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Abstract

Poker has become the subject of an increasing amount of studyin the computational in-

telligence community. The element of imperfect information presents new and greater

challenges than those previously posed by games such as checkers and chess. Ad-

vances in computer poker have great potential, since reasoning under conditions of

uncertainty is typical of many real world problems.

To date the focus of computer poker research has centred on the development of

ring game players for limit Texas hold’em. For a computer to compete in the most

prestigious poker events, however, it will be required to play in a tournament setting

with a no-limit betting structure. This thesis is the first academic attempt to investigate

the underlying dynamics of successful no-limit tournamentpoker play. Professional

players have proffered advice in the non-academic poker literature on correct strategies

for tournament poker play. This study seeks to empirically validate their suggestions

on a simplified no-limit Texas hold’em tournament framework.

Starting by using exhaustive simulations, we first assess the hypothesis that a strat-

egy including information related to game-specific factorsperforms better than one

founded on hand strength knowledge alone. Specifically, we demonstrate that the use

of information pertaining to one’s seating position, the opponents’ prior actions, the

stage of the tournament, and one’s chip stack size all contribute towards a statistically

significant improvement in the number of tournaments won.

In extending the research to combine all factors we explain the limitations of the

exhaustive simulation approach, and introduce evolutionary algorithms as a method of

searching the strategy space. We then test the hypothesis that a strategy which com-

bines information from all the aforementioned factors performs better than one which

employs only a single factor. We show that an evolutionary algorithm is successfully

able to resolve conflicting signals from the specified factors, and that the resulting

strategies are statistically stronger than those previously discovered.

Our research continues with an analysis of the results, as weinterpret them in the

context of poker strategy. We compare our findings to poker authors’ recommenda-

tions, and conclude with a discussion on the many possible extensions to this work.
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Chapter 1

Introduction

1.1 Overview

This thesis presents an investigation into the nature and discovery of robust tourna-

ment poker strategies through the application of evolutionary computation. Whilst re-

search into games is commonplace in the artificial intelligence (AI) community, work

on poker is nascent. Impressive results have already been achieved through academic

research into the ring game format of poker, but tournament poker play has so far been

neglected. This research aims to address this gap in the academic literature.

1.2 Motivation

Games provide a common test bed for researchers into computer science due to their

well defined problem domains. The goal of such research is typically to develop the

strongest possible programs, and the rules of the game provide fixed bounds within

which this goal can be achieved. Poker is of particular interest since it provides many

different challenges for machine intelligence which are not found in the more com-

monly researched games such as chess and draughts. A strong computer poker pro-

gram needs to display a range of intelligent behaviours to play the game successfully,

such as handling imperfect and incomplete information, competing against multiple

adversaries, opponent modelling and risk management [11].Many of these compe-

tencies are found in other problem domains. Results from thestudy of poker may

prove beneficial in a wide variety of other areas such as bargaining problems, financial

trading and forecasting, where reasoning under conditionsof uncertainty is present.

To properly define a domain for research into the applicationof AI techniques to

1



Chapter 1. Introduction 2

poker we are required to specify the:

• Poker variant,

• Betting structure,

• Game format (i.e. ring game or tournament), and

• Number of players.

If we consider the ultimate aim for research into computer poker as the develop-

ment of a player which is able to successfully compete for theworld championship,

then we can select choices which align with this goal. By common agreement the

poker world champion is deemed to be the winner of the $10,000buy-in no-limit Texas

hold’em tournament, played during the World Series of Pokerin Las Vegas every sum-

mer [59]. Therefore a poker player that is capable of winningthe world championship

needs to be able to play:

• Texas hold’em poker,

• With a no-limit betting structure,

• In a tournament setting,

• Against any number of opponents.

When we investigate the research that has previously been undertaken in computer

poker we see that the last three of these targets have yet to beproperly addressed. The

present state of the art tackles Texas hold’em as played witha limit betting structure in

a ring game format, and typically against only one other opponent. This study marks

the first academic attempt to research poker as played in a tournament setting, with

no-limit betting, and against multiple opponents.

The non-academic literature, comprising books and articles written predominantly

by professional poker players, contains suggestions for strong tournament poker play.

The strategies which they espouse are the result of the authors’ own experiences, and

as such are usually more anecdotal than scientific in nature.In performing this study

we shall compare our results with such authors’ recommendations, to see whether the

professionals’ advice can be demonstrated empirically.
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1.3 Aims and Scope

This central intent of this thesis is to better understand tournament poker strategy. The

goal is not, therefore, to produce the strongest possible players; rather we wish to

comprehend some of the necessary elements of a strong player. It is then expected

that these strategic elements can be incorporated into the poker programs of future

researchers who do seek to develop highly competitive computer poker strategies.

Since this research does not directly build upon any previous studies, we must first

create a framework for the experiments. Texas hold’em is an extremely involved game,

and therefore certain simplifications are introduced to make the problem of understand-

ing tournament strategy as practical as possible without losing all of the complexity.

First of all we limit the number of competitors to ten. In a real tournament it is

possible to have literally thousands of entrants. All such competitions are eventually

reduced to a final table of around ten players, though, and this forms the starting point

of our research.

