatad luck compared to other
high scorers. By allowing the luck to “even out” over a greatember of tournaments,
therefore, such strategies will achieve a lower percentdggurnament wins. This is
reflected in our results.

Returning to the analysis, the null hypothesis that we te#itat the proportion of
tournaments won with the inclusion of extra game-relatédriation is the same as
the respective proportion won based on hand strength koigelalone. Therefore in
the notation set out above batlh andn, take the value of 5,000. The proportion
is taken from the hand strength row of Table 4.12, with theieaf T being taken
from the row corresponding to the binary variable under stigation. The results of
theZ-tests are summarized in Table 4.13.

Factor SB Sl KPR

Position

< 0.0001

< 0.0001

< 0.0001

Prior bet

< 0.0001

< 0.0001

< 0.0001

Level

< 0.0001

< 0.0001

< 0.0001

Stack

< 0.0001

< 0.0001

< 0.0001

Table 4.13: P-values for the proportion of tournaments won against the three static
opponents with the inclusion of an extra factor compared to the respective hand strength

knowledge alone score.

Given the low p-values observed we consistently reject thienypotheses. There
is sufficient evidence to show that the inclusion of extravidealge in all twelve cases
has benefited the test players, leading to significantlydriplest scores.

4.4 Conclusions

Our preliminary investigations into all in or fold Texas d@m tournament strategy
have focused on testing whether the inclusion of gameelahowledge affects and
improves the performance of a player above what they camraelhbiasing their betting
actions on hand strength alone. To assess this we have usadstixe simulation to
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enumerate over all possible counter-strategies to thaaesytile all in or fold systems
taken from the non-academic poker literature.

We have demonstrated that knowledge of seating positioporognts’ prior ac-
tions, tournament level, and stack size all affect a playbest strategy dependent
upon the state of the respective binary variable. These wanérmed statistically.
The interpretations of the best counter-strategies fouae \also seen to concur well
with the recommendations of poker professionals in the axademic literature.

The resulting high scores were also observed to be higher tth@se achieved
through hand strength knowledge alone. To ensure thorasghnve conducted hy-
pothesis tests on the results and established their &gtalisignificance. We therefore
conclude that information relating to these four factorswt all be important con-
siderations in a player’s decision making, and that a plagarpositively benefit from
this knowledge.

The next logical step is to use all factors in concert. Theaesgkive simulation
approach is expedient in the cases examined here, but watly edditional binary
variable the strategy space, and therefore the time takenumerate over it, grows
exponentially. For this reason we seek an alternative ambro



Chapter 5
Evolutionary Algorithms

Searching the enlarged strategy space resulting from tthesion of multiple game-
related factors becomes less feasible with the exhaustivdation approach adopted
in the previous chapter. This chapter starts with a disoassn its limitations, and
introduces evolutionary algorithms as a potential repleeas.

We continue by explaining the terminology used in EAs angésallels with nat-
ural selection. We summarize the key components of the fajomtlasses of EAs:
genetic algorithms, evolutionary programming, evolutsbrategies, and genetic pro-
gramming.

Following this we review previous research employing etiohary methods to
develop game players, and then focus specifically on thgilicgtion to poker. The
chapter concludes by illustrating how such methods can Ipéemmented for a simpli-
fied poker, called the Jack-Queen-King game.

5.1 The Difficulties of Extending the Exhaustive Simu-

lation Approach

We saw in the previous chapter how players who are able terdiitiate their betting
strategy based on extra game-related information faremb#tan those who simply
act upon hand strength knowledge alone. The factors ofrggptisition, opponents’
prior bets, tournament level, and stack size were all shawositively influence the
number of tournaments that could be won against tables eé tthifferent all in or fold
opponents. We now wish to determine whether a player whzesilthe complete
knowledge set is able to score an even greater number of wins.

69
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Recall that when we first started the simulations we reptesgea player’s strat-
egy by a single valuéx). This integer was able to take a value frdfy 1,...,13},
and denoted the threshold hand group below which a playeldafold. Within this
framework there were 14 distinct strategies.

We further extended the representation when we introduseéxtra game infor-
mation in the form of a binary variable. In this case we usedttiple(x,y), with the
first value denoting the minimum playable hand group wherbthary variable was in
the first state, and the second value denoting the minimuyapla hand group when
the binary variable was in its second state. The space oflpesirategies was then
squared to 196.

If the factors occurred independently and in isolation itdobe very simple to
extend this representation in the following manner. We wdé able to denote our
test player’s strategy usingfactors by the tuple

(t], 85,40 ,t5, . t1 1)

wheret” indicates the threshold hand group when binary varigisierue, and|™ gives
the threshold hand group when binary variahkefalse.

However, the game factors are neither independent nor gooitwur in isolation.
The states of every one of the four binary variables are sanabusly known to the
test player at all points during the play of a hand.

Enumerating over all possible combinations of the binaryabdes, we find there
are a total of 2 = 16 unique game scenarios for any given starting hand within o
framework. A strategy which includes knowledge of all thetdas therefore needs to
ascribe a betting action to any starting hand in all of thessible situations. Modify-
ing the notation above, our test player can be representad @guple

(t1,to,...,t16)

wheret; is the threshold value between moving all in and folding foique scenario.

Since each of thg can take one of 14 possible values, there ar¥® 142.18 x
10'8 distinct strategies. This strategy space is too vast to enat® over. To run
a simulation of 200 tournaments over every one of these scsnaach averaging
around four minutes, would take ove65 x 103 years to complete.

The exponential explosion in the strategy space would be gugher prohibitive
should we wish to increase the number of dimensions, or ekpan representation
in any dimension. For example we may wish to augment the plessirategies by
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allowing the variables containing game-related informatio take on more than just
two states. One potential benefit of this would be to pernpasate betting action
thresholds for each individual level in tournament, not fesrly” and “late” stages.

The greatly inflated run-times required to advance the esthausimulation-based
approach reduces its desirability. What we require is a&fasethod of searching the
strategy space; one which returns strong but not necgseatimal solutions. For this
reason we turn to evolutionary algorithms.

5.2 Introduction to Evolutionary Algorithms

The term evolutionary algorithm (EA) refers to a class of pomational problem solv-
ing systems that are characterized by their use of modelgotditonary mechanisms
taken from the fields of biology and genetics. Such techradnaye been successfully
applied to a diverse set of domains, including schedulirgj, [Brotein folding [78],
and games [66, 113]. Evolutionary computation is therefm®d by a wide spectrum
of researchers, from computer scientists and engineenghysicists, chemists and
biologists.

An EA is only usually employed when more efficient methodsearshing the so-
lution space are unknown. An algorithm specifically destbtwesolve a given problem
will usually outperform an EA, and as such EAs are often used kast resort when
more suitable techniques are not available. This is fretiyéme case in problems for
which the solution space is large and multi-modal.

The directed stochastic search within an EA seeks to balaecexploration of the
solution space with the exploitation of previously founiaat solutions. The heuristic
nature of EAs is of particular use when it suffices to find a gdmd not necessarily
optimal, solution to a problem. The strength of an EA's soluis often only limited
by the available computing time. To improve the performaoican EA it is common
to see them combined with local search techniques to formetiermlgorithms [32].

In keeping with its roots, practitioners have borrowed &from biology and ge-
netics to describe the elements of an EA. A potential saluttoa given problem is
known as acandidate(also chromosomer individual). Each candidate consists of
a collection ofgenes These genes represent fundamental units in the structae o
solution, and may be encoded as binary, real, or alphalmktens. The value of a
single gene is known as aillele. The genotypeof a candidate denotes its specific
genetic makeup, and an individual’s outwardly observald@ifestation is termed its
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phenotype

To assess the quality of a candidate, an EA empldytmess functionThis func-
tion scores how well a solution meets the problem by progdirmapping from any
candidate to a real number. The use of a fitness functiontifieakbows for an or-
dering amongst many potential solutions, so that strongvesek candidates can be
differentiated. An EA maintains many candidates togetheropulationof potential
solutions.

Operators act on the population members according to egohry rules. As in
biological evolution, two candidates can represgatentsand combine to produce
offspringthroughreproduction This recombination operator is known e®ssovey
and parts of each parent’s genotype are selected and fupeathioce a new individual.
One recurrent method for choosing the parents is fitnegseptionate selection [84],
in which fitter individuals have a greater probability of hgiselected. Such methods
lead to a “survival of the fittest” [36], in which genetic mags from strong candidates
is more likely to endure.

Diversity is often incorporated into the starting popwatof an EA by selecting
randomly generated candidates. However, the acts of fimreg®ortionate selection
and crossover lead tocnvergencén the material contained within the gene pool. To
overcome this effect and maintain diversity tineitationgenetic operator transforms
a small number of the alleles in some candidates chosen lbpmarchance. This
operator ensures that new genetic material is able to emtierthe population thus
allowing for further exploration of the solution space.

EAs are usually implemented in a cycle involving the evabraof all the candi-
dates’ fitnesses followed by the application of genetic ajmes to create a new popu-
lation. One iteration of this loop is referred to ageneration

Several methods may be employed to determine the termmattean EA. One is to
conclude a simulation once a sufficiently good solution reentfound, as determined
by the experimenter. Another method is to use a stoppingrit based on a measure
of the population convergence. The most common approadmgysto run the EA
for a predetermined number of generations. In all casesdbedandidate found over
the span of the EA is returned as the proposed solution.
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5.3 Subclasses of Evolutionary Algorithm

There are many computational techniques which fall undeuthbrella term of evolu-
tionary algorithms. The main ones are: genetic algoritlewslutionary programming,
evolution strategies, and genetic programming. A brietdpson of each subclass
follows.

5.3.1 Genetic Algorithms

A genetic algorithm (GA) is an evolutionary computation rabahich closely mim-
ics the evolutionary methods found in nature. GAs were firgppsed by John Hol-
land [67] at the University of Michigan, where much of thedhetical foundation for
the algorithms subsequently originated.

A population of individuals is maintained by the GA, with dacandidate rep-
resented by chromosomes which encode for the solution teengiroblem. These
chromosomes are typically of fixed length, although thisossmandatory. The canon-
ical GA uses only binary digits for its representation ofug@ns, but it is possible to
use any alphanumeric character to denote certain parayatbehaviours.

The implementation of a GA usually conforms to the follownudpric. An initial
random population is created, with the fithesses of all catds assessed using a fit-
ness function. Following this a new generation is createthbyapplication of genetic
operators such as fithess-proportionate reproductiossorer, and mutation. The old
population is discarded, and the procedure iterates onelvepopulation.

GAs have found particular application in timetabling andestuling problems, but
are often applied to solve many other kinds of global optatian problems.

5.3.2 Evolutionary Programming

Evolutionary programming (EP) was conceived by LawrencgeF{49], and shares
many similarities to GAs. Unlike a GA, however, EPs tend twuf®on the phenotypes
of solutions rather than the genotypes. Candidates withiaRare not constrained to
being character strings, and as such are often able to ef@otlee problem solution
in more apt forms. Also, mutation is not limited to switchibgtween a discrete set
of possible values. Instead this operator often changés pha potential solution by
statistical perturbations.

The methodology of EP is similar to that of a GA. An initial poation of random
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individuals is created, and replications of these are radtatcording to a statistical
distribution. Note that unlike GAs, crossover is not nodmn&und within an EP.
The resulting offspring’s fithesses are evaluated, aftachivh tournament procedure
determines which of the candidates is retained for the sjuesd generation.

Like GAs, EPs are used in optimization problems where dineethods such as
gradient descent are not applicable due to extreme unesgeohthe fithess landscape.

5.3.3 Evolution Strategies

Rechenberg is accredited with originating evolution sgas (ES) in his work on op-
timization within engineering in the late 1960s [98]. Therelepment of ES occurred
independently from the work on EP, but the two subclasseg\agtare many similar-
ities. Both typically operate on real-valued encodingsl apply Gaussian mutations
followed by a selection mechanism to determine which caatd&lsurvive to the next
generation. ES differs from EP in two major concerns. Bir&P typically uses tour-
nament selection whereas ES uses deterministic sele@exnondly, ES does contain
recombination operators, as with GAs.

The original formulations of an ES use only one parent to gereone offspring
per generation by the application of mutations. These aosvkras (1 + 1) ES. This
procedure was later expanded to allow for multiple parefs~1) ES - and incorpo-
rated recombination. Schwefel [104] subsequently geizexdthe preceding work to
create multi-membered plus and comma ES, denotef by\| and {4, A) respectively.
In this notationu represents the population size, anthe number of offspring created
per generation. With plus strategies the parental geweraiincluded in the selection
procedure, whereas the comma strategies only select fraongshthe offspring. In
both of these formulations the individuals may recombimeudgh random mating and
are subject to mutation and selection.

5.3.4 Genetic Programming

Genetic programming (GP) is the final main subclass of EAsil3tthe first related
efforts came in the early 1980s [33, 115] the field only trudynged recognition on the
publication of a book by John Koza in 1992 [79].

Traditionally, the individuals maintained within GP areograms expressed in a
tree structure of suitable data values and functions. Thgrams are composed of
elements of symbols which are deemed to be appropriate fwrofsdem at hand. Orig-
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inally GPs were often written in LISP, due to the compatipibetween this program-
ming language and the implementation of the necessary praese

As with all EAs, GP is an iterative process which evaluategpial solutions by
use of a fitness function. The crossover operator within G timess-proportionate
selection to mate subtrees of two candidates and produceofiiggring. The nature
of the programs means that candidates within a GP are notef fength, and this
flexibility provides GP with one of its greatest strengthgsioother EA techniques.

5.4 Evolutionary Algorithms Applied to Games

In Chapter 2 we examined many of the different techniquas fitwe field of artificial
intelligence which have been successfully applied to tiveld@ment of game players.
In this section we look at the utilization of evolutionaryngputation methods for the
same purpose.

The use of such techniques is particularly appropriate feating a player for a
game. The rules of the environment are known and unchangnjthe space of pos-
sible solutions (in this case strategies) is extremelydangd irregular. Only relatively
trivial games lend themselves to an analytic solution, f@meple through the use of
such methods as linear programming. Most commonly playedegarequire other
techniques which are able to search the strategy space scaldr strong results. All
of the EA techniques discussed above have been applied dothain of games, and
there follows a review of some of the most important results.

One of the first successful applications of EAs to games caitieRobert Axel-
rod’s research on the iterated prisoner’s dilemma (IPD) [je equilibrium for the
non-iterated version of the game demands that both agef#éstdsince this strategy
strictly dominates cooperating. However, the iteratedavdrintroduces more com-
plexity, since each player has the opportunity to “punist&it opponent for previous
non-cooperative play. The question arises as to whethent¢kative to defect is over-
shadowed by the threat of punishment.

Axelrod ran a series of tournaments, for which he invited ynaoademic re-
searchers to design a strategy for the IPD. The target fordh®petitors was to max-
imize the payoff across a large but unknown sequence of gaksssh entry was al-
lowed to maintain knowledge of its previous three gamesnupbich it could base a
strategic selection for its next game.

The winner of the tournament was Anatol Rapoport’s TIT FOR pfogram. This
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strategy cooperated on the first turn, but then repeateggsrent’s action from the
previous game thereafter. Playing in this way directly seadoperation with its ad-
versary, since any non-cooperation will be punished by edaein on the succeeding
turn.

Axelrod [3] then sought to find whether a GA could improve ugdh FOR TAT's
performance. He encoded strategies as a 64-bit string, egith gene representing
the player’s action for any of the possible prior three-gatmategy pair sequences.
From this he was able to discover strategies which outpeaedrTIT FOR TAT in his
chosen static environment. Whilst not necessarily beltian fTIT FOR TAT against
all possible opponents, Axelrod’s evolved strategies stbtihe power of a GA in
exploiting its given environment.

An interesting use of coevolving neural networks is foundhi@ development of
the checkers playdBlondie24[27, 28, 48] by Kumar Chellapilla and David Fogel.
A competing population of individuals is evaluated basedtair ability to play the
game using only the positions of the pieces on the board anpli¢ice differential (i.e.
the material superiority of one player over the other).

For the purposes of the program a checkerboard is repreaptevector of length
32, with each component corresponding to a permissiblgipngin the board. Com-
ponents in the vector are elements from the{skt -1, 0, +1, K}, where O corre-
sponds to an empty square, 1 is the value of a regular cheokkK as the worth
assigned to a king. The value Kfis evolved by the algorithm. The sign of the value
indicates which player the piece belongs to: positive fer player, negative for the
opponent. A player’s move is determined by evaluating tlesygpmed quality of the
resulting future positions.

After several months of coevolution the best neural netweaik seen to attain an
expert-level status. The program’s authors challengedvtirédd champion program
Chinookto a ten-game match, witBlondie24winning two and drawing four. Unlike
its opponentBlondie24contained neither expert rules nor databases of openings or
endgame positions. Although losing the matBlgndie24s performance was impres-
sive and highlights how well evolutionary methods can ddwiitle or no domain
knowledge.

Another application of evolving neural networks is by DaMdriarty and Risto
Miikkulainen [85], for the purpose of strategy discoventie game of Othello. The
neural networks are evolved using a GA, with only the pieee@inents as inputs to the
candidate solutions. The marker-based scheme employeasalhe net architecture
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and connection weights to evolve. The lack of expert ruldseairistics means that any
strategies that form do so purely through self-discoverphefgame.

The networks are first tested against a player employingomanchoves, from
which they quickly develop what is known as a “positionabstgy” for the game.
This way of playing essentially seeks to maximize the nundfepponent’s pieces
reversed on each move, and is the way that novice human plaften approach the
game.

Following this the competitor program is itself encodedwatpositional strategy.
The newly evolved players then discover the more complexbitity strategy” for
Othello. This strategy, which is characteristic of humarstaes, seeks to limit the
opponent’s number of good moves on their next turn. Agairetidutionary approach
shows itself to be capable of creating a game player of a lengdl |

Many other games have provided the test bed for researchajatiemary algo-
rithms. Graham Kendall at the University of Nottingham hppleed such methods to
the African game of awari [40], cribbage [71], blackjack ],7@&nd chess [73]. In all
such cases the strategies evolved show themselves to Bsaagestrong as amateur
human players.

One neoteric use of genetic algorithms is Colin Frayn’s fgsearch on the board
game of Monopol{R). In this work a GA is used to determine a valuation for all of
the properties on the board, both singly and as part of a ceteglet. Other game
playing parameters are evolved, including whether or nektbjail, which properties
to mortgage in the event of bankruptcy, and the desired mimmash position. The
results of the GA give rise to very strong computer playergtvkhe author contends
are superior to those found in commercially available Maip@ software.