To simplify the betting actions available to the players in our no-limit tournaments

we restrict their options to either all in or fold. In real no-limit poker a player may

decide how much they wish to stake in a bet. Replacing this possibility with a choice

of all or nothing shifts the focus to the more general and important strategic question

of when to bet, rather than how much. An additional benefit of this simplification is

that we only need concern ourselves with one round of betting, rather than the four

found in authentic Texas hold’em. This greatly reduces the game’s strategy space to a

more tractable size, thus facilitating its investigation.

Lastly we choose to neglect opponent modelling. This is one of the most crucial

elements of a real player’s poker strategy: all strong players decide upon a course

of action by incorporating knowledge of their opponents’ previous betting patterns.

However, whilst it is extremely important, opponent modelling is a secondary strategic

element to the more fundamental aspects of tournament pokerplay which we seek to

address. Opponent modelling can be thought of as an additional layer built upon a

foundation of correct tournament strategy. This kernel of understanding is not only

required when competing against unknown opponents, but is perpetually essential in

guiding a tournament player’s general strategic considerations.

Having built a framework upon which to investigate tournament poker strategy, we

must finally decide which technique from the AI library to employ. To find strategies

which maximize the number of tournaments won we start our enquiries with small
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problems for which the testing of all permissible strategies is feasible. For this method

we use the term exhaustive simulation. As we expand the problems we find that this

procedure is no longer practical, and instead seek to use another appropriate technique.

The tackling of an optimization problem in which potential solutions can be thought

of as candidates within a population leads us naturally to the use of evolutionary al-

gorithms (EAs). We recognize that this choice was not mandatory, and that other

techniques such as simulated annealing or hill climbing [102] might alternatively have

been employed. As we shall see, though, EAs have been used extensively in similar

studies into computer games and appear an appropriate tool for the task.

1.4 The Organization of the Thesis

Chapter 2 gives an overview of the game of poker, focusing in particular on the Texas

hold’em variant. We discuss previous academic research into games generally, and

poker specifically. The chapter concludes by highlighting the relevant non-academic

literature on poker strategy, stressing the importance of seating position and hand

strength knowledge to a competitive player.

Following this Chapter 3 provides a more detailed discussion of tournament Texas

hold’em. Acknowledging the non-academic literature we discuss the significance of

information related to the stage of the tournament and one’sstack size in a player’s

decision making. We then talk about all in or fold systems forplaying in a Texas

hold’em tournament, and show how such a method fared in an organized computer

challenge.

Our initial tournament poker investigations using exhaustive simulations are pre-

sented in Chapter 4. We show how the four game factors highlighted in the two previ-

ous chapters can be used in conjunction with hand strength knowledge to build strong

tournament poker programs. We demonstrate statistically that players who are able to

utilize this additional information fare better than thosewho base decisions on their

hand strength alone.

Given the limitations of the exhaustive simulation approach, we turn to evolution-

ary algorithms in Chapter 5. We detail the different classesof EA, and show how

they have been used in previous academic enquiries. We conclude the chapter with

an example of how a genetic algorithm can be used to encode players for a toy poker

problem.

Chapter 6 returns to empirical methods, by using the EA techniques of the pre-
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ceding chapter. After an explanation of the experimental framework we employ evolu-

tionary computation to find poker strategies which utilize an amalgamation of the game

factors assessed individually in the exhaustive simulations. Using statistical hypothesis

testing we show that players who employ the complete information set score a signif-

icantly larger number of tournament wins than the strategies previously discovered in

Chapter 4.

Further analysis of the results of this research is presented in Chapter 7. We com-

pare the strategies found by evolutionary computation withthose from the exhaustive

simulations, then interpret the numerical data from our experiments in terms of poker

strategy. We conclude with a comparison of our findings to thestrategic recommenda-

tions in the non-academic poker literature.

Chapter 8 contains many suggestions for ways in which this work could be ex-

tended by future researchers in the field, towards the goal ofcreating a world champi-

onship winning computer poker player.

The thesis concludes with Chapter 9, which summarizes the study and discusses

the contributions of this thesis to computer poker research.



Chapter 2

Poker

This chapter gives a general introduction to the game of poker, before focusing specif-

ically on the variant known as Texas hold’em. We introduce much of the jargon that is

used in discussing the game, and give an example of how a hand of Texas hold’em pro-

ceeds. Next we examine recent methods of building computer game playing programs,

looking at some of the different artificial intelligence techniques that have been used.

Following this we discuss academic investigations into poker. Then we see how an

approach combining game theory and opponent modelling is producing the strongest

computer poker players at this time. Finally we survey the non-academic poker litera-

ture, and discuss some of the strategic considerations employed by professional players

to guide their decision making.

2.1 Introduction to Poker

Poker is a generic term covering hundreds of different variations of card games, in

which players with fully or partially concealed cards bet sequentially against each

other to win a communal pot of money. Poker is a highly skilledgambling game in

which strategies and techniques can be learnt and applied todefeat one’s opponents.

As with most popular card games, however, an element of chance is present in poker

due to the random deal of the cards.

The history of poker is not accurately known, but it is most commonly believed to

be derived from the gambling card game of primero [122]. Thisgame was popular in

Italy in the 16th century, before moving across western Europe to England. Poker also

shares similarities to the Persian game of as nas and the English game brag, and it is

possible that these pastimes and others have influenced the development of the present

6
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games.

Whilst there are many forms of poker, most share several common features. A

single poker game may contain any number of players, typically from two to ten. A

standard 52-card deck of playing cards is most often used, with a prescribed dealer

responsible for shuffling between hands and overseeing the game. The right to deal

is passed clockwise with each hand, and play proceeds with the player to the dealer’s

immediate left.

On the commencement of a hand of poker, one or more players arerequired to post

a forced bet into the pot, known either as ablind or antedepending on the specific

form of the game. The dealer then gives each player the appropriate number of cards

one at a time, and these may either beprivate(dealt face down and seen only by their

recipient), orpublic (dealt face up for all players to see).

After the deal, a betting round occurs in which players sequentially wager money

against each other. Typically there are three options available to each player, with

different terminology depending upon whether money has already been entered into

the pot in that betting round. Assuming no money has been posted (i.e. the pot is

unopened) a player may choose tobet by placing money into the pot,check(a bet of

zero chips), orfold. A player who folds takes no further active part in the hand and

gives their cards back to the dealer. If the pot has been opened each player may either

raise by increasing the size of the bet,call by matching it, or again fold. A betting

round ends when all active players (i.e. those that have not folded) have wagered

exactly the same amount.

After the initial betting round, additional cards are dealt- in some poker games as

a replacement for existing cards - again followed by a round of betting. Most poker

games contain from two to four such stages of dealing and betting. If in any round a

player’s bet or raise is not met by at least one caller, that player wins the pot outright

and is under no obligation to reveal his hand. If two or more players remain active on

completion of the final betting round, they must declare their hands in ashowdown.

The holder of the best hand, determined by a relative rankingof all possible hands,

wins all monies posted into the pot.

2.2 Texas Hold’em Poker

At present the most widely played poker variant is Texas hold’em (also known as

hold’em or holdem). It is this form which is used as the main event in the annual
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World Series of Poker [59], and is played in many casinos and home games across the

world. Hold’em is believed to have been invented in Texas in the early 1900s, and its

popularity has spread due to it being one of the most strategically complex forms of

poker. A game of Texas hold’em can be played with up to 22 players, although it is

more usual to see from two to ten players at a single table.

The objective in a standard game of hold’em is to win the pot. There are two ways

that a player can succeed in this aim. Firstly, a player may have the best hand in a

showdown. Alternatively, a player wins the pot if all other players have folded their

cards.

Play commences with the two players to the dealer’s immediate left posting forced

bets, known sequentially as thesmall blindandbig blind. The size of the big blind is

typically twice that of the small blind. This blind money initiates the pot for which all

players compete.

Two cards are then dealt face down to each player, and comprise that player’shole

cards. These cards are private, since only the player to whom they are dealt knows their

identity. Hole cards can be classified as apair (two cards of the same rank),suited(two

cards of the same suit), oroffsuit (two non-paired cards of different suits). There are

1,326 unique two-card starting hands in Texas hold’em, but due to the equivalence of

suits this number can be reduced to 169. A fuller discussion on Texas hold’em starting

hands can be found in Appendix A.

Once all cards are dealt the first betting round, called thepre-flop round, takes

place. Here the player to the immediate left of the big blind acts first, with play con-

tinuing clockwise. Each player in turn may either call the previous bet, raise it, or fold

and release his cards.

After the pre-flop betting, three cards are dealt face up in the middle of the table

to form theflop. Cards dealt publicly in this way are known ascommunity cardsand

form theboard, and may be used by all the players in constructing their finalhands.

The flop is followed by another betting round, starting this time with the first active

player to the left of the dealer. Once complete, another single card (theturn) is placed

on the table, and a third betting round takes place. A final community card (theriver)

follows next, then a last round of betting.

During any of the four betting rounds it is possible for one ormore players to

becomeall in. This term denotes the situation where a competitor has placed all of

their chips into the pot. An all in player takes no part in the residual betting rounds,

but otherwise play continues as normal.
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If two or more players remain - all in or not - at the conclusionof the final betting

round, a showdown determines the winner. In a showdown each player selects his

best five-card poker hand from the seven available: his two hole cards plus the five

community cards. There is no stipulation on the number of cards that must be used

from either one’s hand or the board. The pot is passed to the holder of the best hand, as

determined by the ranking of all possible poker hands. In exceptional circumstances

two or more players may have equally ranked hands, in which case the pot is shared

out equally.

Texas hold’em typically employs one of three different forms of betting structure:

limit, pot-limit, or no-limit. In limit hold’em, the size of the bets are fixed amounts. In

the first two betting rounds each bet or raise is equal to the size of the big blind. In the

final two rounds the fixed bet size doubles. In pot-limit hold’em a player may wager

any amount between the size of the big blind and the size of thepot. No-limit hold’em

allows each player to bet any amount from the size of the big blind up to the amount

that they have in their stack. Pot-limit and no-limit poker are commonly referred to as

big betpoker.

As with all poker games, hold’em can either be played as aring game(also known

ascash game) or in a tournament. In a ring game the players contest pots with real

money and no predetermined end time. A poker tournament, on the other hand, is

played with tournament chips and ends once the game has been reduced to a preset

number of players (usually one). In a ring game players may continually enter and exit

the table, and players who lose all of their chips are able to purchase more to bring

onto the table. By contrast, in a tournament the players usually buy a set number of

tournament chips before the game, and are eliminated from the competition if their

stack size reaches zero.