We noted in Section 2.3 that Go is arguably the most difficalird game to de-
velop competent computer players for, and it too has beesubject of research apply-
ing evolutionary computation. Genetic algorithms are usete research of Donnelly
et al.[95] to evolve a Go position evaluation network for a 9-byeald. This reduced
game is often played by beginners, and here helps to redagathe space so that the
experimental runs are less time-consuming. Crossover andtion are employed to
train the network, and the individuals compete in all-ptdijtournaments.

Richardset al. [100] describe a method they christen SANE (Symbiotic, Adap
tive Neuro-Evolution) to evolve neural networks capablelafying Go on similarly
truncated boards with no pre-programmed knowledge. Twarsép populations are
evolved: one of neurons for the networks’ hidden layer, d®&ldther for blueprints
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of network architecture. Networks are evaluated, sele@ed recombined based on
their overall performance in the game. After initially plag moves randomly in the
experiments, the program eventually develops some welkr®o strategies. Neither
Donnelly’s nor Richards’ evolved players exhibit notevingrstrength in their ability
to play the game, but this is in keeping with all computer Gules at present.

5.5 Evolutionary Algorithms Applied to Poker

The first, and to date most extensive attempts to apply evolaty computation to
poker have been performed by Luigi Barone and Lyndon WhildatUniversity of
Western Australia. In their work they develop poker playiat are able to adapt
strategically given inputs from their environment, suchtlesir own hand strength,
seating position, bet size, and a measure of their oppdne#aysng styles.

The simulations performed in their early research [4] usargldied ring game
Texas hold’em with limit betting. The adaptive player uses tcompetencies” of
hand strength, seating position, and risk managementeotefecision making. Each
component generates a probability triple over each passittion (bet, call, or fold),
which are then passed to a “resolver”. The resolver weigt@srtputs and determines
which action is made.

One evolving player is seated at a table of static opponemsdeing expert rules.
Many different types of opponent are used to cover a rangessiple playing styles,
although each table only consists of multiple copies of ardhadversary. Evolution
on the weightings of each competency and the maintenanbe pfipulation of candi-
dates is performed using a (1 + 1) evolution strategy. Thdtseshow that the adaptive
players are able to increase their strength sufficientlptomete against and beat their
opposition.

Further research by Barone and While [5] alters the decisiaking structure and
dispenses with the resolver. Instead, the population oflidates is segmented into
a hypercube with dimensions relating to seating positiahrésk management. Each
candidate in a hypercube element consists of real valueswene used as inputs into
a series of formulae to calculate the probabilities of a bali, or fold. Evolution
occurs on these values and determines the player’s actiomnddthe play of a game,
a candidate is selected from the appropriate hypercubeesggmcarry out a betting
action. After all candidates have been cycled through agteechined number of times
the (1 + 1) evolution strategy creates a new generation.
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The work of Barone and While gives encouragement to the usvafitionary
algorithms for designing a poker player. There are manyiplesextensions to their
work, such as using a mixture of opponents at the same tableiaploying com-
petitors which themselves use non-stationary stratedgMsilst their research solely
focuses on the ring game format, its findings are propitiaugste applicability of
EAs to tournament poker.

In similar work by Graham Kendall and Mark Willdig [74], ewdlonary methods
are shown to be able to learn to play a simplified draw pokerega@andidates from
the population are again played at tables containing opperad different styles, and
the adaptive players are seen to adjust their strategies@apely to each situation.
As in the evolutionary poker research cited above, howesergsults concerning the
performance of the resulting players against human ogpositre published. In the
work of both Barone and Kendall the encodings of hand strengged are very coarse,
and it is almost certainly the case that the players founddvoat match the relative
abilities of the GAMES Groups’ poker programs discussedhayiier 2.

Texas hold’em has also been used in research on coevoltitatniques by Ja-
son Noble [91]. Rather than play against static oppositiwork seeks to develop
strong poker players through self-play. The author stdtasthe resulting individu-
als do not possess strong playing abilities when measur@dsidiuman opposition.
However, the focus of this study is the comparison of coavahary methods and is
not intentioned to produce expert-level poker strategies.

In further work, Noble [90] uses a more detailed representdor the individuals’
playing strategies. Rather than the rule-based systenredtibld hand strengths and
desired betting levels in the previous paper, this work eygph sparsely encoded neu-
ral network with a large number of possible inputs. The rissshow that deterministic
crowding works well in conjunction with Pareto coevolutimn maintaining a diverse
population and improving strategies. The algorithm waspaoticularly successful in
finding strong poker strategies, but again this was not tkeiip aim.

This review confirms two salient points for our present resdeaFirstly, EAs have
been shown to work well in application to developing compgi@mes players. Sec-
ondly, such techniques have been applied to various forrmpskdr, but none have so
far investigated the game within a no-limit tournamentisgtt
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5.6 An Example of Evolutionary Algorithm Design for a

Toy Poker

We next illustrate the implementation of an EA in applicatto the Jack-Queen-King
game (JQK game) [105], before returning to pre-flop Texad’'bol in the following
chapter. The ensuing subsections introduce this toy pdiess the implementation
issues, and analyse the results of some evolutionary expets.

5.6.1 Jack-Queen-King Game

The Jack-Queen-King game is a simplified form of ring gamesp@kth limit betting
for two players, hereafter known as Player 1 and Player 2h Bompetitors ante $1,
then receive a card from a deck consisting of a jack, a queeha&ing.

Player 1 is first to act, and after looking at his card may eitet $1 or fold. If he
folds, Player 2 wins the pot. If he bets, Player 2 must themeeitall for $1 or fold.
Should Player 2 fold, Player 1 wins the pot. If Player 2 cdlig,winner is determined
by a showdown (king- queen>- jack).

The extensive form of the JQK game is shown in Figure 5.1. imdiagram the
conditional probabilities of the cards dealt are shown glthve upper branches of the
tree. The action$ andb for Player 1 correspond to a fold and a bet respectively.
Similarly, thef andc for Player 2 relate to fold and call actiohs.

The presence of imperfect information in this toy poker isyed by the multi-
nodal information sets, shown as dashed ovals. At any ponmgl the game a player
knows which information set within the tree he currentlyides given his card and the
previous betting action. However, he cannot identify wiétainty the precise node
since he does not know his opponent’s card.

The payoffs to Player 1 are given at the terminal nodes, aadher negative of
those pertaining to Player 2.

The optimal strategy for each player in the JQK game can berméted by the
use of linear programming. Firstly, a payoff matrix is consted for all possible pairs
of pure strategies available to each player. A pure stratggfor a player is a triple
(z3,29,2«) ascribing an action to each information set. Each { f,bV c}, with the
latter element dependent upon whether the player acts psrRlar 2.

INote that since the players act in sequence, a competitomimagots as Player 2 with a card that
he would have folded to a bet.
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Figure 5.1: Extensive form for the JQK game.
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The payoff matrix to Player 1 for the JQK Game is shown in T&ble

(f,f,f) | (f,f,c) | (f,c,f) | (f,c,c) | (¢, f,f) | (c,f,c) | (ccf) | (crcrc)
(f,f,f) -1 -1 -1 -1 -1 -1 -1 -1
(f,f,b) -3 -3 ~1 ~1 0 0 0 0
(fbf) | -3 -3 -3 - -3 -3 5 -3
G0 I = I T A O I R
(bff) | -3 -3 -8 -3 -3 -3 -2 -3
(b,f,b) % —% 0 —% % 0 % _%
bty | & | & [ 4| 3| 3 3] o =
(b,b,b) 1 0 z -1 3 1 1 0

Table 5.1: Expected payoffs to Player 1 in the JQK game.

To solve the game constraints are placed on the pure seatsgch that the sum
for each player totals one. This is because we wish to findriblegbilities with which
each should be played. A software package such as Maple earstive the con-
strained optimization problem to yield the optimal stragsdor each player shown in
Table 5.2.

Player 1| 4(f,b,b) andi (b,b,b)
(f,f,c)and3(f,c,c)

Player 2

WIN [WIN

Table 5.2: Optimal strategies in the JQK game for each player.

We observe that the optimal strategies for both players ta&eform of mixed
strategies. Player 1 should always bet the queen and kidgharjack only one third
of the time. Likewise Player 2 should always fold the jacK| cae third of the time
with the queen, and always call with the king.

Both the explanation and analysis above describe a single tiathe JQK game.
To imbue this with greater realism we now suppose that theplagers compete in
repeated hands, with the deal and thus the seating positieaich alternating. Each
competitor is therefore required to act cyclically as Ptayand Player 2.

5.6.2 Player Representation

When implementing an EA there exists a large amount of fléilmpen to the prac-
titioner in determining the exact formulation of the alglbm and its elements. The
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first decision that is required concerns the representafitime individuals. Arguably
the simplest EA encoding of a JQK game player is to use thentealogenetic algo-
rithm [56] representation containing six bits. The ordgmrithe genes on the chromo-
some is discretionary. Here we choose the first three bitenoté the player’'s action
when he acts as Player 1, with the genes relating to playmgpttk, queen, and king
in that order. This representation is then repeated forahewing three genes for the
betting actions as Player 2. This representation is surzedhin Table 5.3.

Gene |1 2| 3|4|5
Player |1 1] 12| 2
Cad | J|Q|K|J|Q

Table 5.3: Encoding of a strategy for the JQK game.

Within the canonical GA each gene can take on an allele of btvecovalues. A0
signifies that the player folds with the given card in the appiate position. An allele
of 1 relates to two different actions depending upon the positibthe player. Al
denotes either a bet for Player 1, or a call in the case of Playe

With this representation all possible game strategies eagnlboded as a chromo-
some. As an example we examine the candi@ai®01. With reference to Table 5.3,
we first observe that this individual will never bet the jacidaalways bet the king.
The second and fourth alleles relate that this player wilthe queen as Player 1, but
not call a bet with it as Player 2.

5.6.3 Implementing the EA

In accordance with the algorithm design the next stage istalze the evolutionary
operators to the GA. These elements are set out in Algorithm 1

As previously mentioned, the exact specifications usedmitte algorithm are left
to the practitioner’s discretion. Parameters relatindgpgostizing of the population, rates
for the crossover and mutation operators, and the selectitire termination criterion
are all required. Several theoretical results have beeournqed, but the choices made
are often based either on values that are known to have war&kth previous exper-
iments, or are designed to be compatible with the availataeputational power or a
desired run-time.
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Algorithm 1 A Genetic Algorithm for the JQK Game
1: Initialize the population

2: whiletermination criterion unsatisfiedb

3:  whilenew population not fultlo

Evaluate the individuals’ fithesses

Select individuals from the current population

Perform crossover and reproduction on the selected inaksd
Perform mutation on offspring

© N o 9

Add offspring to new population
9: end while
10: end while
11: Return best individual found as solution

To continue the example of the JQK game we select a populafiprst ten indi-
viduals. A result of Goldbergt al. [57] suggests using a population size of the order
of the number of genes over which the algorithm will operate.

We shall use the GA to evolve strategies against a staticraggo The chance
element of the deal of the cards means that one hand is natienffio give an accurate
assessment of whether one player is better than anotheedlice the effects of luck,
we require that an individual plays against the opponent@ hands. Therefore the
natural fitness function to use in this example is the totahiper of hands won. This
provides any candidate with an evaluation in the intej@a100.

For the recombination operator we choose simple one-paissover. This takes
two parents and splits each at the same randomly chosengboiny the chromosome.
An offspring is formed by fusing the first part of one parenthwhe second part of the
other. Suppose, for example, we had the paredit810 and110001 and the algorithm
determines that each should split between the second addjtimies. The child of such
a reproduction taking the first two genes of the first paredttha last four genes of the
second would b&00001. The crossover rate used within the GA is chosen to be 70%.
This number is in keeping with values found to work well in mather experiments.

The mutation operator in a canonical GA flips a selected lwivéler, we are still
required to choose the rate at which such mutations occh hhutation values are
often found to be disruptive in the search for strong sohgj@nd so here we choose a
rate of 5% in keeping with similar prior research.

For the termination criterion we choose to run the GA for ttyegenerations.
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Again this number is discretionary, but is found to be su#fitifor the given exam-
ple.

5.6.4 Results and Conclusions

The static opponent we use to illustrate the GAG4001. This can be interpreted as
an extremely cautious player, since he will only bet andwdh the best possible card
and fold otherwise.

The best solutions found using the above implementatiotharadividualsl 11000
and111001. The strength of these candidates can be understood in thextof the
counter-strategies that they encode for in comparisongatidtic opponent’s strategy.

Both of these players will bet every card as Player 1. Thigios#ive expectation
since the static opponent will only call with the king. Siarlly, both solutions will
never call a bet as Player 2 with either the jack or queen. i§liecause the opponent
only ever bets the king as Player 1. Notice that although botttions differ in the
final gene, this value is rendered irrelevant due to the oppisstrategy. That player
will fold the jack and queen every time as Player 1, and so amypeting individual
will not be required to act if it is dealt the king.

This result can be validated mathematically by calculatimg expected payoffs
for each possible counter-strategy againstd®&001 opponent. These are shown in
Table 5.4.

Table 5.4: Expected payoffs as Player 1 and Player 2 for each possible counter-strategy

P1 Strategy | P1 Payoff | P2 Strategy | P2 Payoff
(f,f, f) -1 (f, f, f) %
(f,f,b) -2 (f,f,c) 3
(f,b, f) —% (f,c,f) (—15
(f,b,b) —3 (f,c,c) z
(b, f, f) —% (c, f,f) (—15
(b, f,b) -3 (c, f,c) :
(b,b, f) -2 (c,c, f) 0
(b,b,b) 0 (c,c,c) 0

to a 001001 opponent in the JQK game.

The profit-maximizing strategy as Player 1 is seen ttbb, b), whilst both(f, f, f)




Chapter 5. Evolutionary Algorithms 86

and(f, f.c) are equally optimal as Player 2. Concatenating these gieatéeads to
the two best evolved solutions cited aboté1000 and111001. This confirms that
the GA has successfully discovered the global optima.

The example we have used to illustrate an EA is very simplevayer, it serves to
demonstrate the basic methodology and implementationreegants of an EA. Also,
we gain confidence in the technique since the EA finds glohtahapn this small test
case.

We can also envisage how this example could be extendedfdQK game played
within a tournament. The length of the chromosomes couldnterged to allow for
different betting actions based, for example, on the taneT# level as we did in Chap-
ter 4. A simple illustration of this is given in Table 5.5, exuling the encoding used
in Table 5.3.

Gene [1|2|3|4|5|6|7|8|9|10|11]12
Player | 1| 1| 1| 2| 2| 2|2|1|1| 2] 2| 2
Card |[J|Q|K|J|Q|K|J|Q|K Q

Leve |E|E|E|E|E|E|L|L|L|L|L|L

Table 5.5: Encoding of a tournament strategy for the JQK game. Tournament levels

could be divided into early (E) and late (L) categories to allow for different actions.

We develop this idea when returning to our more realistiagrathr fold pre-flop
Texas hold’em test bed in the following chapter.

5.7 Summary

Evolutionary algorithms replicate mechanisms found irureto derive solutions to
difficult problems for which more effective approaches amknown. They are strong
general purpose problem solvers and, as such, have a wige chapplicability. Four
main subclasses of EA exist, although the different strahdse many similarities in
their implementation and procedures. EAs are not simplgkolax techniques, and
their use requires many specifications and parametenatiom the practitioner.
The computer game playing domain has benefited greatly fr@napplication of
EAs. Economic games such as the iterated prisoner’s dileamda&lassic games like
checkers have all had EAs used on them to uncover stronggieat The result-
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ing players may not in some cases be as strong as those déreedyh other ar-
tificial intelligence techniques, but the lack of a requisthfor domain knowledge
means that the players are not unintentionally handicapyeahy imperfections in
pre-programmed expert rules.

In recent years poker has started to be used as a test bedlati@vary algorithms.
The ramifications of this work show promise, but the dearthesiilts against either
human or externally developed computer opposition ledwestrength of the resulting
programs open to question.

It is also the case that no evolutionary computation reselas yet been applied
to poker in a tournament setting. The following chapter adses this directly.



Chapter 6

Discovering More Complex Strategies

Using Evolutionary Algorithms

In this chapter we employ evolutionary algorithms to diseranore complex strategies
for our pre-flop Texas hold’em tournament domain. This waesehby combining all
four game-related factors found to positively influenceisiea making in Chapter
4. Note that this is non-trivial, since the best counteatstyies shown in Table 4.10
contain potential conflicts for all-encompassment. ForngXe, if playing against the
Sklansky Basic opponents in the latter half of a tournametft avlarge stack size, the
best counter-strategies would suggest playing any haritop twelve groups due to
the tournament level, and contradictorily folding all harmkcause of the large stack.

We first explain how the all in or fold tournament poker problean be encoded
within an EA, and discuss the issues of representation tigarygerators, and parame-
terization. Analysis of the evolutionary runs addressestiwr use of the amalgamated
factors yields stronger tournament poker players thanetidsch used only a single
game factor found previously, and whether an EA can resabterpially conflicting
inputs such as in the example above.

6.1 Evolutionary Algorithm Experimental Framework

Evolutionary algorithms are general purpose problem ssiy&t use a guided stochas-
tic search to optimize a fitness function which assigns a miazadevalue to potential
solutions. The different types of EA were outlined in theiwas chapter, but the
choice of which to apply to a given problem is left to the pitaaner’s discretion. Of-
ten this decision can be founded on the representation didate solutions employed.

88
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Once this has been determined there needs to be a selectidnangenetic operators
to use, and choices made on the parameterization of the EA.

6.1.1 Strategy Representation

In Section 5.1 we saw how a strategy for our all in or fold t@ment poker environ-
ment could be represented by the tuple

(t1,t2,...,t16)

with the threshold value between moving all in and foldingdaique scenariogiven
by t;.

On removing the brackets and commas this encoding is faragighe representa-
tion of a chromosome we used in the genetic algorithm at tHeéthne last chapter. As
in all EAs it is necessary for the genes to encode some balrawigparameterization
such that together they form a candidate solution to thelpnobIn our example all
that is required to complete the representation is to formmj@ctive mapping between
the genes and the sixteen unique game situations. Then wiesh@ayer is compet-
ing in a tournament, the states of the four binary variabléksimdicate which gene
encodes the threshold value for that particular scenari@oparison of their own
hand’s starting group with the determined threshold valiletiaen return a betting
action of either all in or fold.