Appendix B gives an example of the play of a hand of no-limit Texas hold’em, and

contains the ranking of all possible hands used in a showdown.

2.3 Approaches to Computer Game Playing

Having introduced the game which forms the basis of our research, we now step back

and look at the categorization of games and some of the techniques that have proved

useful in their investigation.

A game can typically be assigned to one of four different categories, depending on

whether it is deterministic or not, and on whether or not it contains perfect informa-
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tion [17]. By definition, deterministic games contain no chance element. Such games

include checkers and chess. The outcome of a deterministic game depends solely on

the skills and abilities of the competitors. By contrast, a non-deterministic game admits

a chance element, usually through the roll of dice or the shuffle of cards. Backgammon

is an example of a non-deterministic game.

Games can also be of either perfect or imperfect information. This distinction

depends upon whether the competitors have all the information relating to the present

game state1. Checkers and chess are perfect information games, since both players

can see the complete state of the game on the board. Contrariwise, the players of an

imperfect information game, such as bridge or battleships,must act under conditions

of uncertainty.

As with all poker variants Texas hold’em is an example of a non-deterministic

game of imperfect information. The randomization brought about by shuffling the

cards introduces non-determinism, whilst the concealed nature of the players’ hole

cards leads to the state of imperfect information.

The classification of several well known games is given in Table 2.1.

Perfect Information Imperfect Information

Deterministic Chess, Checkers, GoBattleships

Non-deterministic Backgammon, Ludo Bridge, Poker

Table 2.1: The classification of several games.

Researchers have had tremendous successes in recent years with investigations into

games of perfect information. The first major triumph for computer game programs

was Jonathan Schaeffer’sChinook[103], designed to play checkers. The then-world

champion Marion Tinsley competed againstChinookin 1994, but was forced to with-

draw before completion of the match due to ill health. Subsequent to thisChinook

inherited the title of “Man versus Machine Champion of the World”.

Some of the most notable successes of computer game programshave been those

developed for chess. The well documented defeat of Garry Kasparov by IBM’s Deep

Blue in 1995 [25] was the first time that a reigning chess worldchampion had been

beaten by a computer under regular time controls. Kasparov himself predicted in the

1Formally, a game of perfect information is one in which all the information sets of the game tree
contain a single node.
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mid-1990s [29] that a computer would be capable of beating human opposition to the

world championship title by 2010.

In the cases of checkers and chess, the complete game state isknown to both par-

ticipants at all times during the game. No potentially important decision relevant in-

formation remains hidden. With this presence of perfect information a minimax search

coupled to a position evaluation function is able to select stronger moves than a typi-

cal human opponent by looking deeper into the possible consequences of each action.

Such brute-force search continually yields stronger programs as increases in compu-

tational power allow the machine to examine a larger number of potential positions.

Deep Blue was reported to be able to analyse up to a maximum of 330 million posi-

tions per second [25].

Brute-force search is not yet able to defeat human opposition at all games of per-

fect information. The ancient Chinese game of Go is still extremely challenging for

researchers into computer game playing due to the size of thesearch space [86, 87, 88].

A comparison of the game space size of Go to the more familiar board games of check-

ers and chess can be made by approximating each game’s tree size. This can be done

by raising a game’s average branching factor to the number ofindividual moves (or

plies) in an average game.

Estimates of the game space sizes for checkers, chess, and Goare shown in Table

2.2.

Game Board Pieces Branching Factor Game Space

Checkers 8-by-8 32 8 to 20 5x1020

Chess 8-by-8 32 35 10120

Go 19-by-19 381 250 10360

Table 2.2: Game space sizes (taken from [43]).

The approach that has proved successful for checkers and chess is not practical for

non-deterministic games of imperfect information such as poker and bridge. The game

trees of these card games are also very large but include the additional complication of

the random deal leading to multinodal information sets. This manifestation of imper-

fect information means that a player can never be entirely sure at which exact node in

the game tree they are at during the play of a game. Computer bridge research [55] has

a greater historical precedent than that of poker. Methods based on planning [50] have



Chapter 2. Poker 12

had some success thus far, but the advance of computer bridgeprograms is reported to

be slow [54].

The non-determinism of a game is not necessarily a barrier tosuccessfully creating

a strong computer player. Indeed, the stochastic nature of backgammon was beneficial

to Gerald Tesauro’s development of TD-Gammon [118]. The neural network used

trains itself to be an evaluation function through self-play. Temporal-difference (TD)

learning seeks to reduce the error between the learner’s current prediction and the

next prediction at the next time step. The non-determinism of backgammon aids this

process since the algorithm is able to visit many different nodes in the game tree and

thereby produce more rounded estimates.

We can see, therefore, that the nature of the game can affect the decision of which

AI techniques to use in its investigation. Before looking atthe computational methods

that have been applied to poker we next review the first scientific investigations into

the game by the pioneers of game theory.

2.4 Early Game Theoretic Investigations into Poker

The earliest academic investigations into the game of pokerwere undertaken in the

mid-twentieth century. Such luminaries as Kuhn [80], Nash and Shapley [89], and

von Neumann and Morgenstern [120], employed greatly simplified poker variants to

formulate a framework for strategy selection in non-cooperative environments. The

toy pokers that were examined were typically only two- or three-player games, and

used pared decks of cards to reduce the space of possible strategies. Much of this

early work on poker formed the foundations of game theory, a discipline which has

grown substantially over the last half-century. Applications of game theory are now

commonplace in many diverse fields, including economics, sociology, and political

science [52].