To make the injection between genes and scenarios we usewes et of the
binary variables, as shown in Table 6.1. Generally, the nmgpysed can have conse-
guences on the effects of certain crossover operatorsnathmiEA. Here this is not a
concern as we shall employ uniform crossover, discussedgho

The meaning of each binary variable’s state is explainechllel6.2. The desig-
nations employed echo those of Chapter 4.

Rather than allowing the alleles to take integer values ftbenset{0,1,...,13},
we choose instead to let them take real numbers on the iht@\sd). The exact
reason for this will be explained in an ensuing subsectiothenmutation operator.
To translate an allele to a betting action we simply take therfbf its value as the
respective threshold hand group. For example, an alleleldfl3has a floor of 3, and
So instructs the player to move all in with any hand containétiin the top three
groups and fold otherwise.

Now that we have formalized the strategy representatiohimvihe chromosomes,
we examine the other issues involved in constructing our EA.



Chapter 6. Discovering More Complex Strategies Using Evolutionary Algorithms 90

1011|1213 |14 |15| 16

wir|lw| o
olo|o|o|r
Rrlolo|o|N
olr|lo|o|lw
Rlk|lo|lo|s
olo|r|olwu
Frlo|lr|olo
olr|r| o~
PR, O| 0
o|lo|o|r|o©

=

RlR|R|R

o|lrRr|kr|Rk

1
1
0
1

| O|O|kF
Ol |O|Fr
O | Ok |F

Table 6.1: Classification of potential game scenarios for use within the chromosomes
of the EA. Each column heading is the respective gene number, with the state of each
binary variable covering seating position (P), opponents’ prior bet (B), tournament level

(L), and stack size (S) shown by row.

Binary Variable State=0 State=1
Seating position (P) | Early position| Late position

Opponents’ actions (B) No prior bet | Prior bet

Tournament stage (L) | Level < 6 Level > 6
Chip stack amount (S)) M <5 M>5

Table 6.2: Explanation of the binary variables’ states used in Table 6.1.

6.1.2 Population Initialization

Evolutionary algorithms rely on a population of candidatesnaintain a diversity
of potential solutions to explore the fithess landscape. olmstructing an EA it is
necessary to decide how large a population to maintain, amdthis should first be
initialized.

Deciding upon the exact size of population is the respolitsiloif the practitioner.
Broadly speaking, however, it is important that the numbeamdidate solutions em-
ployed in an EA is neither too small nor too large. If too fewliinduals are used the
EA will suffer from rapid convergence within the populatiorhis means that individ-
uals will quickly come to resemble one another, with the ltdseing that only a few
localized areas of the strategy space are explored. At thex extreme, a population
of too many individuals suffers from a different problem.cBandividual is required
to be scored by way of the fitness function, and hence the mdraduals maintained
the longer this takes. An overly large population size vasitreases the run-time of
each generation of the algorithm.
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For the canonical GA a useful rule of thumb is to use a poputatize comparable
to the number of genes within a chromosome [57]. Although weat use the simple
binary encoding of the genes found within the canonical GAunrepresentation, it
was decided to use a population of 20 based upon the samaig@so

In creating the initial population there are two main posgisies to select from.
The first is to create a population of random individuals byd@nly assigning a fea-
sible allele to every gene of all chromosomes. The secoralssdd the population by
introducing some candidates which are pre-defined. Seediddduals can be used
as a way of introducing prior knowledge of likely strong d@us. This can help to
reduce the time taken to termination of the algorithm, sitheefruitless explorations
performed by some of the randomly created individuals welremoved. The disad-
vantage of using seeded individuals is that they may hapdi@EA by unintention-
ally providing poor candidate solutions. For example,wdlials known to be locally
strong may obfuscate the search from finding globally ogtstrategies.

In our experiments it would be very simple to seed the inigpulation. By ex-
tending the representations of the best found strategies fhe previous exhaustive
simulation experiments we could create potential stantoigpts for the search. For
example, the best strategy discovered earlier to play agthia Sklansky Basic oppo-
nents using hand strength and seating position knowledgg&a). This relates to
using the threshold hand groups of 8 in early position and&tenposition. To convert
this into a strategy for the chromosomal representationires that we repeat these
two alleles in the appropriate genes found by reference bbeTa2. This example
would yield the chromosome:

8888888822222222

Rather than seed the population with prior solutions we shdo initialize the EA
with random individuals. At the possible cost of increasaa-times we remove the
potential for adversely biasing the search with seededidates.

6.1.3 Selection and the Fitness Function

In common with the biological processes which EAs mimicjvidlals from the ex-
isting population give rise to a subsequent generation. H@wndividual candidates
are chosen is based on the process of selection.
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Typically the method used for selection within an EA is baseeach candidate’s
fitness. The purpose of a fithess function is to quantify eadlitisn’s ability to op-
timize the problem at hand. Therefore the fithess functiorpsi needs to provide a
mapping from the strategy space to a number, such that asyp®solution can be
guantified and ranked.

The form that the fitness function takes is heavily problespahdent. In our do-
main of tournament poker we have a simple and natural pdisgibVe are ultimately
interested in how well a particular individual within thegdation fares as a tour-
nament poker strategy. To do this we measure each stratabiiy over several
tournaments, since random chance affects the results oindigydual competition.
Re-sampling candidates is a commonly employed method émckig noisy environ-
ments [7, 20, 97]. In keeping with the experiments in Chagtare choose to play
each strategy off over 200 tournaments. The fitness of amithdil is then simply the
total number of tournaments won.

Alternative fitness functions could be employed. Rathen tieply counting one
point for a tournament win and zero otherwise, we could asdifferent numerical
values depending upon the position finished within a game.ekample, we could
use a fitness function which gives ten points for a tournament nine for second
place, and so on down to one point for last.

Similarly we could use a fitness function which mirrors thgqfts to a regular
ten-player tournament, in which first place receives 50%hefgrize money, second
place 30%, and third 20%. A function which awards five pointfirst place, three to
second, two to third and zero otherwise would suffice for plugpose. Ultimately the
choice is dependent upon our aims, and what we consider helprecise problem that
we wish to solve. In our experiments we continue to use thepoirg per win fithess
function as in the exhaustive simulations, for reasonsanptl in Section 4.1.1.

6.1.4 Reproduction

The method by which an EA creates successive generationdigiduals is known as
reproduction. The typical procedure by which candidatetsmhs reproduce consists
of

e Fitness-based selection

e Crossover (also called recombination), and
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e Mutation

Two individuals are selected from the population as paresntsl combine their
genes through crossover to produce a child. This offsprahgtiosn may then undergo
mutation, which randomly changes some of the chromosone®s galues. The intent
behind the method is that fit parents will combine to produ@nditter children, thus
driving the optimization on to new maxima. Maintaining maofythe genes of highly
fit individuals allows the next generation to exploit prawsty found regions of the
search space, whilst the inclusion of crossover and mutat&o permits investigation
of hitherto unexplored strategies.

Details regarding the specific implementation of reproumctvithin our experi-
ments are given in the next three subsections.

6.1.4.1 Fitness-Based Selection and Elitism

All EAs search the space of potential solutions through a&faatrade-off between
exploration and exploitation. Fitness-based selecti@nsethod for ensuring that the
population maintains many of the genes of previously founohg solutions. Candi-
dates with a higher fithess are more likely to be propagatediie next generation.

Two commonly applied methods of fithess-based selectiomoardette-wheel se-
lection and tournament selection [84]. In the former theeBmof each individual is
used to assign a proportionate probability of selectiotieFsolutions are more likely
to be selected, but less fit individuals are not barred frooobeng parents.

Tournament selection is the method used in our experimefsswith roulette-
wheel selection fitter individuals have a higher probapitit becoming parents, but
the processes for this are somewhat different. Our tournasedection randomly
chooses two individuals as the first potential parent. Thelicete with the highest
fithness amongst these is selected. The process is repeatbe fecond parent, with
the proviso that the two parents should not be identical.

Elitism is an optional constituent of an EA. It is a method byiet certain chro-
mosomes are maintained unaltered from one generation toetkte Its use can have
both positive and negative effects on an evolutionary rurbedefit is that very strong
solutions are kept unchanged within the population. Thepmments of strong candi-
dates thereby remain within the gene pool. A potential dedento elitism is that it
can encourage premature convergence. This is participaslylematic with a small
population size.
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After several preliminary tests were performed both witld anthout the use of
elitism, it was decided to use it such that the two fittestvitllials pass through to
the next generation unaltered. There was little differenlogerved in the results of
EA runs both with and without a small number of elites. Howebe use of a larger
number was seen to lead to a faster rate of convergence.

6.1.4.2 Crossover Operator

Crossover is employed in an EA to share genes amongst caeslidathe population.
After fithess-based selection has chosen the two parenéssaciated rate determines
the probability of them undergoing crossover. Without sme&r the parents pass into
the next generation unaltered, otherwise they undergo eepsodescribed below to
produce offspring. Our experiments use a crossover rat®%f, A figure which is
lower than those commonly employed [41, 58].

Different styles of crossover have been used in previoudean& research. Per-
haps the most commonly employed is simple one-point cr@ssand was the one
employed in our investigation of the JQK game. In this mettiatwo parents are
split between the same two genes along the chromosomegheitenetic material to
the left-hand side of one fusing to the right-hand side ofdtiner. This technique can
be extended tm-point crossover, by which several genetic swaps are matheeba
the parents.

One-point crossover is particularly desirable when theime implicit ordering
along the chromosome so that the adjacency of consecutigsge somehow impor-
tant within the representation. In our situation this is @ case. Referring back to
Table 6.1 we observe that only one of the four factors (thageaiting position) has
like binary states grouped together along the chromosonsplidin the chromosome
between the eighth and ninth genes would cleanly separatedatly and late seats.
However, such a cleave would have mixed effects on the ofinee factors since their
binary variables’ identical states are not contiguous.

Rather than this operator, we choose to employ uniform ok@ss This scheme
almost eliminates the possibility of selecting contigublecks of genes in reproduc-
tion, and hence helps to search wider portion of the solusjgerce. With uniform
crossover the parent chromosomes are compared and symilaribered genes are
swapped with a fixed probability. We use a probability of @aganing that on average
half of the genes are crossed over. The result of applyinfpumicrossover is two
child offspring, each of which contains part of the genetatenial from both parents.
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6.1.4.3 Mutation Operator

The final operator used within a typical EA is that of mutati®his scheme mirrors its
biological precedent, with some amount of genetic matearitile population changed
every generation through chance. This operator ensureshéir@ is a positive prob-
ability of new material entering the gene pool, and help$tiotsearch the solution
space and guard against convergence.

In the canonical GA, whereby the representation of chrommesoconsists of sev-
eral binary digits, the operator’s effect is straightfordiaA fixed, usually small, per-
centage of the genes of the offspring is selected for mutatiothese cases the allele
on the gene is flipped, with Abecoming & and vice versa. For encodings allowing
for a greater number of alleles than just two, slightly mdaderate mutation operators
are required.

In our problem we have chosen to encode the strategies wsahgumbers on the
interval [0,14). Before explaining why, we consider the simpler alterreti¥ using
the integerq0,1,...,13}. If we did so, we could construct a mutation operator which
flipped values in a similar way to the canonical GA. In our cdmemutation would
need to swap a given allele to one of the 13 alternate poisigibilvith equal probability.

This mutation could have been used, but in doing so we woudd smme of the
knowledge that we have contained within the representaliba hand group number-
ing means that players with similar numerical encodingdesiithin local areas of the
strategy space. We can assist the search by biasing it toshgresater probability of
exploring “close” strategies, and a lower probability oboking those “further away”.
The uniform mutation operator, by contrast, is equiprobatkhis respect.

To effect this kind of mutation the zero-mean Gaussianidigtion is often used.
The common bell-shaped distribution ensures that smadlateschanges are more
likely than large ones. Since samples from a Gaussianluliiton are real-valued, we
use a real-valued encoding for the strategies. Non-inteligles are converted into
hand group thresholds by taking their floor value.

A Gaussian with a standard deviation of two was employeds parameter was
chosen arbitrarily, and no other choices were evaluatethddi further modifications
it is possible for some shocks to take the allele value oetsfdhe allowabl€g0, 14)
range. For example, an allele of 0.278 taking a negativeksbb0.5 would result in
an impermissible value of -0.222. To prevent this we usectifie at the boundaries, a
method shown to reduce bias by Bullock [23]. In this methaddkcess shock amount
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has its sign reversed once the boundary is reached. In tka gkample this would
result in an allele of +0.222.

Genes are selected for mutation at a rate of 20%. It shouldtaelnhat since only
the floor of the allele values affects behaviour at the phgnotlevel, several of the
random shocks have no outwardly observable effect. For pkgran allele of 3.141
receiving a positive shock of 0.5 becomes 3.641, but itrgftesents a threshold value
of 3 for the particular scenario.

An estimate of the effect of the mutation operator can berdeted by applying
shocks to random alleles from the inter{@/14), and noting the difference between
their old and new values after any necessary reflectione®ifft alleles have different
profiles, since those towards the boundaries are constrainene direction. A sim-
ulated estimate of the chosen mutation scheme on 5,000 maatleles is shown in
Table 6.3.

Allele Floor Difference 0 +1 +2 +3 +4 +5
Estimated Frequency | 83.9% | 7.2% | 5.0%| 2.6% | 0.9% | 0.4%

Table 6.3: An estimate of the effect of Gaussian shocks with a standard deviation of two

on the floor values of alleles, using a mutation rate of 20%.

Totalling the non-zero shocks we have an estimated effegtiutation rate of
16.1%. It is acknowledged that this is high in comparisorhvgitandard mutation
rates [41, 58], and no tests were performed using differemses.

6.1.5 Termination

The decision to end an evolutionary run is generally depetnalgon one of the three
following conditions, the choice of which is left to the ptiioner.

e Minimal adequate solution found
e Predetermined number of generations reached, or
e Convergence of solutions / lack of appreciable improvement

For our purposes we decided to use a termination criterigedan the number
of generations. We could not easily determine a minimum aaxsolution, as a
specific rate of tournament wins could be high against on@wogpt and low against
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the others. Also we did not wish to rely on convergence to edbe cessation of
the genetic algorithm. Through the combination of opesatimd parameterization
discussed we were able to construct an algorithm which vilasagtable of exploring
the strategy space after many generations.

The actual termination criterion of 50 generations usechafollowing experi-
ments was chosen after several preliminary studies werertaien. After this amount
of time the rate of discovery of new global best solutions ¢paderally slowed. Rather
than continue an experiment for longer, the machine cowd tie made available for
anew run.

6.2 Evolutionary Algorithm Results

Given the set up and parameterization described above, wihree EAs. The code
which implemented the EA was a modification of a program dgedl by Graham

Ritchie, a fellow research student at the University of Bdngh. This was then linked
to the Texas hold’em architecture previously used in Chagte The evolutionary

experiments were designed with an identical foundatiorhtsé of the exhaustive
simulations in all poker-related settings. The tournanstnicture, opponents, and
seating arrangements were all as previously described.

The fitness of each candidate was calculated as the scor@@tournaments. All
the chromosomes from every generation and their assodiaieds evaluations were
saved for analysis. From these figures we were able to ascémtehighest and average
fitnesses per generation achieved within each run. By maintahigh waterlines on
the iteration best fitnesses, we were also able to keep tfaitle ancremental global
best solutions. Upon termination of the algorithm this is ttandidate which best
optimizes our problem.

The average population fitness per generation, and theneeral global best so-
lutions are shown for the evolutions against Sklansky B&tansky Improved, and
Kill Phil Rookie opposition in Figures 6.1(a), 6.1(b), and @) respectively.

The general shape of all three plots show similar trends.stéming points of the
average fitness lines (i.e. the intersections with the atdiaxes) give a measure of
how well a random counter-strategy performs in our expentsel' he random counter-
strategy averages decrease in the order of Sklansky Bademsky Improved, and
Kill Phil Rookie opposition. This repeats previous statetseabout the comparative
complexity of the adversaries.
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Figure 6.1: Evolutions using knowledge from all four game factors against the three

static opponents. Global best and average fithesses per generation are shown with

corresponding 95% confidence intervals.
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It is perhaps surprising that the average fitness of randamteo strategies against
Sklansky Basic players is able to score almost 17% (33 ou00j.2Considering that
ten players compete in each tournament a score of over 10%sshdetter perfor-
mance than a naive average. This demonstrates that aganspace of all possible
all in or fold strategies within our framework, the SklandRgsic one is relatively
weak. The similar intersections against the other two opptsare both below 10%,
although only just so in the case of the Sklansky Improvedappts.

Observing the average population fithesses given by theeddistes we see that all
are quick to increase in the first ten generations of the éeoluThis is because in the
early phase of our evolutionary algorithm the randomly gresil alleles get replaced
with those from evolved solutions. In these formative gatiens the rate of finding
new global best counter-strategies is at its fastest. Thesdts are in keeping with
generally observed trends in the use of EAs.

Improvement in the global best solution against Sklansksi®apponents notice-
ably levels off by generation 25. The evolutions againstaner two opponents were
still finding new global bests approximately every five gatiens when the runs were
terminated. The difference between the global best ancgeerounter-strategies de-
creases as an evolutionary run nears convergence. In teeotd&§ll Phil Rookie
opponents in particular it is clear that this stage was rexthred. Therefore it is likely
that even stronger counter-strategies would have beervarem had the number of
generations been increased.

The most remarkable aspect of these graphs is in obsenenguimber of tourna-
ment wins achieved by the best found counter-strategietheftermination of the run,
the best solution against Sklansky Basic had won 178 out@f@@rnaments, a rate of
almost 90%. This figure is a marked improvement on the conpp@@d 2 tournament
wins out of 1,000 gained using hand strength alone shownqusly in Figure 4.1.
The evolutions against Sklansky Improved and Kill Phil Rieodpposition also show
marked improvements, with both more than tripling the toprisgy counter-strategy
found based on hand strength alone.
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6.3 Statistical Analysis of the Evolutionary Algorithm

Results

From the output generated by the three EA runs we observelibdiest counter-
strategies at termination have scores exceeding thosd fmeriously utilizing only a
single game factor. To rigorously test this presumption mley statistical hypothe-
sis testing.

As in the Chapter 4, we first take the best found counteregras and play them
off in 5,000 tournaments against their respective oppa@ekdain, the reason for this
is that the results gain greater credence over a larger nuohb@urnaments.

The number of tournament wins in these enlarged experinaatshown in Ta-
ble 6.4.

SB S KPR
Score (out of 5,000) 4,340| 1,165| 786

Table 6.4: Tournament wins of best evolved counter-strategies against the three static

opponents.

We now test whether the proportion of tournaments won byetleeslved counter-
strategies, which combine all four game factors, are siediyy larger than the best
of those found using a single factor through exhaustive kitimn. For this we again
compare the percentage of tournaments won, and therefeitdst for the equality
of two proportions is appropriate.

From Table 4.12 we recall that the game factor whose inatusiads to the highest
scores against all three static opponents is the knowletigeeds opponents’ prior
bets. Therefore it is the proportion of tournament wins gsthcases that we use in the
tests.

The proportions we compare in the statistical tests are stiomeach opponent in
the columns of Table 6.5. We reiterate that all figures areutaed from a population
of 5,000 samples.

Formally, our null hypotheses are that the proportion ofiament wins using all
four game factors (evolution bests) are the same as thogevadiusing only prior bet
knowledge (simulation bests), against the respective g@mus.

The resulting p-values given in Table 6.6 reveal that all nggbotheses are rejected
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SB S KPR
Evolution Best Percentage 86.8% | 23.3% | 15.7%
Simulation Best Percentager1.2%| 21.9%| 11.9%

Table 6.5: Highest proportion of tournament wins found by EA and exhaustive simula-

tion experiments against the three static opponents.

at the 95% confidence level. Indeed with the Sklansky Basit kit Phil Rookie
opponents we have a far greater level of confidence from #ig.te

SB Sl KPR
< 0.00001| < 0.05| < 0.00001

Table 6.6: P-values from the equality of proportions tests using the values in Table 6.5.

From this we conclude that the incorporation of knowledgenfrall four factors
has produced counter-strategies with a significantly highe rate compared to those
utilizing only a single factor. This result is important rastly because it demonstrates
that the amalgamated knowledge produces stronger cosinéegies, but also that
these counter-strategies implicitly manage to resolvdlicting signals from the in-
dividual factors. This is one of several topics we invesedarther in the following
chapter.

6.4 Conclusions

In this chapter we have sought to discover strong playetsatfeaable to incorporate
knowledge of seating position, opponents’ prior bets,iaorent level, and stack size
in unison. Having previously highlighted the deficienciegxpanding the exhaustive
simulation approach we applied the evolutionary comportatnethodology explained
in Chapter 5 to our pre-flop no-limit Texas hold’em tournatarmain.

It should be understood that the evaluation of a singleesiyatakes exactly the
same amount of time within the evolutionary and exhaustimekation settings. Whereas
the exhaustive simulations simply cycle through every jbsstrategy by enumera-
tion, the EA is able to sample the space more intelligentlipdsing its search on prior
evaluations. As the strategy space grows so do the benefisrig the evolutionary
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approach.

We looked at the representation of strategies within ouméwaork, and noted their
similarity to the chromosomes employed within a genetioatgm. Following the EA
methodology we discussed the necessary decisions withinitialization and param-
eterization of the algorithm. Specifically, we selected pprapriate fitness function,
selection method, crossover and mutation operators.

We then ran three EAs, one for each static opponent. On miptiie output from
the evolutionary runs we saw how this technique is able tdicoally find stronger
solutions by guiding the search into more promising aredBefitness landscape.

The results were analysed by using an appropriate stalistypothesis test. The
evolved counter-strategies, which incorporated knowdefdgm all four game factors,
were shown to win a larger number of tournaments than thosehwtiilized only a
single piece of game-related information. From this we aohed that the counter-
strategies incorporating all four game factors achievealigph use of the EA were the
strongest yet found, and that they implicitly manage tolkesconflicting signals from
each of the individual factors.

One of the benefits of utilizing evolutionary computationtisnables us to store
information relating to the candidates in each generatidms can then be analysed
to help understand what drives the search towards the b&sd folutions. In the fol-
lowing chapter we undertake such studies, and compare alimdi® and the resulting
strategies to the non-academic poker literature.



Chapter 7

Additional Analysis and Interpretation

of Results

We observed at the end of the last chapter that the evolveud@estrategies are sig-
nificantly stronger than those found through exhaustivelktion. The amalgamation
of all four game-related factors produces better pre-floga3ehold’em tournament
players than those discovered utilizing only a single facto

In this chapter we seek to understand in what ways the formprave upon the
latter, as we interpret the solutions in the context of paketegy. We firstly compare
the evolved counter-strategies against those from theustira simulations, and then
to professionals’ advice taken from the non-academic plitesature.

Using data from the evolutionary runs we examine converga@mthe populations
and assess the relative importance of the candidates’ gepesducing high scores.

The chapter concludes by questioning the necessity for histogated technique
to discover strong solutions, and asks whether a simpleorargkarch would suffice.
The results from the random search are then used to confirpreuious findings on
the relative importance of betting actions in one particgme scenario.

7.1 Recap and Comparison of the Evolutionary Algo-

rithm and Exhaustive Simulation Results

In this section we reflect on the findings of Chapters 4 and &tliFiwe recap the ex-
haustive simulation results. We saw in Table 4.10 that timells&rength only threshold
leading to the best scores against all three static oppsmext four. After introducing

103
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knowledge in the form of a binary variable we noted in all tharfcases that the two
new best thresholds diverge away from this value. Therafare take the threshold

level for hand strength only as a reference point, we can dastiver the new best
found counter-strategies play looser or tighter (i.e. norewer hand groups) depen-
dent upon the state of the binary variables. This infornmagshown in Table 7.1.

w
w
n
Py

Scenario K

Early position

Late position

No prior bet
Prior bet

Level< 6
Level > 6
M<5
M>5
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Table 7.1: The effect of the extra game information on the looseness or tightness of the
best found counter-strategies against each static opponent compared to the number of
hand groups played based on hand strength alone. “1” represents more groups, and

“|" fewer groups.

There are very clear trends in these results across all @npenThe best scores
are achieved by playing looser when in early position, whwmg has been no prior
bet, in a late tournament level and when small stacked. itigagly beneficial to play
tighter in the complementary scenarios.

An interesting conundrum arises if we try to use the infororafrom this table
in the play of a hand when we can observe all four binary stdtes clear that the
respective arrows will align in only two of the sixteen pddsiscenarios: either when
all signal to play looser or all signal to play tighter thae thand strength alone value.
In the other fourteen cases at least one of the factors vallide a conflicting signal
to the others.

As an example, suppose we are in a situation with a large &gekn the tourna-
ment. In isolation, the first of these two factors suggestgip a low number of hand
groups, whereas the second recommends playing a largeranuifdomake a betting
decision which combines these two pieces of informatiomiireg a resolution to this
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incongruence.

The large scores of the best counter-strategies found ipt€hé& show that the
evolutionary algorithm mechanism is implicitly able to e such conflicts. In an
attempt to understand how this happens, we first investigatesimilar the evolved
counter-strategies are to those found by exhaustive stionla

For this analysis we first expand each best found countatesty from the exhaus-
tive simulations to a chromosomal representation, in a mapreviously explained
in Section 6.2.2. We then treat these solutions and those tine EAs as points in a
multidimensional space. To measure the “closeness” of thé&st to each of the
simulation bests, we take the Manhattan distance betwednper of points. This
metric totals the absolute difference between each of theegjponding pairs of co-
ordinates. The solutions that are closest together will bstraimilar in this sense.
If it is the case that stack size, for example, dominates therdhree factors against
all opponents then we might expect to consistently obsemweamity between the
evolved counter-strategies and those utilizing chip arhodarmation.

The highest scoring chromosomes and their associated Kanhdistances are
shown in Tables 7.2(a), 7.2(b), and 7.2(c).

The results in these tables are interesting for their digsiity. The best evolved
solutions have varying comparabilities with the exhassiimulation bests. With the
Sklansky Basic opponents, for example, we find that the edbtounter-strategy most
closely resembles that found using knowledge of the oppshenor bets. Contrarily,
with the Kill Phil Rookie counter-strategies it is the playeunded on tournament
level knowledge that is closest to its evolved counterpart.

There is no discernible pattern to suggest that the besvedaounter-strategies
most closely resemble those resulting from the use of ontcphkar factor. Nor is
there an individual factor which is consistently distaminfrthe best evolved counter-
strategies. So although we noted consistently in Tablesahtl 4.12 that knowledge
of prior actions and seating position led to the greatestieast improvements respec-
tively for a single additional factor, when we allow the tp#iyer access to all four
factors the significance of each one gets weighted accotditige opponent.

We can gain a greater understanding of the play of each ofwbleesl counter-
strategies by calculating the mean hand group over allst#téhe four binary vari-
ables. For example, to find the mean hand group played in saaing position (i.e.

1There were actually three slightly different counter4stigges which all achieved the same high
score against Sklansky Basic opponents. We have used thef fin@se discovered in the analysis.
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Table 7.2: Manhattan distances of evolved (EA) bests from exhaustive simulation bests
(hand and position (P), opponents’ prior bet (B), tournament level (L), stack size (S))

against the three static opponents.

(a) Sklansky Basic

123456 7]8]o]1w0|1mm|12]13]14]15]16]bis

EA| 91012 73|26 |4a]12] 0|35 00| o0] 2] -
P |88 s|8|s|8|s8]2]2 2 | 2 57
B|lo|lo|lo[o|o]o|o|o|[o] o o] o] o] o] 43
L 1| 1fa2f2|1]1]12]12]1| 11212 1] 1]12]|12] 83
s|s5]ols|o|s5]o|[5]o]s5|o0o]5]o0o]5] o] s ]| o]eo

(b) Sklansky Improved
11 | 12 | 13 | 14 | 15 | 16 | Dist
EA| 6 |12|213| 13| 7 | 3| 9|6 | 1| 4| 8| 4|5

2
P 13113 | 13 | 13| 13| 13| 183 | 13| 2 2 2 2 2 2
B 13 13| 13 | 13| 3 3 3 3 |13 | 13 13 13 3 3 3 3 68
L 1
S 2

,_\
N
w
SN
o
o
~
©
©
S

1 11111 1 1|11 (11) 1 1 11 11 11 11 60
12| 2 |12 2 |12 2 |12 | 2 | 12 2 12 2 12 12 2 82

(c) Kill Phil Rookie

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | Dist
EA | 13| 8 | 13| 11| 2 4 4 9 0 3 12 7 9 1 11 0 -
P 1111|1111 (11|12 (11| 11| 1 1 1 1 1 1 71
B 12 {12 |12 | 12| 3 3 3 3 |12 12 12 12 3 3 3 3 61
L 12 | 12| 3 3 (12|12 3 3 12 12 3 3 12 12 59
S 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 75
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when P =0 in the notation of Table 6.1), we average a chromesawer its first eight
alleles.
The mean hand group values calculated in this way are pextaniable 7.3.

Scenario SB | S | KPR
Early position| 6.6 | 8.6 | 8.0
Late position | 4.0 49| 54
No priorbet | 85|7.6| 84
Prior bet 21|59| 50
Level <6 45|50| 5.0
Level > 6 6.1/85| 84
M<5 6.9|6.8| 8.0
M>5 3.8/68| 54

Table 7.3: Average allele values in the best evolved counter-strategies against the three

static opponents.

We can comprehend these figures by taking each factor intisoland looking
at the difference in thresholds with the binary variableither state. In this way we
can make a relative comparison in the style of play dependeon the state of each
individual piece of information.

Note that the players are looser on average in early seatisigign, with no prior
bet, in late levels, and with a small st&ckhese are exactly the same tendencies that
we saw in Table 7.1. Hence, on average, the best evolved eresinategies are also
seen to respond to the state of each individual binary viariabthe same manner as
the exhaustive simulation bests.

We must be careful, however, not to exaggerate the usekibfenean allele val-
ues. Averaging loses the context of how these strategieslfcplay in any one of
the sixteen specific situations. To illustrate, the beshtestrategy found against the
Sklansky Basic opponents plays an average hand group af faeiseating position.
In reality the actual number of hand groups played rangas fione (genes 10, 13,
14, and 15) to all (gene 11), as was shown in Table 7.2(a).

This flexibility to use different threshold values in diféet situations is where

2With the slight exception that the averages are the samengadecimal place, for the Sklansky
Improved counter-strategy with respect to tournamentleve
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the evolved strategies have a clear advantage over theiopsty found counter-
parts. Each evolved player has sixteen degrees of freeddmaasignment of alleles,
whereas the players found by exhaustive simulation onletaw. The improved
strength of the evolved counter-strategies results frag with alleles most appropri-
ate to specific situations against a given opponent able seleeted.

So from the parallel analysis of the best exhaustive sinara@nd evolved counter-
strategies we have shown that there is a consistency in thgvesnumber of hand
groups played dependent upon the state of each binary larisife have seen that,
all other things being equal, the best solutions in bottreswif experiments play more
hands in early position, when there has been no prior betJateaournament level,
and when small stacked.

The results from the “distance” analysis also show that tieéuéionary algorithm
is able to find those solutions which best weight the impaeaof each game-related
factor dependent upon the particular opponent. This iseeadaptability leads to
higher scoring players.

7.2 Comparison of the Evolutionary Results to Experts’

Tournament Strategy Suggestions

In our discussion of the strategic factors cited by pokefgssionals in Sections 2.7
and 3.2, we encountered several recommendations for ¢@tegcin a no-limit Texas

hold’em tournament. In Sections 4.2.3 to 4.2.6 we noted @wvesults of exhaustive
simulations yielded counter-strategies which agreed thighexperts’ advice for three
of the four factors. We also discussed several reasons whgribmalous factor of
seating position should produce contrary results withinframework. Now that we

have evolved even stronger counter-strategies to the #éfireeor fold opponents, we
examine whether the tactics previously discussed are wdx$@r our evolved players.

7.2.1 Seating Position

During our evaluation in Section 4.2.3 we commented on tlee tfaat our pre-flop
Texas hold’em tournament yields contrary results for playgilizing seating position
alone to those we would expect based on the non-academic pi@kature. Since
these players cannot observe whether an opponent in aergashkition has already
bet, a more conservative strategy is preferable.
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Table 7.4 breaks down the best evolved counter-strategiesding to seating posi-
tion. We draw attention to the three columns headed “Difffijath show the difference
between the number of hand groups played in late compareathoposition for each
of the three best evolved counter-strategies.

SB Sl KPR
B|L|S| P=0|P=1]|Diff | P=0| P=1 | Diff | P=0 | P=1 | Diff
0,00 9| 12 3 6 1| -5 13 0| -13
0/0]1 10 0O -10| 12 4| -8 8 3| -5
0/1]0 12| 13 1 13 8| -5 13, 12| -1
011 7 5| -2 13 41 -9 11 7| -4
110|0 3 o -3 7 5| -2 2 7
110|1 2 o -2 3 20 -1 4 -3
111]0 6 0| -6 9 5| -4 4| 11 7
1111 4 2| -2 6| 10 4 9 o -9

Table 7.4: The differences in hand groups played by the best evolved counter-strategies
against each static opponent dependent upon seating position (P), for similar oppo-

nents’ prior bet (B), tournament level (L), and stack size (S) factors.

The predominance of negative values reaffirms that, tylyid@wer hand groups
are played by the best evolved counter-strategies in ad#terthan early position.

It is possible for the difference values to take integer galfrom the interval
[—13,...,13. If the values observed occurred with uniform probabiltg would ex-
pect to see 13/ 27 = 48.1% of negative sign. Here we have 20 /8343%6.

Using theZ-test for a proportion (binomial distribution) [69] prewusly explained
in Section 3.4.6 we can assess the null hypothesis that thergage of negative values
observed is equal to the naive expectation given above.

The test statistic is calculated to be 3.25, which is higidnidicant. Therefore we
reject the null hypothesis that the preponderance of negetiues occurred by chance
alone. There is sufficient evidence to suggest that the edgilayers are tighter in late
than in early position.
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7.2.2 Opponents’ Prior Actions

In the same manner as above we can tabulate the alleles ofiréw lhest evolved
counter-strategies to highlight the differences in thigiyplependent upon the presence
or otherwise of a prior bet. Table 7.5 shows this informafmmdentical states of the
other three factors.

SB Sl KPR
P|L|S| B=0|B=1| Diff | B=0 | B=1 | Diff | B=0 | B=1 | Diff
0/0]0 9 3| -6 6 7 1 13 2 -11
0,01 10 2| -8 12 3| -9 8 41 -4
0/1|0 12 6| -6 13 9| -4 13 41 -9
011 7 4| -3 13 6| -7 11 9 -2
1100 12 0| -12 1 5 4 0 9 9
1101 0 0 0 4 2| -2 3 1| -2
1110 13 0| -13 8 5| -3 12| 11| -1
1111 5 2| -3 41 10 6 7 o -7

Table 7.5: The differences in hand groups played by the best evolved counter-strategies
against each static opponent dependent upon opponents’ prior bet (B), for similar seat-

ing position (P), tournament level (L) and stack size (S) factors.

It is again clear by observation that all three countertstiias are tighter when
there has been a prior bet: 19 of the 24 values are negativesdrne hypothesis test
as used above yields a test statistic of 2.84 for this prapurihe increased tightness
after a bet is statistically significant, and is in keepinghvthe poker professionals’
advice.

7.2.3 Tournament Level

In the Section 7.1 we commented on the fact that the averagedraup played by the
best evolved counter-strategies in the late tournamealdés greater than of the early
levels against all three static opponents. This was in keepith the best counter-
strategies found in Section 4.2.5 for players utilizingrtmment level knowledge in
conjunction with hand strength.

The looseness of a player is a measure of how many hands hepiared to play,
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whilst aggression measures the frequency of bets as oppmsatis. Within our all in
or fold framework these two metrics can be treated as onelansiame, since the call
betting option is redundant.

We can evaluate the looseness/aggression in the evolvedecesirategies with
respect to the stage of a tournament by noting the differbat@een the hand groups
played in early and late levels. Table 7.6 orders the allgi¢ise best evolved counter-
strategies against each opponent. The differences in theeuof hand groups played
dependent upon tournament level are shown in the columrmede®iff”.

SB Sl KPR
P|B|S|L=0|L=1|Diff || L=0| L=1| Diff | L=0 | L=1 | Diff
0,00 9| 12 3 6| 13 7 13| 13 0
0,01 10 7| -3 12| 13 1 8| 11 3
0/1]0 3 7 9 2 2 2
011 2 3 6 3 4 9 5
1/0]0 12| 13 1 1 8 7 o 12| 12
110|1 5 4 4 0 3 7
1110 0 5 5 0 9| 11 2
1111 2 2| 10 8 1 o -1

Table 7.6: The differences in hand groups played by the best evolved counter-strategies
against each static opponent dependent upon tournament level (L), for similar seating

position (P), opponents’ prior bet (B), and stack size (S) factors.