The motivation for the research of von Neumannet al. was not to derive winning

strategies for pokerper se; rather they had the wider aim of seeking to understand

which strategies should be selected by rational, reward-maximizing individuals when

the potential payoffs to their actions are dependent upon the choices of competing

players.

One example of early poker research was that conducted by Kuhn [80] on a simpli-

fied two-player poker. The game requires each player to ante one unit, before receiving

a single card from a deck of three uniquely numbered 1, 2 and 3.In the single betting
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round the players must either bet one unit or pass. If a playerpasses after his opponent

has bet the opponent wins the pot. Two successive bets or passes lead to a showdown,

with the highest numbered card determining the winner.

The benefit of choosing such a reduced form of poker is that it makes the number

of possible plays and strategies far smaller than that of anyreal variant. Using lin-

ear programming [119] the resulting game matrix is easily solved to produce optimal

strategies for both players. The results take the form of mixed strategies, such that a

player should randomly employ a specific weighting of his available pure strategies.

This simple form of poker is typical of the toy games that haveformed the test bed

for much poker research. Borel’s poker [19] and von Neumann’s poker [120], both

of which pre-date Kuhn’s work, use real numbers from the unitinterval as “cards”.

As with Kuhn’s poker, limitations are placed on the available betting actions to facil-

itate tractability. Recent work co-authored by a world championship winning poker

player [44, 45] extends the Borel model to solve games with larger bet sizes, multiple

betting rounds, and more elaborate betting possibilities.

Research which examines extensions to such toy pokers is common in the litera-

ture. Additional game features are routinely incorporatedto make the variant more

complex and often more realistic. Cutler’s poker [34] allows for pot-limit betting, Kar-

lin and Restrepo [70] introduce a model incorporating multiple betting rounds, and

Nash and Shapley [89] investigate a three-player game. Gillies et al. [53] calculate

solutions for poker variants mentioned in the work of von Neumann and Morgen-

stern [120].

Interestingly, some of the results from the studies on toy pokers have highlighted

strategies which are applicable to real poker variants suchas Texas hold’em. For ex-

ample, the optimal strategy for the first player in von Neumann’s poker reveals that he

should bet with both his very best and very worst hands. Betting with a hand which has

no possibility of winning in a showdown is referred to asbluffing. This action creates

greater uncertainty of a player’s cards in his opponent’s mind, and can often win pots

with an inferior hand through the opponent folding. Bluffingis seen to be used in all

regularly played forms of poker.

The major problem in applying game theory to real poker variants has been due

to the size of their game trees. Given the combinatorial number of possible deals and

betting actions over multiple rounds, it is calculated thatthe number of nodes in two-

player Texas hold’em is over 1018 [8]. For the multi-player game this number will be

palpably far larger.
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More than fifty years after the initial mathematical investigations, much of the

present advances in poker research employ game theory on larger and more realis-

tic forms of the game. This work has been made possible by increases in computing

power. Prior to looking at this we discuss some of the other computational techniques

that have been employed by poker researchers.

2.5 Computer Poker Research

Several different methods have been used in the attempt to develop strong computer

poker players. The first to use computers in poker research was Nicholas Findler [46,

47]. A simplified form of draw poker was used for testing the play of humans against

intelligent machine systems that played according to heuristics and simple statistical

features. The primary purpose of Findler’s study was to understand how humans make

decisions under conditions of uncertainty, for which pokerwas simply the test bed.

The computer players he designed were overly simplistic to be practically competitive,

and their betting behaviours too revealing.

A Bayesian network-based approach [77] has been used to model five-card stud

poker. This methodology enabled the computer player to learn the game and its single

opponent’s strategy by continual updating. The results of this research were mixed,

and whilst the program had some success playing against simple probabilistic and rule-

based computer competitors, it was found to be deficient against human opposition. It

appears that the hand classifications used were too broad, and that the updating was

unable to adapt to deceptive opponents.

Following the previously mentioned success of Tesauro in applying a reinforce-

ment algorithm to backgammon, Dahl [35] investigated the use of these techniques to

a simplified two-player Texas hold’em game. In this work he explains that a value-

based approach such as TD or Q-learning is not applicable to an imperfect information

game such as poker, since the value of the game cannot be estimated with sufficient

accuracy during play. Instead he applied a gradient search-based reinforcement learn-

ing algorithm to a much simplified poker variant. This methodcreated a player which

was seen to learn and improve against its opponents, but applying this technique to the

far larger search space of a full-scale poker will require much greater research efforts.

Daphne Koller and Avi Pfeffer [75, 76] created a new algorithm for finding optimal

randomized strategies in two-player imperfect information games, such as poker. Their

Galasystem represents games in sequential form, an alternativeto the commonly em-
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ployed matrix (normal form) and graphical (extensive form)representations.Gala is

able to specify and solve a larger class of problems than was previously achievable.

They report in their research, unfortunately, that the sizeof the game tree in full-scale

poker is still beyond the capabilities of this system.

The most advanced and successful work on computer poker playto date has been

produced by the Game-playing, Analytical methods, Minimaxsearch, and Empirical

Studies (GAMES) Group at the University of Alberta. Jonathan Schaeffer’s group have

been responsible for some of the most important advances in computer games player

development generally, and are now focusing much of their efforts towards poker.

The GAMES Groups’ poker research started with the development of Loki [13, 14,

15, 16, 37, 94]. This program is designed to play ten-player limit Texas hold’em in

a ring game, and employs a combination of statistical measures and expert rules to

effect decision making. TheLoki system was re-written in 1999, and christenedPoki.

In this version the opponent modelling mechanism was changed from using statistical

updating to a neural network [38, 39].Poki also incorporates a more advanced de-

cision making procedure, with selective-sampling providing the ability to search the

game tree in real time.Poki still determines its betting actions with reference to an

expert-defined rule base, but it selects its action randomlyfrom a distribution over

each possible action. This means thatPoki is less predictable than its predecessor.

At the time of their development,Loki andPoki were arguably the most advanced

computer poker players. Their reliance on expert rules, however, could be said to lessen

the achievement of the GAMES Group in these systems. It may bethat some pre-

conceived strategies are actually incorrect, and thus handicap the computer player’s

abilities. Techniques which assume no prior knowledge havealso been applied to

computer poker, and will be examined thoroughly when we review the application of

evolutionary computation to poker in Chapter 5.

2.6 Combining Game Theory with Learning

The end of the last century saw a return to game theoretic investigations of poker, due

to the advances in computer technology. Alex Selby [106] wasthe first to success-

fully apply game theory to a variant of Texas hold’em. In his work, Selby solved the

two-player pre-flop limit version of the game. This restricts the game to a single bet-

ting round, after which the remaining community cards are dealt out and the winner

determined. The size of the resulting game tree is small enough to be mathematically
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tractable. The solution takes the form of a table of mixed strategies for each player

depending on their starting cards and how their opponent bets.

Shi and Littman [107] built upon the work of Selby to produce the optimal strat-

egy for a multi-round variant of Texas hold’em, which they christened Rhode Island

hold’em. Their approach reduced the size of the two-player game tree by utilizing

several abstraction and bucketing techniques. The resulting models were then small

enough to be solved by linear programming, with the solutions interpreted in the con-

text of the original game.

The success of this work led to the most significant recent innovations in deriving

optimal strategies for a real poker variant by Billingset al [8] at the GAMES Group.

Billings applied Shi and Littman’s reduction techniques totwo-player ring game limit

Texas hold’em, to derive what they term “pseudo-optimal” strategies within the pro-

gram PSOpti. This program was tested against a world-class poker playerwith re-

markably good results. Eventually the human player was ableto find weaknesses in

PSOpti, and adapted to beat it. Although unable to compete at the very highest level,

tests against weaker human opposition have confirmed the general strength ofPSOpti’s

play.

Whilst this effort of the GAMES Group is highly noteworthy, the benefits to learn-

ing the optimal strategy for any given game are limited. In game theory, an optimal

strategy in a two-player zero-sum game is one for which neither player can increase

his reward by unilaterally deviating. Knowing the optimal strategy in a game only

provides the best worst-case across all the opponent’s possible strategies. If the op-

ponent also plays his optimal strategy, the game rests in equilibrium. If the opponent

deviates, though, there may be a chance to increase the expected payoff by also play-

ing non-optimally. By considering the opponent’s originaldeviation to be a strategic

mistake, a sub-optimal reply which increases the expected payoff is an exploitation of

this mistake. Hence to play poker profitably it is not necessarily an optimal strategy

that is required, but a maximal one. This is a strategy which maximizes its payoff

against all the opponents’ strategies. Determining a maximal strategy requires the use

of opponent modelling.

The need for opponent modelling in games of imperfect information is highlighted

in the creation of computer players for RoShamBo (commonly referred to as “Rock,

Paper, Scissors”). In this game, two players must simultaneously select from the choice

of the three objects, and an intransitive relation amongst the possibilities decides the

winner: rock beats scissors, scissors beats paper, and paper beats rock. The optimal
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solution for this game is to select all three actions randomly and with equal probability,

and no counter-strategy is able to defeat this play in the long run. The drawback to this

approach is that in a pairwise league competition between many players, the optimal

strategy will only produce middling results. It will score averagely well against all

opposition, whereas the programs at the top of the league will have been able to exploit

most of their opponents’ weaknesses.

An optimal strategy is sub-maximal if one’s opponent is playing sub-optimally. To

illustrate this, suppose that a particular RoShamBo playerselects paper with certainty.

Then the optimal strategy will equally win, lose and draw onethird of the time. An

alternative program which always selects scissors againstthis “always paper” strategy

will ensure the maximal result. The winner of the First International RoShamBo Pro-

gramming Competition [9],Iocaine Powder[42], was designed to exploit its opponents

where possible, only reverting to the optimal strategy as a default.

The rationale behind knowing the optimal strategy for a gameis that it first creates

a “no lose” strategy. For the program to produce better results it needs to be able to

model its opponents and exploit their mistakes. So as Billings correctly points out [8],

knowing the optimal strategy for a given poker variant formsa strong foundation upon

which to build. The creation of a maximal player from an optimal one centres wholly

on opponent modelling. By learning and understanding the opponent’s strategy, the

program will then be able to adapt its play and improve its results.