We again employ th&-test for a proportion (binomial distribution), but thisne
to test the presence of the high percentage of positive salliaree quarters of the
difference values are positive, and this figure is staafificsignificant at the 1% level.
The evidence clearly suggests that the evolved playersare aggressive at the end of
atournament than at the start, in keeping with the advideambn-academic literature.

7.2.4 Stack Size

The three highest scoring counter-strategies utiliziaglssize information found us-
ing exhaustive simulations each showed a tendency to plag mends with a small
stack than a large one. This observation was virtually reggeahen we calculated the
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average hand groups played by the corresponding best eMobumter-strategies; one
of the three cases showed equality.

Using the same method to those undertaken above, Table Gws ghe pairwise
difference in the best evolved counter-strategies betwieese hand groups played
with a small stack and a large one for otherwise identicabsions.

SB Sl KPR
P|B|L || S=0| S=1 | Diff | S=0 | S=1 | Diff || S=0 | S=1 | Diff
000 9| 10 1 6| 12 6| 13 8| -5
00| 1) 12 7| -5 13| 13 of 13| 11| -2
0/1|0 2| -1 7 3| -4 4
011 6 4 -2 9 6| -3 9
110, 0| 12 0| -12 1 4 3 0 3 3
101 13 5| -8 8 4| -4 12 7| -5
110 0 0 5 2| -3 9 1| -8
1111 0 2 2 5| 10 5| 11 0 -11

Table 7.7: The differences in hand groups played by the best evolved counter-strategies
against each static opponent dependent upon stack size (S), for similar seating position

(P), opponents’ prior bet (B), and tournament level (L) factors.

There is a slight majority of negative values in the differercolumns, but the
results are certainly not as conclusive as those shown éoottier factors above. The
proportion of negative values - 14 out of 24 - is not statahjcsignificant. Therefore
it appears that any strategic difference in the number ofllggoups played based on
stack size is less important in our experiments than thaséqarsly discussed.

7.2.5 The Gap Concept

As noted in Section 3.2.3, the Gap Concept states that thegitr of hand needed to
open a pot is less than that required in an otherwise idérsiteation if an opponent
has already bet. The “gap” between the strength of the twdsisralso said to increase
as a tournament progresses.

We can look for the presence of the Gap Concept in the stestagfithe three
evolved players by comparing the number of hand groups gldgpendent upon both
the opponents’ prior actions and tournament level. If wegara situations of identical
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seating position and stack size factors we would expect #ye Goncept to dictate
firstly that fewer hands are played after a prior bet thanarad,also that this difference
in the number of hand groups played with or without a prioribédrger in late levels
compared to early ones.

The results on the effect of a prior bet seen previously stawthe first of these
two conditions is met. Table 7.8 tabulates the alleles ofltést evolved counter-
strategies to assess whether the size of the gap increabe®winament progression.

SB S| KPR
L=0|L=1|L=0|L=1|L=0|L=1

P=0, S=0

B=0 9| 12| 6| 13| 13| 13

B=1 3| 6| 7| 9f 2| 4

Diff 6| 6| 1| -4|| -11| -9

P=0, S=1

B=0 10| 7| 12| 13| 8| 11

B=1 2| 4| 3| 6| 4| o

Diff 8| 3| 9| 7| -4| -2

P=1, S=0

B=0 12| 13| 1| 8| of 12

B=1 o] of 5| 5| 9f 11

Diff 12| 13| 4| 3| 9] -1

P=1, S=1

B=0 o| 5| 4| 4| 3| 7

B=1 o| 2| 2| 10| 1

Diff o| -3|| -2 6| -2| -7

Table 7.8: Seeking the presence of the Gap Concept. The differences in hand groups
played by the best evolved counter-strategies against each static opponent dependent
upon opponents’ prior bet (B) and tournament level (L), for similar seating position (P),

and stack size (S) factors.

The rows headed “Diff” show the same values previously sedmd prior bet anal-
ysis. To investigate whether the gap widens between eadyade levels we compare
the difference values between early (L=0) and late (L=1¢l&vfor each otherwise
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identical situation.

Of the twelve pairs of values the gap grows in six cases, wnilve it contracts.
Therefore from these results we find no significant evidemteeogpresence of the Gap
Concept in its entirety. Whilst we do observe fewer handadpplayed after a bet, our
results do not validate the assertion that the gap wideasilatournaments.

7.3 Convergence in the Evolutionary Algorithms

In the foregoing discussion on the make-up of the three lvedted counter-strategies
we have looked at general strategic considerations raggtide four factors employed.
We now seek to understand whether a player’s actions inrdiffesituations have the
same consequence on their performance. We first investigatby analysing gener-
ational data from the evolutionary runs.

The initialization and parameterization of the EA desalibeChapter 6 is in part
designed to maintain diversity in the gene pool. The diwgsould at least be con-
tinued for a number of generations sufficient to find suitaoleitions. It is the nature
of EAs, though, to assign a higher probability of survivatiie strongest candidates.
Over time the genes from these individuals will start to swahe population, to such
an extent that all candidate solutions start to resembleamo¢gher. This process is
known as convergence.

We are able to examine convergence within our evolutionang isince we have
stored information on the individuals in each generatidmsTs one of the benefits of
using EAs as problem solvers. Not only can we find a solutiohwe can also gain
an insight into how it is derived.

Here we wish to observe whether the rate of convergence ilsimeross all genes,
or whether some are more inclined to home in on specific allelere rapidly. Since
the algorithm is designed to promote strong solutions weicsan that genes with a
large convergence measure are in some way important cotargto the high scores
achieved.

To analyse the convergence we retrieve the population data éach run’s final
generatioA. From these we calculate the standard deviation of theeallleach gene.
A low standard deviation reflects a large degree of convegeand vice versa.

3Analysis not presented here was performed which showedssigégrees of convergence within
each population from around generation 20 onwards.
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Table 7.9 gives the standard deviations of allele value enltst found counter-
strategies to the three static opponents at generation 50.
(a)
1 2 3 4 5 6 7 8
SB 8.6 | 88 |109| 7.0|20|24|55]|39
S 57]11.1|11.8|12.1|/6.6/29|8.1|6.5
KPR |11.1| 7.1 |11.7]10.6|1.7|4.1|3.6|9.2
(b)
9 10| 11 | 12|13 | 14 | 15 16
SB |115/1.3|122(44/08|0.3| 1.8 | 2.3
S 39132 81(44|35|16] 5.2 |10.1
KPR| 1.2 |27|104|7.1/8.8|0.8|10.9| 0.9

Table 7.9: Standard deviation of alleles in the EA final populations against the three

static opponents.

Before commenting on these results we must remember thattiong from the
previous generation can potentially skew some of the vataksilated. Certain allele
values exist within the population not because they hava fmend to be strong, but
simply through the chance effect of mutation. However, wausthalso remember that
that the average population fitnesses are relatively higgdmeration 50, in spite of
any such effects.

From the table it is evident that certain genes exhibit coyeece to a greater
extent than others. So in the case of Sklansky Basic opposior example, we find
that gene 10 shows a higher degree of convergence than itsdirata neighbours. Itis
also clear that some genes have converged at differenta@atess the three opponents.
Interestingly, though, gene 14 shows a large amount of egenee across all three
opponents.

7.4 The Relative Importance of Genes

Of all the sixteen possible genes, that numbered 14 has astemity low standard
deviation of allele value in the final populations of all threvolutionary runs. With
reference to Table 6.1, the scenario which this gene repiegegiven in Table 7.10,
along with the corresponding alleles in the best evolvechtmtstrategies.
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Gene | Convergence | P B L S SB | SI | KPR
14 High Late | Bet | Early | Large| O 2 1

Table 7.10: The counter-strategies represented by gene 14, dependent upon seating
position (P), opponents’ prior bets (B), tournament level (L), and stack size (S). The
three right hand columns show the alleles for each best evolved counter-strategies to

the three static opponents.

This table shows that in a late seating position, after ar f&t, early in a tourna-
ment, and with a large stack, the evolutionary runs haveedmn playing a very low
number of hand groups.

To assess the contribution of this and the other genes omt@gyrs resulting fit-
ness, we perform a random search. This employs a unifornrorargampling from
the [0, 14) range for each allele within a chromosome. We employ thisoeesince
it covers a wider range of the search space than the direetedhsof our EA. Taking
individuals from all points within the space avoids biasihg sampling.

The random search samples 1,000 individuals and evaluatésoser 200 tourna-
ments. Before continuing with the gene analysis, we firsésssvhether the random
search finds solutions as comparably strong as the EA. Thigeiesting as, if it does,
it undermines the necessity for a sophisticated search.rdriom search compares
with the EA of the previous chapter in the number of individusampled. An EA
utilizing 20 individuals over 50 generations also sampl@9Q candidate solutiofis

After the 1,000 samples are evaluated, the best countdegtes discovered for
each of the three opponents are played off over 5,000 towgntator statistical testing.
The proportion of tournaments won are shown in Table 7.1Lc&mparison purposes
this table also includes the win proportions previouslyspraed in Table 6.5 for the
corresponding best counter-strategies found throughubleiteonary method.

Note that in all cases the evolved counter-strategies schigher proportion of
tournament wins than their random search counterparts.rébult emphasizes the dif-
ficulty in locating strong solutions within the fitness landge without using a guided
search, and stresses the successful realization of tkibyasvolutionary means.

To give statistical significance to the above results we he&test for the com-

“However, it should be noted that not all of these samples aigua. Elitism means that two
individuals pass through successive generations undltekéso, it is possible through the effects of
crossover and mutation for an offspring solution to exattch a previously sampled individual.
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SB Sl KPR
Random Search 73.6%| 11.9%| 6.3%
Evolution 86.8%| 23.3%| 15.7%

Table 7.11: Highest proportion of tournament wins found by random search and evolu-

tionary experiments against the three static opponents.

parison of proportions explained previously. Here we camaplae percentage of tour-
naments won by the best counter-strategies found througlora search to those pro-
duced by the EA. The calculated p-values are given in Talil2.7.

SB Sl KPR
Random vs Evolutionary < 0.0001| < 0.0001| < 0.0001

Table 7.12: P-values for the proportion comparison test between the best solutions

found through random search and those of the EA against the three static opponents.

Given these values we reject the null hypotheses that tradorarsearch players
score the same proportion of tournament wins as the evolwes.drhe EA proves to
be superior to a purely random search in discovering stiqpiggers.

Returning to the assessment of the importance of genes, wesmthe 1,000 ran-
domly selected candidates per opponent and their assdiitesses. We calculate
the mean fitness for the strategies conditioned on everylpesslele. Hence we av-
erage over all individuals with allebein geney, withx € {0,1,...13} ,y € {1,2,...16}.
The resulting plots for each of the three static opponertsiaown in Figure 7.1.

The trends within each graph are striking. In all three casesote that the average
fithesses of the random candidates are highly conditionaih tipe allele at gene 14.
Against all opponents a low allele produces high averaged#es, whilst a high allele
results in low average fitnesses. It is also interesting te tiwat the three plots are
otherwise relatively flat for all other alleles of all othearges.

This shows that a strategy’s play in late position, afteriargoet, in an early tour-
nament level, and with a large stack, has a profound effets@xpected performance.
Playing a very tight game in such a situation is rewarded beatgr expected number
of tournament wins, whilst being too loose has the opposiéete This tactic is very
simple to understand. When the prize money is far away anayephas a sufficiently
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Average Tournament Wins (out of 200)

Allele

Gene

(a) Sklansky Basic

Average Tournament Wins (out of 200)

Allele

Gene

(b) Sklansky Improved

Average Tournament Wins (out of 200)

Allele

Gene

(c) Kill Phil Rookie

Figure 7.1: Average number of tournament wins by the randomly sampled counter-

strategies, conditioned on each gene’s allele.
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large stack, there is no benefit to risking tournament elatiam by betting after an
opponent has entered the pot. As Ciaffone [31] puts it:

The fold is an important weapon; don’t be afraid to use it.

As the preceding convergence analysis shows, the EA clparkg up on the im-
portance of this situation. By ensuring that strategieiwithe population cluster
around low values in gene 14, exploration can continue onftier alleles towards the
goal of finding the global maximum.

7.5 Conclusions

In this chapter we have given further thought to the best ttstrategies found by
the exhaustive simulation and evolutionary experiments h@ale shown that there are
common trends in the play of the best solutions dependemt tiygostates of the binary
variables incorporating game-related information.

Through an analysis of the difference between the two setswofter-strategies, we
showed that there is no discernible “closeness” betweeawbked counter-strategies
and those of based on one particular game factor. Diffemartics succeed against
different opponents.

We returned to the poker professionals’ recommendationsofeornament poker
strategy, and noted that the four factors have identicalif@stations in the evolved
players as we saw in those discovered by exhaustive sirootatiWe also observed
that the effects of stack size were less pronounced, andh@&ap Concept was not
totally discernible.

Convergence within the evolutionary runs was used to inyat& whether the al-
leles on some genes are of greater importance than othersb¥eeved that gene 14
in particular undergoes a high degree of convergence aalid$see static opponents,
and that this gene has a major effect on the number of tounnsmeon within our
framework. As part of this evaluation we noted that the ceustrategies found by
our EA are statistically stronger than those found usingralguandom search.
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Further Work

The preceding results and analysis validate the use of &woary algorithms for re-
search into tournament poker strategies. Given that oastigations have been suc-
cessful a plethora of potential extensions - both within emtéhe framework - are
apparent. In this chapter we discuss the range of posmbititat this thesis opens up
to future researchers.

8.1 Extending and Enhancing the Available Knowledge

We have seen that the inclusion of game-related informatiaime form of binary
variables leads to tournament poker players which haveryettrformance than those
based on hand strength knowledge alone. The extra gamedastployed have all
had a statistically significant effect on the number of winkiaved, even though the
resolution on the information contained was extremely lovereasing the definition
in this information is the simplest enhancement to the worttantaken.

Recall that with all of the four factors investigated, a @gy betting can only be
influenced by knowing whether each piece of information isne of two states. We
saw that the categorization of knowledge is limited to tH®feing cases:

e Seating position: The player is in an early/late positiothwespect to the dealer.

e Opponents’ prior actions: There are no bets/at least onprlmetto the player's
action

e Tournament level: The decision is made early/late in a tenent

e Chip stack amount: The player has few/many chips

120
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All of these criteria can be further expanded to increasaekelution on the in-
formation available. This augmentation would also proéife the number of possible
strategies available to the player, but we can now vouchhietolutionary approach
in searching the space.

Potential extensions to the information relating to sepposition, tournament
level, and chip stack size are obvious. Both seating posiial the stage of the tourna-
ment could be modelled more accurately than the “early/Etbeme employed here.
To increase the size of the strategy space gradually it niaglip be desirable to move
from a binary to a tertiary variable in these two cases. Syapding a “middle” cat-
egory with the appropriate reclassification is a sensibé $tep. Following on from
this it would be possible to use each individual seatingtpmsand level as separate
states, thus giving our test player full and complete kndgéeof these two factors.

Chip stack amounts could also be reclassified. Again, a rewmable prepara-
tory development would be to use a classification schemeréll§, “medium”, and
“large”. To make the adjustment from the two-state case widcagain take Harring-
ton’sM and use, for example, the gradatiofb< 3,3<M < 7, andM > 7.

Potentially the most interesting extension to the infoioratwvailable to the test
players, though, is in a re-categorization of the opponenisr actions. We have seen
from the previous results that this is the single most imguarfactor to consider, given
that it has the greatest effect on the number of tournamesrs Whe current procedure
Is to act based solely upon whether at least one opponentehas ot prior to our test
player’s action. Refinements to this suggest themselveuirately.

Within our all in or fold Texas hold’em variant it is appareghat a bet by anyone
other than the chip leader puts at risk their tournamentigir\We have seen a ten-
dency, both in the opponents’ strategies and our own, to betyery strong hands
once another has entered the pot. Therefore a player whaféetswo people have
moved all in has an even smaller chance of winning the pot.oNbtis he up against
more than one opponent, he is even more likely to be facingtardeand. The current
framework treats any number of prior bets as similar casesch®me which incorpo-
rates the number of players to have bet into the pot shouleéfibre increase our test
player’s ability to make good decisions.

Another consideration that would benefit our player is tovkrnvehat the size of
any prior bet is. At present our test player only knaiv&n opponent has bet, and
not how much. The extra information is vital for at least tveasons. Firstly, it could
be that knowing how many chips the opponent holds signifiesahge of hands they
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are playing. The experiments incorporating stack size igeee@ counter-strategies
that played a greater range of hands if low on chips. If our péesyer has a mid-

range hand they may not wish to fold if they believe their apgrd only acted due to
imminent elimination. Secondly, the present structuresduas allow our test player to
differentiate between the size of prior bets. This meansaiet of $1 is equivalent to
one of $1,000. Comprehending the bet size as both an absohdent and relative to

one’s own stack would likely be profitable.

The hand group classification used within the experiments degidedly coarse.
We took all 169 possible starting hands and classified therording to a simple
segregation of thirteen hands into thirteen groups. Wectsdethis number of groups
arbitrarily. We could have chosen 169 groups, allocating band to each, but by
choosing a smaller number we essentially blinkered ourgplayo only recognizing
thirteen distinct hands. The benefit of this simplificatierthat it reduces the size of
the strategy space, and it made our investigations moreabiac

Even if we wished to maintain the same number of groups wedctuther im-
prove the ability of test players by a better classificatibthe hands. It is well known
by poker players and theoreticians that there is a wide tigpein the potential prof-
itability of different starting hands. Moreover, some hsuil particular have a much
greater profitability than others. The grouping scheme wesl icompletely ignored
this fact. Referring to Appendix A, we note that each stgrtiand in the Sklansky-
Chubukov rankings has an associated X-value. The highentiue the better the
hand. In our creation of thirteen groups of thirteen we igothe information con-
tained in these figures, and so we have hands of greatly \apywfitability grouped
together.

One way to resolve this issue whilst maintaining the samehbwauirof groups is
to employK-means clustering [18] on the X-values. This algorithmiatly allo-
cates each hand to onelofandom sets, and then iteratively reassigns them such that
the intra-cluster variance is minimized. An implementatod the algorithm was per-
formed usingk = 13, with the results shown in Table 8.1.

The group assignments differ greatly from those of our nelassification given in
Table 4.3. We find that there are a greater number of sma#led groups for the best
hands, and a small number of large groups for those handdamitprofit potential.
The first new group consists solely of a pair of aces, whilstaist, conversely, contains
fifty hands.