With this in mind, the GAMES Group followed the creation ofPSOptiwith the

programVexBot[12]. This newer model is also designed to play two-player ring game

limit Texas hold’em. The methodology behindVexbotimproves upon the solely game

theoreticPSOptiby incorporating real time opponent modelling into its gametree

search. The superiority of this approach was demonstrated in Vexbot’s defeat ofPSOpti

in the 2003 Computer Olympiad [10]. SincePSOpti’s strategy is not precisely opti-

mal, Vexbotwas able to identify and exploit weaknesses in its play. The results from

this methodology are extremely encouraging, and it would seem likely that further

advances in this direction (for example, by allowing for multiple opponents) would

produce even more impressive results.

Recent efforts by the GAMES Group specifically target the area of opponent mod-

elling [65, 116]. There are many difficulties in achieving adequate learning during the

play of poker. The critical issue is how to model an opponent after only a few hands

of play, when the space of all possible hands is vastly larger. Another challenge is

in maintaining an up-to-date model when the opponent could be switching strategies
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mid-game.

If a game of poker can be divided into the components of a fundamental mathe-

matical understanding plus opponent modelling, then the latter is undoubtedly a great

obstacle to creating a world class program. However, the benefits of a highly compe-

tent opponent modelling function are lessened without a solid comprehension of the

underlying physics of the game. Given that two-player limitTexas hold’em is now

almost solved, attention for this specific variant has rightly turned towards opponent

modelling. For other forms of poker, such as no-limit betting and tournament play, the

foundational groundwork has yet to be established academically.

2.7 Non-Academic Poker Literature

Several books have been written on correct strategy for playin ring game limit Texas

hold’em [22, 26, 31, 63, 64, 68, 83, 99, 121]. Due to the complexity of the game,

all poker texts contain overgeneralizations in the advice offered. The guidance put

forward is almost entirely based on anecdotal evidence, with the possible exception of

one author. David Sklansky’s books [108, 109, 111], are generally the most scientific

in their approach, and often include brief sections on the application of game theory to

idealized poker situations.

Much of the non-academic poker literature sets out the criteria that a hold’em

player should use in deciding upon his strategy once the holecards have been dealt.

Hilger [64], for example, lists amongst other factors:

• Strength of starting cards

• Position

• Number of callers

• Raised/unraised pot

The last two factors can be grouped together into knowledge of the opponents’

prior betting actions. Hand strength, seating position, and the opponents’ prior actions

are the three factors which are most commonly heralded as being important for basing

betting decisions on in Texas hold’em. In the following sections we examine each of

these in more detail.
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2.7.1 Hand Strength

In the long run all players receive exactly the same distribution of starting hands in

Texas hold’em. Whilst it is often observed that any two cardscan win an individual

hand, some of these figure to be profitable if played regularly, and others not. The skill

in poker is in playing the right hands for a particular situation, and folding the rest. As

Hilger [64] puts it:

Winning players play mostly strong hands while losing players play
both strong and weak hands.

In a hold’em showdown the highest ranking hand wins. Therefore the potential

for success with two given hole cards must be assessed. Outside of the context of a

particular situation, all starting hands have a certain intrinsic value. Many poker au-

thors have sought to simplify this evaluation by grouping together hands of similar

strength [26, 64, 68]. In formulating his hand strength groupings, for example, Sklan-

sky [108] used these six interrelated criteria:

• What are the chances of making the best hand?

• What are the chances of making a flush? (Are the cards suited?)

• What are the chances of making a straight? (Are the cards close to each other

and in the middle ranges?)

• What are the chances of flopping top pair2 (or in the case of a pair in the hole,

what are the chances that no overcard3 will fall)?

• What are the chances of making a hand that figures to win a big pot (because the

players will tend to make second best hands)?

• What are the chances of making a hand that might well just losemoney since it

will be second best?

He assigns 72 of the 169 different starting hands to one of eight groups, with the

remainder deemed unplayable.

Sklansky then explains that, in the context of a specific situation, a hand’s true

value is heavily dependent upon other game factors. The two principal considerations

2Flopping top pair means that the highest ranking card on the flop matches one of the player’s hole
cards, thus making a pair.

3An overcard is a card higher in rank than that paired in a player’s hole cards.
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that he and all other authors cite are one’s seating positionand the opponents’ prior

actions.

2.7.2 Seating Position

The seating position of a player relative to the dealer is said to be a highly signifi-

cant factor in the decision making process, according to poker professionals. Indeed,

Miller’s [83] opinion is that:

Position is the second most important component of hand value (your
own and your opponents’ cards are the most important).

The seating position of players in a hand of Texas hold’em takes on increased

noteworthiness since the order in which players act remainsinvariant, unlike some

other poker games. The players to the immediate left of the dealer are said to be inearly

position. The first two such players must post the small and big blinds respectively,

with the active betting in the pre-flop round commencing withthe third around from

the dealer. In the three later betting rounds the betting again starts with the first active

player to the dealer’s left. The dealer himself and the players to his right are classed as

being inlateposition.

Poker authors contend that there is a benefit to being seated in late position. The

more betting rounds there are, the greater the advantage. Hence with four betting

rounds, seating position in Texas hold’em is exceptionallyimportant. Late position

is said to confer an informational advantage, since a playerseated there is able to act

based upon knowledge of how those seated in front of him have played. An early

position player suffers from the opposite disadvantage.