The use of a more realistic classification such as that pezgpasuld enable the
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Group Starting Hands #
1 AA 6
2 KK, AKs, QQ 16
3 AKo, JJ, AQs, TT 28
4 AQo, 99, AJs, 88, ATs, AJo, 77 50
5 66, ATo, A9s, 55, A8s, KQs, 44, A90, A7s 58
6 KJs, A5s, A8o, A6s, Ads, 33, KTs, A70, A3s, KQo, AZs,94
A50, A6o
Ado, KJo, QJs, A30, 22, K9s, A20, KTo, QTs 78
K8s, K7s, JTs, K9o, K6s 28

9 QJo, Q9s, K5s, K80, K4s, QTo, K70, K3s 64

10 K2s, Q8s, K60, J9s, K50, Q90, JTo, K40, Q7s, T9s, Q68
K30, J8s, Q5s, K20, Q80

11 Q4s, J9o, Q3s, T8s, J7s, Q70, Q2s, Q60, 98s, Q50, J8o, TIAAN)
J6s, T7s, J5s, Q40

12 J4s, J70, Q30, 97s, T80, J3s, T6s, Q20, J2s, 87s, J60, 286,
T70, 96s, J50, T5s, T4s, 86s, J4o, T60, 970, T3s, 76s,|95s,
J30, T2s, 870, 85s

13 960, T50, J20, 75s, 94s, T4o0, 65s, 860, 93s, 84s, 950, T840
760, 92s, 74s, 54s, T20, 850, 64s, 83s, 940, 750, 82s,| 73s,
930, 650, 53s, 63s, 840, 920, 43s, 740, 72s, 540, 640,|52s,
62s, 830, 42s, 820, 730, 530, 630, 32s, 430, 720, 520,620,

420, 320

Table 8.1: The 13 groups of the 169 possible starting hands after K-means clustering,

and the number of unique starting hands contained within each group (cf. Table 4.3).
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test player to better discriminate between hands. An addeddof theK-means
approach is that the number of groups, and therefore theo$ittee strategy space,
could potentially be reduced. Even in using a slightly seratliumber of groups the
similarity of starting hand potential within each classiviié better than the naive
approach.

Deceptive plays such as bluffing could potentially be ineldidwith an alteration
to the simplistic single threshold value used. A bluff is & Wwé&h a hand that would
not expect to win in a showdown. Therefore within our framewnabluff is a bet with
a hand in a high numbered group.

Since we use only one threshold value to guide our playerdjwige their possible
actions into just two intervals. A player moves all in withnldegroups numbered less
than or equal to the threshold, and folds otherwise. Howewvercould potentially
include a second threshold value greater than thedlvsive whichthe player bets.
Recall from our discussion in Section 2.4 that the game #teooptimal strategy for
the first player in von Neumann'’s poker [120] is to bet withtbbis very besandvery
worst hands. The use of two thresholds would allow for a sinetheme.

An example based solely on hand strength is illustrated lmeTa. 2.

112(3|4|5|6|7|8|9(10/11|12]13
Singlethreshold B | B | B | B|F|F|F|F|F|F|F|F|F
Dual threshold | B | B | B | B

Table 8.2: Incorporating bluffing into strategies by the use of a second threshold. “B”

and “F” refer to all in bets and folds respectively.

The single threshold strategy moves all in with hands in tipefour groups, and
folds otherwise. By incorporating a second threshold thaggr would also be able
to move all in with hands in the bottom two groups. Therefoyeemploying two
threshold values per scenario, we would be able to exammeffiacts of deceptive
play and how its use alters dependent upon game-relatemgact

It should finally be mentioned that the framework we have trocged is also
amenable to the inclusion of additional dimensions. Ond qassibility involves
incorporating opponent modelling into the structure. Awsemple scheme would be
to classify opponents as “loose” or “tight”, depending upmoserved tendencies in
their betting frequencies. Maintaining separate thredhfur the two different classes
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of opponent might further improve tournament performanteis dual state classifi-
cation could be further extended in a manner similar to thieseribed for the other
factors, allowing for better discrimination between thega of possible opponents.

8.2 Competing Against a Range of More Realistic Op-

ponents

The experiments we performed in this body of work employeduse of three fairly
basic strategies taken from the non-academic poker literatAdditionally, we only
examined cases where our test players were seated at tabigsetely comprised of
opponents from one of the three types. The use of a mixtureaiger, more realistic
opposition would benefit the research into finding univdyssttong strategies.

Throughout this research we have shown by experiments oongpyps of increas-
ing complexity that several pieces of game-related infaoionaaffect the counter-
strategies of our test players in exactly the same way. Thatdpending upon the
state of a binary variable we have seen our test players plagspondingly more or
fewer hands, regardless of their opponent. Whilst thisgyive positive results on the
importance and application of the game factors, we havepstbphort of constructing
an all-encompassing tournament poker strategy that warttpete well against any
style or mix of opponents. The reason for this is two-foldis#y, our remit was not
to produce a strong tournament stratpgy se but to identify the elements within one
and compare our findings to the suggestions of poker autBexsondly, we recognize
that a very important element of a complete strategy for pakepponent modelling.
Hence a truly “universal” tournament poker strategy shpaldome level, incorporate
a facet that we have chosen to neglect for reasons previexplgined.

An important extension of this research, therefore, wodddcompete our test
players against mixtures of different opposing styles. Nbat we have validated
some of the elements of a successful tournament pokerggrate could look to forge
strategies that are able to compete well against a multbfid@ponents. This could
start by using the simple addition of a binary variable whialegorizes the style of
one’s opponents as loose or tight as discussed above, theaagiently incorporate
increased resolution with more elaborate statistical nmegslike those employed in
research on ring game poker [39, 65, 116].
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8.3 Changes to the Tournament Structure

Additional experiments could focus on making changes totdlenament structure
employed. The set-up that we chose in our experiments is bm&ny possibilities.
Obvious components to change are the number of entrantsifisaycture, hands per
level, and players per table.

The quest to program a potentially world championship wigrpoker player will
eventually have to tackle the issue of multi-table play. Xplain, a tournament can
potentially have an unlimited number of entrants, with elted at tables of approxi-
mately ten players. As competitors are knocked out, the irengatables are consol-
idated such that empty seats are filled and the total numb@btds in play reduces.
This procedure culminates in a single table. Our experimbate solely focused on
play at the final table.

In all prior stages of a real tournament players may have $e bzeir betting deci-
sions on factors away from their own table. For example, ggplevho has the largest
stack on his table may in fact be small stacked in comparis@il tompetitors. Our
framework could be expanded to include this complete kndgégo develop success-
ful strategies for multi-table play.

Similarly changes to the number of players per table and$padlevel is likely to
have an effect on best play. Experiments could be performdtlistrate the strategic
consequences of a change in either of these tournament cemisokeeping all other
constituents unchanged.

Payoff structure is one aspect of our experimental desigohwis uncommon in
real tournaments. It is far more usual for a ten-player cditipe to use the percentage
payoffs of 50%, 30%, and 20% for the top three finishers. Itldidne an interesting
exercise to examine the effect of a change from our winnerstall approach, and
see how the resulting strategies differ. These experinenikl be easily performed
within our evolutionary framework, with the only change esgary being to the fitness
function.

8.4 Removal of the All In or Fold Betting Restriction

In the attempt to investigate tournament poker stratediat @re able to compete
against humans at the highest level, there are clearly tatorfes of our experimental
investigations that need to be improved. We have alreadged to the necessity for
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opponent modelling. The other discrepancy between ouysisand real poker is our
imposition of the all in or fold betting restriction.

Recall that we introduced the binary betting option to wastiduce the size of
the strategy space. In making the problem of understandimgpament poker strat-
egy more tractable we negated the use of the final three getiimds, and lost the bet
sizing finesse found in the real game. The most challengigmeuatation to our exper-
imental scheme would be to remove this limitation and redetire strategic elements
found in a true Texas hold’em tournament.

Two ramifications of using all in or fold are that we do not haweonsider how
much to bet, nor do we face the three post-flop betting roufid® use of genuine
Texas hold’em in the experiments would require significampEfications to the strat-
egy representations. Not only would our test player haveet@lile to respond to
different sized bet amounts, it would also have to be ablectarekind. Given that
there is a continuum of bet sizes possible in no-limit plag, two-way consideration
and implementation of this factor presents significant [enwis.

A similarly tricky problem arises if we wish to embrace pdisp play. The diffi-
culties arise in several forms. We first have the increasérateg)y space due to the
partial hand effects of community cards. By this we mean Wiatreas in the pre-
flop game there are 1,326 unique hands to consider, the ioolo$ post-flop play
increases this number dramatically. In selecting five cénaiw fifty-two there are a
total of 2,598,960 possible poker hands.

Opponent modelling would become far more awkward with tledusion of mul-
tiple betting rounds. The first issue concerns maintainmg@onent model based on
how they play the individual betting rounds. For this the@mnd probably have to be
separate models for each round and each opponent. In aditibis is the challenge
of linking actions - both for the opponent and oneself - agtbe betting rounds within
a hand. So, for example, when humans play the final bettingdad a poker hand
they are able to use knowledge of the play up to that pointhamdtheir opponent has
played similar situations in the past. Connecting infoioraticross these two bridges
could prove to be particularly troublesome.

8.5 Summary

This chapter has illustrated some of the many possibledwddjuncts to this piece of
research. We have shown that our framework could be extetodedther refine and
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understand the results of the previous chapters. By incrgése number of different
possible states for the game factors we have seen how maiéedettrategies could
be discovered in the enlarged strategy space. We have alstioomed how a reclas-
sification of the hand groups could prove to be beneficial idifig better performing
strategies whilst keeping the size of the search spaceaanst

Following this we remarked upon the possibility of playimgithaments against a
wider range of more complex opponents. This would be necgssdurther confirm
our findings, as it is important to discover whether coueteamples to the recom-
mended strategies can be contrived.

To give the experiments a slightly more realistic edge, weehalked about how
changes in the payoff structure could easily be implemetitemligh an alteration to
the evolutionary algorithm'’s fithess function. We also dissed how the move to-
wards larger tournaments with a greater number of competiemjuires additions to
our framework.

The removal of the all in or fold betting restriction is the shapposite direction for
future researchers aiming to develop an authentic Texakdmltournament program.
We mentioned how the lifting of this limitation would impabt construction of strate-
gies, and it remains an open question whether the framewetkaye fashioned would
be sufficient to handle the consequential explosion in the ef the strategy space.
An EA could be used and would clearly be preferable to an esthaaiapproach, but
run-times on the enlarged problem may still be too prohibitiith current computing
technology.



Chapter 9
Summary and Conclusions

Much investigation into computer games players has beeertaicen, but the tech-
niques which apply to games of perfect information are nptiegble to poker. Mod-
ern efforts have tackled the game with a variety of techrsgbat all have focused on
the ring game format with limit betting. The most commonlay#d poker variant,
Texas hold’em, is the subject of increasing amounts of rekeaut this thesis is the
first study on the game using no-limit betting within a tourant structure.

Many professional poker players have authored books dejdiieir recommenda-
tions for good poker strategy in the non-academic litemathiowever, their assertions
are based primarily on experience and lack a scientific bBgisreating a framework
utilizing a slightly reduced form of Texas hold’em, we haweh able to isolate and
test the most important messages in their writings.

The all in or fold form of Texas hold’em used simplifies thekta$ investigating
different poker strategies. We saw that a program encodéidonie such system fared
relatively well in an organized poker tournament. This and similar all in or fold
strategies were then employed as opponents to test diffetreegies against.

The first suite of experiments sought first to determine hoW svetrategy based
solely on a player’s hand strength fared against the diftespponents. These results
then formed a baseline from which to make comparisons. Weinearporated items
of game-related information into our test player’s knovgediomain. We showed by
exhaustive simulations that utilizing factors relatingseating position, opponents’
prior actions, tournament level, and stack size all had sttally significant effect
on the test player’s strength.

In wishing to combine all four game factors, we highlightée difficulties of
extending the exhaustive simulation approach, and turn&@ad to evolutionary al-
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gorithms. These were seen to have been successfully agpli@chumber of game
players, including some for poker. We also showed that an Baable to find mathe-
matically optimal strategies in a toy poker variant.

Returning to our all in or fold pre-flop Texas hold’em test pe@ discussed the
issues of EA implementation before performing evolutignams on players which
could act based on all four game factors. The resultingesir@as were then shown
to score a significantly larger number of tournament wins thiay previously found,
both confirming that the amalgamation of knowledge is berafic forming stronger
strategies and that an EA is able to resolve conflicts betwestradictory inputs.

In a further analysis of our evolved players we compared gteategies with the
poker professionals’ guidance. We found evidence of thegmee of some of these
effects, but not others. By examining convergence within é¢kolutionary runs we
noted that some genes seemed to converge particularlyya@ide gene in particular
was further noted to have a large effect on the resulting rurabtournament wins.

We concluded our study with a discussion on the ways in wiidhresearch could
be extended by future researchers in the field of computesrp¥e noted that several
augmentations present themselves immediately, and tipplesuentary efforts into
such topics as bluffing could be attempted to advance thik.wor

The challenge of developing a tournament poker program eativided into two
parts. The first task is to gain an understanding of geneuah&ment strategy, whilst
the second is to be able to adapt to specific opponents inmsal t

This research has addressed the first of these issues. Allr@&xperiments have
been performed offline; we have developed players that deetalbcounter partic-
ular opponents after several iterations of simulation. c&ithe solutions found are
opponent-specific, we have been careful to term them “cowttategies” and have
avoided making claims about their potential strength agjadlifferent competitors.
However, we have seen that certain strategic trends, suglayag a wider range of
hands later in a tournament, are common across all advessé8bd whilst we cannot
go as far as to claim that the high-level strategies discliasethe correct way to play
against any opponent, our observation of similar tactiadiley to the highest scores
against three increasingly complex adversaries does lemghito this argument.

Taking this work forward will require further investigatiof the strategic effects
found within tournaments. Knowing exactly when and how tusifor different blind
and payoff structures, chip stack sizes, and opponentgemqllire a large amount of
future effort. Whilst these researches may be undertakémawariety of computa-
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tional intelligence techniques, we have shown that evahatry algorithms can be used
to positive effect in this regard.

This thesis contributes to the growing interest in comppitgker by taking the
first scientific steps towards understanding tournameneipekategy. In so doing
we have been able to empirically validate many of the facttesd by professional
poker players as being important considerations in a pkgercision making. The
stringent use of hypothesis testing for this purpose is hawel its results substantiate
the authors’ claims.

The ultimate test of any poker player - human or computero égiapt to previously
unseen opponents in real time. Once the elements of stromgament strategy have
been refined it is interesting to ponder how these will be doetb with opponent
modelling to create strong players. It can be argued thabfeopponent modelling
is the most difficult problem to overcome in the developmért world championship
winning program. This aspect would be hard enough to impierfee many games,
but the pervasive deception found in poker makes the issrer@ore difficult.

Given the progress made in developing limit ring game Texad'&m computer
programs and opponent modelling by the GAMES Group, it maly lveethat directly
converting their players will be the quickest route to sgsce no-limit tournament
play. Incremental additions and the honing of tournamermteted features in both
general strategy and opponent modelling could well pravephant. This thesis has
been the first attempt to bridge the gap between limit ringeggamd no-limit tourna-
ment play, but we recognize that many further studies areimed to refine the ideas
contained herein.

The day when a computer poker program wins the world chamspiprmay be
some time away, but continued investigations towards tbé gill not only make it
inevitable, but will further our understanding of the moengral topic of reasoning
under conditions of uncertainty.



Appendix A
Texas Hold’em Starting Hands

Given that card ordering is unimportant and that it empltngsstandard 52-card deck
there are

%2C=1,326

unique starting hands for a player in Texas hold’em.

This figure can further be reduced due to the equivalenceitst. o for example,
the handA&8<> has exactly the same value/#8%0. One must take care, however, to
separate suited and offsuit hands. The hati8® should not be treated as commen-
surate with the two aforementioned, since both of its card&the same suit. This
differentiation is important due to the latter hand’s iresedlushrmaking potential. A
flush is a complete poker hand comprising five cards of the Saihe

One way to visualize the number of different starting haratsounting for suit
equivalence, is shown in Table A.1.

Since there are 13 distinct card ranks, there are

132 =169

different starting hands within this matrix. The cells ajdhe top left to bottom right
diagonal represent the paired cards. Without loss of gétyensge can allocate suited
hands to the cells above this line, and offsuit hands to thekmv. Returning to our ex-
ample above, therefore, boft&8<{> andAM8Y occupy the cel(A, 8), whereaA®8Q
occupieg8,A).

The entries within each cell show the number of unique statttiands of a partic-
ular two-card combination, taking account of suit equiaake Starting with the pairs,

132
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3145|6789 T|J|Q|KI A
2 414141414444 )4,4) 4
3|12/ 6 (4|4 |44 4|44 |4 /|4|4]|4
4112|121 6 |4 |4 | 4|4 4|4 |4 /|4]|4]|4
511211212 6 |4 |4 |4 |4 |4 |4 | 4|44
6112112 (12|12| 6 |4 |4 | 4 | 4|4 | 4|4 |4
7112112(12|12|12| 6 | 4 |4 | 4 | 4| 4| 4 |4
8112112 (12|12|12(12| 6 |4 | 4 | 4 | 4| 4 |4
9112112121212 (12|12| 6 | 4 | 4 | 4| 4 |4
T112112112|12|1212(12 12| 6 | 4 | 4| 4 |4
J 121121212 12|121212|12| 6 | 4 | 4 | 4
Ql12|12|12|12|12|12|12|12|12|12| 6 | 4 | 4
Kl|121212|12|12|12|12|12|12|12|12| 6 | 4
All12|12|12|12|12|12|12|12|12|12|12|12| 6

Table A.1: A matrix illustrating the reduction of the 1,326 unique two-card starting hands
in Texas hold’em to 169 different groups. The row and column headers each signify the
rank of a single card. Suited hands are allocated above the top left to bottom right
diagonal, with offsuit hands below. Entries within the matrix show the number of unique

hands within each group.

there aréZ‘C = 6 ways of choosing two cards of the same rank from four suagsnbn-
pair hands there aré 4= 16 combinations, of which 4 are suited and the remaining 12
offsuit.

In total, therefore, there are 78 pairs, 312 suited and 98flibfhands. These
figures sum to 1,326.



Appendix B

Texas Hold’em Example and Five-Card

Hand Rankings

This appendix first details a step-by-step example of thg pfaa hand within a no-
limit Texas hold’em tournament. We then give the five-cardcheankings used in
determining the winner of a showdown.

B.1 Example Hand

This example is included to illustrate the explanation ofakehold’em given in Section
2.2.

Ten players are competing in a single table tournament astdstarted with $1,000
in chips. Our player is labelled “P10”, with her opponentsdided “P1” up to “P9”.
The players’ seating positions and present chip stacks are:

e $1,600 $1,600 e

@ $1,800 $900 Q

The dealer for this hand is Player 1, shown by tlealer buttonon the table in

134
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front of him. The two players to the dealer’s left post the Brobnd (SB) and big
blind (BB) respectively, which for this hand are $50 and $1008us the pot starts at
$150. All players now receive their hole cards. The game stfier the deal is:

First the pre-flop round of betting takes place. Startinghleft of the big blind
with Player 4, the competitors must in turn either call thistaxg bet amount, raise it,
or fold. Player 4 chooses to call the $100 big blind. The neut fplayers fold, and
take no further part in this hand. Player 9 then calls for $H#ving been dealt®7é
our player also calls. The dealer and small blind fold, ardaily blind checks. This he
can do since he has already entered $100 into the pot witlofded bet. Now, since
all active players have paid exactly the same amount intpohethe betting round is
over with the pot standing at $450. The following diagramvehithe hand after the
pre-flop betting rount

= R0 $1,700 $900 e
i,.s*.s 7
X

We show our player’s starting hand face-up for illustragiwgposes. Note that during the actual
game these cards are only visible to her.
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The dealer now deals three cards, known as the flop, face aiphi@tmiddle of the
table. In this game the flop B&609¢. The game state after the flop and before the
next round of betting is shown below.

Play now proceeds with the second round of betting. All glogi-betting rounds
start with the first active player to the left of the dealereTptions available to Player
3 are either to bet, chetkor fold®. He checks, and play passes to Player 4. This player
now has exactly the same options of bet, check or fold. Hest®to bet the relatively
small amount of $200. The next to act, Player 9, must now etk $200, raise, or
fold. He folds. Our player, with the possibility of making esght, calls. Following
this Player 3 folds. Since the active players (Players 4 &)dave now entered the
same amount into the pot, the betting round ends with the gaate shown.

= e $1,700 $900 Q
i,.s*.s
L)
® by

2Essentially a check can be thought of as calling a bet of zeal ipost-flop rounds. Hence it is
only available when there has yet to be a bet.

3Although a permissible action with no prior bet in a givenmdufolding is strictly dominated by
checking. It costs a player nothing to check, and he stiflinstparticipation in the hand.
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The turn card dealt onto the tableTs?. This is a very good card for our player
since it completes the straight. Betting starts with Play&vho checks, then moves on
to Player 10. Our player bets $200, whereupon Player 3 raisather $600 to $800.
To call this raise costs our player $600, which is exactlyatmunt left in her stack
In so doing she declares herself to be all in: all of her chigesr@w in the pot. With
this the betting round is completed.

— e $1,700 $900 Q
Lo s

LY

® by

The hand is not over yet. The dealer now placesttfjeriver card onto the table,
after which there would normally be a final round of bettingerél however, there
is only one active player with chips in his stack. Therefdre final betting round is
foregone and play proceeds directly to the showdown. P$afand 10 now show their
hole cards, and declare their best possible five-card paed bsing any combination
of their own two private cards and the five community cards.

e $1,500 $500 e

$100

= e $1,700 $900 e
i,.s*.s
L)
® by

4Note that had Player 3 raised by a larger amount, Player 10dvsiill be able to call. Theable
stakesule means that Player 10 could call with her final $600 andanoe herself all in. Any excess
above this amount in the raise of Player 3 would immediatelygburned him.
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The best hand our player can make is the straight consistiGg) o8& T 0o,
The opponent uses his hole cards to make the full hOlethT AT OT .

Since a full house ranks higher than a straight, Player 4 andscollects the $2,450
pot. Player 10, on the other hand, no longer possess any ahipis eliminated from
the tournament in 10 place.

B.2 Five-Card Poker Hand Rankings

Cards rank from ace high down to two, with no discriminatietvieen different suits.
The winner of a Texas hold’em showdown is determined by eefeg to a complete
ranking of all possible five-card poker hands, given in Téble This table also details
how ties within a hand ranking are broken.

Note that although the ranking constituent of some hands less than all five
cards (for example, three of a kind), the seemingly extrasaexards are required in
case of ties.

SEither available ten could be used to produce an equallyethknd.



=

=]

Hand Description Example Tiebreaker

Straight flush Five consecutive cards of the same suit ANSACATASH The holder of the highest ranked card within their straigimtilwins. Two similar straight flushes g
different suits split the pot.

Four ofakind | Four equally ranked cards 303&303MQ0 | The highest ranked four-card set wins.

Full house Three cards of one rank and two of anothef 20282 7&7& The highest ranked three-card set wins.

Flush Five cards of the same suit KOIH8HAH2H The holder of the highest ranked card within their flush wifishese are identical it is decided upg
the second highest, and so on. Identical flushes of diffeneits split the pot.

Straight Five consecutively ranked cards 8G90 TMIRQY | The holder of the highest ranked card within their straighitsw Two similar straights split the pot.

Three of akind | Three equally ranked cards JOIRIMAD3S The highest ranked three-card set wins.

Two pairs Two cards of one rank and two of another | QUVQ&4<>4&%64 | The highest ranked pair wins. If these are identical, the highest ranked pair wins. If these are the
same, the fifth cards are compared to determine the winnall. ddmparisons are equivalent, the ppt
is split.

Pair Two cards of equal rank K&KOAVQV3( | The highest ranked pair wins. If identical, the highest exhkon-paired cards are compared, the the
next highest, and so on.

High card None of the above ANTAB)O7&4% | The highest ranked cards are compared, then the next higimekso on.

in order of decreasing strength.

Table B.1: The ranking of all five-card poker hands, plus the rules by which ties between hands of similar rank are broken. The hands are listed

sbupjuey pueH pieDd-anld pue ajdwex3 wa,pjoH Sexa] ‘g xipuaddy

6€T



Appendix C
Sklansky-Chubukov Hand Rankings

In 2005 a problem appeared on the forums of Two Plus Two phiblis[96] which
sought to value the worth of every possible starting handchafollowing scenario.
Suppose that there are two players in a no-limit Texas holdjame, with blinds of $1
and $2. The small blind accidentally flips over his cards st liis opponent in the big
blind sees them. The small blind decides that he will eitleealgjin or fold his hand.
If the small blind has $X in his stack after posting the dobiind, for what values of
X is it better to go all in than fold with? The problem assuntes the big blind has an
infinite stack, and that he will call an all in bet if he has aipwes expectation on the
hand.

To calculate the values of X for each starting hand it is nesgsto enumerate
over all the big blind’s possible holdings. With two cards@ented for and ignoring
suit similarities there are 1225 combinations of two cardeifthe remaining fifty. In
deciding whether to call the opponent weighs his expectatiothe hand versus the
odds that he is getting from the pot. For example, if the siblaid bets $6 then the
big blind is getting odds of 3-to-2 on a call. This is becausestands to win $9 for
a bet of $6. If the probability of winning the hand is greateart the 40% implied by
these oddshe should call.

There are four possible scenarios which can occur in deténgnihe winner for
this problem:

e Small blind bets and big blind folds- small blind wins

e Small blind bets and big blind calls with hand which losesagtown=- small
blind wins

To convert odds oé-to-b to a probability, one dividel by the sum ofa andb
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e Small blind bets and big blind calls with hand which wins awstdown =- big
blind wins

e Small blind folds= big blind wins

Given a starting hand for the small blind, a system of equat@an be constructed
over all possible hands for the big blind which equates theevaf a fold and an all
in move at a specific value of $X. Below this value it is corréamtthe small blind
to move all in, and with a stack larger than $X it is correct fiim to fold. These
decisions maximize the player’s expected winnings.

Ordering the starting hands in decreasing value of $X withis problem gives
rise to the Sklansky-Chubukov rankings. These are namedtai problem initiator,
David Sklansky, and its solver Victor Chubukov.

The first and last few starting hands are given in Table C.2e ddmplete list can
be found online at the homepage of Victor Chubukov [30].

Hand | $X-value
AA 00
KK 954.00

AKs 554.51
QQ 478.01
AKo 331.89
JJ 319.21
720 2.24
520 2.18
620 2.14
420 1.98
320 1.83

Table C.1: Best and worst starting hands in Texas hold’em by Sklansky-Chubukov rank-

ing.

An alternative approach is to play all combinations of haofflagainst each other
with all possible community cards and note the percentagetdries for each starting
hand. Accurate estimates can be found by Monte-Carlo stronlaver a large number
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Figure C.1: A comparison of the hand rankings of the 169 different starting hands using

roll-outs and the Sklansky-Chubukov $X-value.

of hands. The results yielded are known as “roll-out” ragkinAn example of roll-out
rankings constructed by simulation can be found online.[21]

Figure C.1 gives a scatterplot of all 169 starting hands dasethe two different
methods.

It is clear by observation that there is a great similarityha relative orderings
yielded by the two approaches. The correlation betweenvibesets of rankings is
0.989. Three seemingly anomalous values occur towardsotitenb of the plot, repre-
senting the lowest pairs: 44, 33, and 22. This shows thaethasds are graded more
highly in the Sklansky-Chubukov rankings than the rollsout

The Sklansky-Chubukov rankings contain an advantage twesetfrom roll-outs
since the former procedure incorporates blinds, and heatedus, into its formula-
tion. With this the Sklansky-Chubukov $X-value yields atbetbsolute distinction
between the strength of hands than the simpler percentaggnads won.
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An Investigation into Tournament Poker Strategy

using Evolutionary Algorithms

Richard G. Carter
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Abstract—In this paper we assess the hypothesis that a
strategy including information related to game-specific factors
in a poker tournament performs better than one founded on
hand strength knowledge alone. Specifically, we demonstrate
that the use of information pertaining to opp ts’ prior
actions, the stage of the tournament, one’s chip stack size and
seating position all contribute towards a statistically significant
improvement in the number of tournaments won.

Additionally, we test the hypothesis that a strategy which
combines information from all the aforementioned factors
performs better than one which employs only a single factor.
We show that an evolutionary algorithm is successfully able to
resolve conflicting signals from the specified factors, and that
the resulting strategies are statistically stronger.

Keywords: evolutionary algorithms, game playing, tour-
nament poker

I. INTRODUCTION

Researchers in artificial intelligence have long been inter-
ested in developing programs for games which are able to
compete with and ultimately beat human opposition. Recent
successes in the games of checkers, chess and backgammon
have encouraged efforts on more complex games such as
g0, bridge and poker. Card games such as those mentioned
present a particular challenge for researchers due the lack of
complete information of the game state at any point in time.
Opponents’ hands must be modelled probabilistically, with
inferential conclusions reached by computing the likelihood
of each players’ holding given their actions in the current
and previous games. The development of poker players is
especially exacting since the nature of the game demands
that each competitor tries to deceive their opponents as to
which cards they hold. Research into games of imperfect
information such as poker has the potential to be extremely
valuable, since reasoning under conditions of uncertainty is
typical of many real-world problems.

Early game theoretic investigations of poker have been
superseded by significant contemporary contributions. The
GAMES Group at the University of Alberta has led the way
in combining a strong analytical understanding of the game
together with innovative approaches in opponent modelling.
Their work over the last ten years has been so successful
that a particular poker variant - two-player limit ring game
Texas Hold’em - is now practically solved in the game
theoretic sense, with continual improvements in the opponent
modelling leading to increasingly strong players.

John Levine
Strathclyde Planning Group
Dept. of Computer and Information Sciences
University of Strathclyde, Scotland
john.levine @cis.strath.ac.uk

However, many hurdles have yet to be cleared before we
reach the point of having a poker World Champion. Three
difficulties in particular have to be overcome to take the
current state of the art to such a level. Firstly, poker is almost
always played between several competing players, rather than
two. This means that multiple opponent models must be
maintained. Secondly, the main event of the World Series
of Poker held annually in Las Vegas uses a form of betting
known as no limit. Where limit betting sets pre-specified
increments to each player’s bet and raise, no limit allows the
competitors to bet any amount up to their current chip stack
size. The third challenge is that the World Championships
play Texas Hold’em in a tournament, rather than ring game
format. A tournament setting adds extra complexity to the
decision-making process compared to the same situation in
a ring game. The nature of tournament play dictates that
each player must balance accumulating and protecting their
chips to ensure survival. This paper marks the first attempt
to understand some of the issues involved in developing a
player for Texas Hold’em played within a tournament, so
that strong ring game programs may be more easily adapted
to the tournament format.

Noted poker authors consistently state in the non-academic
poker literature that factors contained within the tourna-
ment are important and should be included in the decision-
making process before selecting a betting action. Taking
hand strength knowledge as a given, the first hypothesis that
we test in this research is that the inclusion of information
relating to:

« opponents’ prior betting actions
« the stage of the tournament

« one’s own chip stack amount

o seating position

improves a player’s tournament performance against three
different static opponents. Through the use of Monte Carlo
simulation on a slightly simplified form of no limit Texas
Hold’em we find that all four of these factors are statistically
significant in their contribution.

The strategies we find determine which hands should be
played dependent upon the additional game information. To
create a strategy using all the available information, however,
we cannot simply combine the suggested betting actions
from the single factor results. This is because the single
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factor strategies are often in conflict in any given situation.
Therefore the second hypothesis that we test is that an
evolutionary algorithm is able to resolve such disagreements,
and that the resulting strategy is stronger than any achieved
by employing only one of the factors in isolation. Results
contained within this work show this to be true.

II. BACKGROUND
A. Texas Hold’em

Texas Hold’em (also known simply as Hold’em) is the
most widely played poker variant. It is this form which is
used as the main event in the annual World Series of Poker. A
game of Texas Hold’em can be played with up to 22 players,
although it is more usual to see between two and ten players
at a single table. A comprehensive set of rules for the game
of Texas Hold’em is available online [1].

Texas Hold’em typically employs one of three different
forms of betting structure: limit, pot limit, or no limit. In
limit Hold’em, the size of the bets are fixed amounts. In the
first two betting rounds, each bet or raise is a set amount. In
the final two rounds the fixed bet size doubles. In pot limit
Hold’em a player may wager any amount up to the size of the
pot. No-limit Hold’em removes this restriction by allowing
each player to bet any amount up to their stack size.

As with all poker games, Hold’em can be played either as
a ring game (also known as cash game) or in a tournament.
In a ring game the players contest pots with real money
and no predetermined end time. A poker tournament, on
the other hand, is played with tournament chips and ends
once the game has been reduced to a single player. In a
ring game players may continually enter and exit the table,
and players who lose all their chips are able to purchase
more to continue in the game. By contrast, the players in
a tournament usually buy a set number of tournament chips
before the game and are eliminated from the competition if
their stack size reaches zero. The major differences between
ring game and tournament play are summarised in Table I.

TABLE T
STRUCTURAL DIFFERENCES BETWEEN RING GAME AND TOURNAMENT
POKER

Difference Ring Game Tour t

Entry fee Variable Tournament cost
Chips Money replacement | Game tokens

Blinds Fixed Rising schedule
Number of players | Limited to a table Unlimited

Game exit Player discretion Zero chips

Profit and loss On each hand Based on finish

B. Previous Poker Research

The first academic investigations into the game of poker
were undertaken in the mid-twentieth century. Early pioneers
in the field of game theory, such as von Neumann and
Morgenstern [2], employed greatly simplified poker variants
to formulate a framework for strategy selection in non-
cooperative environments. The toy pokers that were exam-
ined were typically only two- or three-player games, and

used pared decks of cards to reduce the space of possible
strategies.

More recent investigations into poker have focused on
developing computer programs which are able to play more
realistic variants to a high standard. The most advanced
and successful work on computer poker play to date has
been produced by the Game-playing, Analytical methods,
Minimax search, and Empirical Studies (GAMES) Group at
the University of Alberta, led by Jonathan Schaeffer.

The GAMES Groups’ poker research started with the
development of programs designed to play ten-player limit
Texas Hold’em in a ring game, and employed a combination
of statistical measures and expert rules to effect decision-
making [3]. Billings er al. [4] then turned to two-player
limit Hold’em, for which they were able to derive “pseudo-
optimal” strategies. Recent efforts by the GAMES Group
target the addition of opponent modelling to the game
theoretic foundation, with greatly improved results [5].

Outside of academia, many books have been written on
strategy for play in Texas Hold’em. Whilst poker literature
for ring game play abounds, relatively little has been written
on Texas Hold’em tournament strategy. Those that exist
discuss the differences between ring game and tournament
play, and expound on how certain factors affect strategic
considerations.

The most common strategic messages in the non-academic
writings relate to how one’s range of playable starting hands
should increase throughout a tournament, the importance of
stack size in betting decisions, and how the payoff structure
of the tournament determines correct strategy. The purpose
of this research is to empirically validate some of these
assertions.

C. Evolutionary Algorithms Applied to Poker

Evolutionary algorithms have been commonly applied to
search for strong strategies in a wide variety of different
games. One notable example of this is the development of the
checkers player Blondie24 by Kumar Chellapilla and David
Fogel [6].

The first, and to date most extensive attempts to apply
evolutionary computation to poker have been performed by
Luigi Barone and Lyndon While [7], [8]. The authors develop
poker players that are able to adapt strategically given inputs
from their environment, such as their own hand strength,
seating position, bet size, and a measure of their opponents’
playing styles. The experiments performed in their research
use Texas Hold’em with limit betting, and are employed
within a ring game format.

Graham Kendall and Mark Willdig [9] employ evolu-
tionary methods to learn to play a simplified draw poker
game. Candidates from the population are played at tables
containing opponents of different styles, and the adaptive
players are seen to adjust their strategy appropriately to each
situation.

Texas Hold’em has also been used in research by Jason
Noble [10]. Rather than play against static opposition, his
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work seeks to develop strong poker players through self-
play. However, the primary focus of these studies is on the
comparison of different co-evolutionary methods, and poker
is simply used as the test bed for the experiments.

The programs developed by the GAMES Group have been
shown to perform well against professional poker players,
but no such achievements were reported in the work on
evolutionary poker programs. Whilst it presently seems that
the approach of marrying game theoretic understanding with
opponent modelling has the greatest promise in achieving the
strongest poker programs, results from evolutionary methods
have highlighted some of the strategic problems faced in
playing poker games.

III. SPECIFICATION AND IMPLEMENTATION

All the experiments performed focus on ten-player winner-
takes-all all in or fold pre-flop Texas Hold’em. This format
makes one simplification to an authentic poker tournament.
The restriction of the players” betting actions to all in or fold
reduces the strategy space to a tractable size. Substituting the
more flexible betting choice with a binary decision shifts the
focus to the more general and important strategic question
of when to bet, rather than how much. Since players will
have either bet all of their chips or folded before the flop,
the resulting betting rounds are redundant. All in or fold
pre-flop betting strategies have been proposed for use in real
tournaments, and we use three of these taken from the poker
literature as the opponents within our experiments.

Whilst it is more usual for ten-player tournaments to
employ a percentage payout structure, the “shootout” format
with a single winner can also be employed. The winner-takes-
all design only credits a player for finishing first, and hence
second place is equivalent to finishing last. Establishing
the competitions in this way ensures that we assess each
strategy’s ability to win tournaments, and not just their
capacity for tournament survival.

All players start with $1,000 in tournament chips. The
tournaments use eleven levels, with the blinds increasing as
the tournament progresses. Each level consists of ten hands,
except for the final level which is used until the tournament
concludes.

There were a total of three different opponents used
across all the simulations. These encoded the Sklansky Basic
strategy, Sklansky’s Improved strategy, and the Kill Phil
Rookie strategy, and are explained below.

The first two strategies are taken from the book “Tourna-
ment Poker for Advanced Players” [11]. The Sklansky Basic
strategy is highly restrictive, and will only bet the very best
starting hands once another player has already bet into the
pot. If no other player has yet bet, this strategy will move
all in with a slightly larger subset of hands. The Sklansky
Improved strategy is similarly restrained in the hands it will
play if an opponent has entered the pot. Where this strategy
differs from the first is in its use of the ratio of the player’s
stack to the total amount of the blinds to determine playable
hands when no other player has yet made a bet.

The third opponent employed is based on one from the
book “Kill Phil” [12]. This book contains several strategies
of increasing complexity, and these experiments use the
simplest, so-called “Rookie”, strategy. Similar to the two
Sklansky strategies, the Kill Phil Rookie strategy contains
instructions on which hands are playable depending upon
whether or not an opponent has yet bet into the pot. The
major difference in this strategy is that the classification
of playable hands is determined by the number of players
remaining and the tournament level.

For all the experiments, we seat our test player at a
table against nine similar opponents from either of the three
mentioned above.

Note that we do not incorporate any opponent modelling
within these experiments. Whilst we acknowledge that this is
an essential element of strong poker strategy in any setting,
here we seek more general results regarding the dynamics of
tournament play.

By discriminating between “suited” and “offsuit” hands
there are 169 different starting hands in Texas Hold’em.
Using the hand strength ordering of Sklansky and
Chubukov [13], we create thirteen groups of thirteen hands:
the strongest in Group 1 down to the weakest in Group 13.
Note that the classes are not all of precisely the same size
due to the varying frequencies of pairs, suited, and unsuited
hands. Whilst the classification employed here is extremely
coarse, it is sufficient to show the dynamics of tournament
strategy that we seek.

The first suite of experiments use Monte Carlo simulation
to assess strategies which employ either hand strength knowl-
edge alone, or this in conjunction with another factor believed
to influence decision-making. All strategies take the form of
a threshold value between zero and thirteen. In measuring
the performance of players using hand strength knowledge
alone, a strategy () represents a player who will move all in
with cards in the groups higher than or equal to x, and fold
otherwise. When we incorporate one extra game factor the
representation becomes two-dimensional, (z, y). The x-value
is used if the binary variable is true, and the y-value is used
if the binary variable is false. The binary variables used are
summarised in Table II.

TABLE II
BINARY VARIABLES USED TO ASSESS DECISION FACTORS

Factor
Opponents’ actions
Tournament stage
Chip stack amount
Seating position

Binary Variable

No prior bet in the current hand
Tournament level < 6

M<S5

Early position

The variable M used to assess chip stack size is taken from
Harrington [14] and is simply the ratio of one’s stack to the
total of the blinds at the current level. Early and late position
are determined relative to the dealer, such that a player in
the first half of those required to act is deemed to be in early
position.

The simulations sequentially test every possible strategy
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over a series of 200 tournaments. A player scores one point
for winning a tournament, and zero otherwise.

To extend the aforementioned representation into multi-
ple dimensions for each possible binary variable presents
problems due to the computational time required to cover
all of the strategies. Instead, we employ an evolutionary
algorithm which is able to encode an action for any possible
combination of the four factors.

A strategy within the evolutionary algorithm is encoded
as a chromosome of sixteen real numbers, each value taken
from the interval [0, 14). A single gene determines the hands
played in one of the 2% scenario combinations of the four
binary variables. When required to act the evolutionary
player refers to the relevant gene, and moves all in if the
floor of the value is less than or equal to the group containing
their hand.

The evolutions each commence with a population of
twenty randomly generated strategies. This comparatively
small population was found to be sufficient to produce sig-
nificant results. Individuals within the population reproduce
according to tournament selection, with two elites passing
through to the next generation unaltered. Reproduction oc-
curs at a rate of 70%, and employs uniform crossover with
equal weighting between the parents. Mutation applies a
Gaussian shock to a randomly selected allele with a standard
deviation of 2, and reflection occurs at the upper and lower
bounds. Many of these shocks do not result in a change in
an individual’s strategy due to the representation used. In
these experiments we use a relatively high mutation rate of
20%, although smaller values were found to produce similar
results.

IV. EXPERIMENTAL RESULTS
A. Monte Carlo Simulation Results

Results from the first set of experiments, in which the test
players act according to hand strength alone, are plotted in
Figure 1.

The graph clearly shows that betting with either too many
hand groups or too few results in reduced performance.
Against all three opposing strategies the highest number of
tournament wins arise when the player moves all in with
around the top four groups of starting hands.

There is, unfortunately, a large amount of noise seen in
this plot. This can be reduced by simulating each strategy
over a larger number of tournaments than the 200 used here.
Further simulations were performed with the players each
playing 1,000 tournaments, and more clearly defined peaks
were observed. We present the results over 200 tournaments
for comparison with those from the inclusion of the binary
variables which follow. In these latter cases, simulating all
196 (z,y) strategy pairs over 1,000 tournaments would be
extremely time-consuming.

The next suite of experiments expands the strategy repre-
sentation from one to two threshold values. Each value cor-
responds to playable hand groups depending on the state of
the additional binary variable. Here again each possible (z,y)

strategy, (z,y € {0,1,...,13}) is played in 200 tournaments
against a table of each of the three adversarial strategies.
Figures 2, 3, 4, and 5 show the results achieved against
the Sklansky Basic strategy. Plots showing scores against
the Sklansky Improved and Kill Phil Rookie strategies can
be found at the authors’ website [15], and all show similar
surfaces.

There are two interesting aspects to these graphs. Firstly,
all are asymmetric in the line y = z. This shows that
the information contained within the binary variable is of
consequence to tournament performance. For comparison
purposes a control experiment was performed in which the
binary variable was chosen to be the result of a coin toss.
The plot of this experiment in Figure 6 shows much greater
symmetry, subject to noise.

The second important aspect of these results concerns the
number of tournaments won by incorporating the additional
information. The peaks of those graphs representing the
inclusion of prior bet knowledge, tournament level, chip stack
size, and seating position are far larger than that achieved
through hand strength knowledge alone. The peak from the
control experiment utilising a coin toss is comparable to hand
strength only, as expected.

The strategies leading to the best results against the
Sklansky Basic (SB), Sklansky Improved (SI), and Kill Phil
Rookie (KPR) strategies are summarised in Table III.

TABLE TII
BEST STRATEGIES FOUND BY MONTE CARLO SIMULATIONS AGAINST
VARIOUS OPPONENTS

Game Knowledge SB SI KPR
Hand strength only (4) (3) & (5) (4)

Hand and prior bet | (9,0) (13,3) (12,3)
Hand and level L12) | (L1D) | (3,12
Hand and stack (5,0) (12,2) (8,2)
Hand and position (8,2) (13,2) (11,1)

It is evident from these results that the state of a binary
variable polarises the test player’s best strategy in all cases
against all opponents. The nature of these strategies also bear
favourable comparison to suggested tournament play in the
non-academic poker literature.

If no opponent has yet bet the best strategy is to play many
hands. If the pot has already been opened, however, a lesser
number of hands should be played. Poker authors state that
a player should be much tighter if an opponent has already
bet into the pot.

Knowledge of tournament level affects the best play by
being tighter in the early levels and looser in the late ones.
These strategies also follow poker author’s recommendations.
They state that at the start of a tournament one should be
more concerned about being eliminated and so should play
to protect chips. Then in the later levels one should play
more hands to try to steal the increased blinds.

A player with a small number of chips is seen to move
all in with more hand groups than one with a relatively large
stack. The escalating blinds used in tournaments mean that
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Fig. 1.
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Fig. 6. Tournament wins against Sklansky Basic opponents for strategies
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persistently waiting for strong hands leads a player to being
anted away. Again the best strategies found here conform to
the suggested style.

The only results here that are in conflict with poker
authors concern those from the inclusion of seating position
knowledge. Here we see that a player in early position bets
more hands than one in a later seat. It is more commonly
suggested that correct strategy is the opposite of this. A late
seat means that there are less players to act after oneself, and
so specifically in an unopened pot a bet with a slightly worse
hand than normal can prove to be profitable. The reason for
the disagreement in our experiments is likely to be two-fold.
Firstly, all the opposing strategies play a more restricted
set of hands once a player has entered the pot. When our
test player is in early position it seems to be able to take
advantage of this by betting weaker hands and essentially
“scaring” the opposition. The second likely cause is that we
are not able to distinguish between those occasions where the
test player is first into a pot. It could still be the case that in
these scenarios our player is playing more aggressively.

It is this desire to see all factors in combination that leads
to the next set of experiments. The results previously seen in
Table III contain potential conflicts for a strategy seeking to
incorporate all game-related factors. For example, suppose
we are playing the Sklansky Basic opponents and are in the
latter half of a tournament with a large stack size. The best
strategies found would suggest playing any hand in the top
twelve groups due to the tournament level, but contradictorily
that we should fold all hands since we have a large stack.

The simulation-based approach is expedient in the case of
only one decision factor, but as we include more the time
taken to cover the strategy space grows exponentially. For
this reason we turn towards an evolutionary approach.

B. Evolutionary Algorithm Results

Candidates within a population encode strategies that
dictate which hand groups to play in any of the 16 pos-
sible scenarios within the strategy hypercube. The guided
stochastic search then moves the population in the direction
of stronger solutions.

A randomly seeded population of twenty candidate solu-
tions were each played in 200 tournaments per generation
against tables consisting of each of the three opponents. The
average population fitness per generation, and the incremen-
tal global best solutions are shown for the evolutions against
Sklansky Basic, Sklansky Improved, and Kill Phil Rookie
opposition in Figures 7, 8, and 9 respectively.

All of these plots show that the average population fit-
nesses are quick to increase in the first ten generations
of the evolution. Strong solutions are more likely to be
maintained, whilst weaker strategies fail to reproduce. In the
early generations the rate of finding new global best strategies
is at its fastest. These results are in keeping with generally
observed trends in the use of evolutionary algorithms.

Improvement in the global best solution against Sklansky
Basic opponents noticeably levels off by generation 25. The
evolutions against the other two opponents were still finding
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new global bests approximately every five generations when
the runs were terminated. It is expected that even stronger
strategies would have been uncovered had the number of
generations been increased.

The most remarkable aspect of these graphs is in observ-
ing the number of tournament wins achieved by the best
found strategies. At the termination of the run, the best
solution against Sklansky Basic had won 178 out of 200
tournaments, a rate of almost 90%. This figure is a marked
improvement on the comparable 38 tournament wins gained
using hand strength alone shown previously in Figure 1. The
evolutions against Sklansky Improved and Kill Phil Rookie
opposition also show marked improvements, with both more
than tripling the top score found based only on hand strength.

Next, we took all the best strategies found using the
different representations and played them off against their
respective opponents over 5,000 further tournaments. Per-
forming these experiments over a larger number of tourna-
ments allows us to gain a greater level of statistical surety in
the scores attained. The number of tournament wins in these
enlarged experiments are shown in Table IV.

TABLE IV
TOURNAMENT WINS (OUT OF 5,000) OF BEST FOUND STRATEGIES
AGAINST VARIOUS OPPONENTS

Game Knowledge SB SI KPR
Hand strength only 1,004 565 319
Hand and prior bet 3,562 1,095 595

Hand and level
Hand and stack
Hand and position
Hand and all factors

1997 | 746 | 574
1637 | 819 | 534
TAT7 | 715 | 460
2340 | 1,165 | 786

For all three opponents the knowledge of whether or not
another player has bet into the pot shows the largest gains.
Intuitively, we would expect knowledge of one’s opponents
actions to be the most important factor since all players are
in competition with one another for the money in the pot.
Least improvement comes from seating position knowledge.
The lesser importance of this is most probably due to the
all in or fold nature of the tournaments. Poker authors have
stated the much of the positional advantage is reduced by
such strategies.

Statistical analysis was performed on these results using
the Z-test for the equality of two proportions. Firstly, we
tested the null hypothesis that the proportion of tournaments
won by the strategies incorporating a single binary variable
was the same as those using hand strength alone against
each respective opponent. All were found to be rejected as is
shown in Table V. From this we conclude that the inclusion
of any of these extra pieces of game information significantly
improves tournament performance.

Following this we tested the null hypothesis that the
strategies found by the evolutionary algorithms won the same
proportion of tournaments as those achieved in the best case
of hand strength and one other factor (in each case this
factor is knowledge of an opponent’s prior bet). Table VI
reveals that all null hypotheses were rejected at the 95%
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TABLE V
P-VALUES FOR THE PROPORTION OF TOURNAMENTS WON WITH THE
INCLUSION OF A GAME FACTOR COMPARED TO HAND STRENGTH ALONE

Factor SB SI KPR
Prior bet | < 0.00001 | < 0.00001 | < 0.00001
Level < 0.00001 | < 0.00001 | < 0.00001
Stack < 0.00001 < 0.00001 < 0.00001
Position < 0.00001 | < 0.00001 | < 0.00001

confidence level. Hence we conclude that the incorporation
of knowledge from all four factors has produced strategies
with a markedly higher win rate compared to those utilising
only a single factor.

TABLE VI
P-VALUES FOR THE PROPORTION OF TOURNAMENTS WON WITH THE
INCLUSION OF ALL GAME FACTORS COMPARED TO HAND STRENGTH
AND PRIOR BET KNOWLEDGE
[ [ SB[ SI | KPR |
| Evolved player | < 0.00001 | <0.05 | < 0.00001 ]

It should be remembered that the opposition strategies are
able to act on exact knowledge of their hand, stack size, and
tournament level. Our test players are severely limited in the
granularity of the information they can base decisions on due
to the coarse classifications employed. The results given are
perhaps even more impressive in the light of this.

To analyse the nature of the best evolutionary strategies
found we calculated the average hand group played for each
possible state of the four binary variables. These values are
presented in Table VIIL.

TABLE VII
AVERAGE ALLELE VALUES IN GLOBAL BEST STRATEGIES AGAINST EACH
OPPONENT
Scenario SB | SI | KPR
No prior bet 85|76 8.4
Prior bet 2.1 [ 59 5.0
Level < 6 45150 5.0
Level > 6 6.1 | 85 8.4
M5 69 | 6.8 8.0
M>5 38 | 6.8 5.4
Early position | 6.6 | 8.6 8.0
Late position 4.0 | 49 54

An inspection of these results shows the same trends as
those previously found in Table III. The strategies typically
play less hands in the following situations: after an opponent
has bet, in the early levels of a tournament, with a large stack
size, and in late position.

It is interesting to note that these best strategies have
managed to resolve conflicts in the signals given by each
separate game factor. The strategies found by the evolution-
ary algorithm manage to implicitly weigh the importance of
each piece of information in formulating a betting action
depending upon the situation.
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V. FURTHER WORK

The framework used in the evolutionary experiments is
extremely amenable to expansion. For example, any other
factor thought to influence decision-making could be readily
incorporated into the representation.

One possible enhancement would be to increase the reso-
lution on the factors already employed. An enlarged number
of classifications of stack size, tournament level, and seating
position would further refine the strategy space.

The hand groupings used in these experiments are too
coarse to be of direct benefit in a real poker game. Split-
ting out the upper groups into better defined classes, and
condensing the bad hands into a smaller number of larger
groups would better reflect the differences in starting hand
potential.

An interesting topic for future investigation is to better
understand the relative importance of each factor dependent
upon tournament level. For example, some poker authors
state that stack size becomes more important than hand
strength towards the end of a tournament.

Clearly the most important continuation of this research is
the removal of the all in or fold betting restriction. As well
as being able to bet fractional amounts of one’s stack, the
strategies called for would also have to encode for post-flop
play. It remains an open question whether an unrestricted
Texas Hold’em tournament strategy could be found within
such a framework.

VI. CONCLUSIONS

In this research we set out to show that information
available to players related to their opponents’ prior actions,
the stage of the tournament, chip stack size, and seating
position are all important elements in the strategy of a Texas
Hold’em tournament player. By comparing the performance
of players who use knowledge of their hand strength alone
to those who incorporate each of the above factors we have
shown that there is a statistically significant improvement in
the number of tournaments won by the latter.

We then demonstrated that an evolutionary algorithm is
able to resolve conflicting signals from the decision-making
factors. The strategies which combine all the available
information are seen to perform to a statistically higher
standard than those which use only one piece of knowledge
in conjunction with their hand strength.

The “strategies” we have derived in this research should
perhaps technically be termed “counter-strategies”, since
each is specific to their own particular opponent. However,
the interpretations of the counter-strategies found (i.e. play
more hands if no opponent has bet, if one has a small
stack, late in the tournament etc.) are the same against all
three opponents of increasing complexity. It is compelling to
suggest that these tactics, which mirror the guidance given
in the non-academic poker literature, should underpin the
strategy of a competent player against any given opponent(s).
Whilst we cannot go as far as to claim this outright, our
results do lend weight to that argument.

At present the approach of game theoretic understanding
and opponent modelling has been seen to yield stronger
poker programs than any that have been found by evolu-
tionary algorithms alone. However, transitioning these limit
ring game strategies to a no limit tournament setting requires
additional understanding of the complexities of tournament
play. The results presented in this research show that an
evolutionary approach is well suited to the task of analysing
tournament strategy, and that it can be used to complement
other forms of computer poker research.
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