2.7.3 Opponents’ Prior Actions

The non-academic poker literature regularly states that a hand’s worth is highly de-

pendent upon the betting actions that have already occurred. For example, low pairs

are often said to be worth playing after several callers, butnot just one or two. Other

hands, like high offsuit cards, are believed to lose value with every additional oppo-

nent. A player who observes his opponents’ actions is able touse this information in

evaluating his hand’s strength and suitability for that particular situation.

The most common message from the professional players relates to the reduced

number of hands that should be played once an opponent has entered the pot, particu-

larly with a raise. According to Sklansky [111], after an opponent has raised:
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You should usually reraise or fold, with folding being much more
prevalent.

His sentiment is echoed by Jones [68], who simply states that:

You need a stronger hand to play in a raised pot.

According to the literature, the rationale behind this is simple. The most likely

reason for an opponent to bet in poker is because he has a strong hand. Therefore one

must always be more wary of playing a hand in an opened pot. It is safer to release

marginal starting cards than play them after a raise, particularly for non-expert hold’em

players. The expected value of a fold is zero, and this is frequently the maximum of

all the available betting options when acting behind a raiser.

Note, that the consideration of one’s opponents’ prior actions is closely tied to the

preceding factor of seating position. The later the seatingposition of a player, the more

of his opponents’ prior actions he can observe.

2.8 Summary

Research into correct play for ring game poker has advanced substantially over the

last half-century, benefiting from increases in computational power. The early inves-

tigations by the founders of game theory on toy pokers have now been updated to

address real poker variants. Different computational methods have been applied with

the aim of developing strong poker programs. Many of the resulting programs now

contain highly accurate game theoretic strategies, and work is advancing on opponent

modelling techniques to improve their play even further.

Almost all academic research on Texas hold’em has centred onlimit betting in

a ring game environment. None of the studies published to date have been directed

towards the tournament form of poker, and none have addressed the no-limit form of

the game. These are striking omissions, given that the most prestigious events in poker

are played within a no-limit tournament setting. Clearly any researcher wishing to

develop a player which is able to compete for the world championship will need to

frame their program within the no-limit tournament context.

The most palpable reason for the lack of progress into no-limit tournament poker

are the additional complexities to those needed to produce alimit ring game player.

Firstly, in limit betting each player need only decide whether to fold, call or raise

at each turn. If a player raises in big bet poker, he must also decide by how much.
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Also, the dual objective within tournament poker of both winning pots and survival

poses a harder challenge to researchers than creating a ringgame computer program.

Since tackling the real life complexities of a no-limit Texas hold’em tournament is

non-trivial, we seek to simplify the task whilst keeping sufficient features of the game

intact.

In the next chapter we address the strategic issues surrounding tournament Texas

hold’em more closely, and look at game simplifications whichmake experimental work

feasible.



Chapter 3

All in or Fold Texas Hold’em

Tournament Strategy

In this chapter we elaborate on tournament poker, explaining the rules and structure of

such a competition. Following this we consider the differences between tournament

poker and the ring game, and consider how these distinctionsimpact on a player’s

betting actions. Next we give an example of a complete strategy for no-limit Texas

hold’em tournaments, as set out by poker professional and theorist David Sklansky.

We then show how we used his all in or fold system to compete in the ICCM 2004

PokerBot World Series event against more complex computer poker programs.

3.1 Texas Hold’em Tournament Rules and Structures

In a Texas hold’em ring game players bring real money to the table in the form of poker

chips. The betting structure is fixed, meaning the blind amounts do not alter throughout

the duration of the game. It is common to see a spread of ring games offered both in

live play and online, with the price level often denoted by the sizes of the small and

big blinds. At a typical internet poker site Texas hold’em ring games can vary in price

level from $0.05/$0.10 up to $1,000/$2,000 [1]. This spreadallows players to find a

game which is in keeping with their bankroll and, since better players typically play

for higher stakes, their ability.

The competition in a ring game is limited to the number of people who can be

seated around the table: typically ten. A ring game player isfree to exit at any time,

whether in profit or loss. If he loses all his chips he must either leave the table or

purchase more chips to continue playing. A ring game has no fixed end point and

23
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players frequently drop out of the game to be replaced as seats become available. The

profit or loss of a ring game player is simply the aggregate result of wins and losses on

every hand played.

Poker tournaments employ the same underlying game rules to determine the play

of each hand, but differ in their overall structure. Each competitor buys-in for a given

starting stack amount, but unlike in a ring game the chips arenot a direct replacement

for cash and have no value outside of the tournament. So for example, a competitor

entering a tournament with a $50 entry fee may actually receive $5,000 in tournament

chips. Note that such a player stands only to lose their original $50.

Tournament entrants must continue playing until they have either lost their stack or

have won everybody else’s1. Tournaments can be played with any number of players,

from two up to several thousand. Tournaments with more than ten entrants involve the

use of many tables. The number of seats around each is limited, but as individuals get

knocked out continuing players are taken from other tables to fill the gaps. In this way

the number of active tables in a tournament is eventually reduced to afinal table.

To ensure an expedient finish, tournaments employ a rising blind schedule. This

means that after either a specified number of hands or a given time interval the size of

the blinds increases according to a pre-specified programme.

The payoff in a tournament is determined by the reverse orderin which players lose

all of their chips. Hence those players who survive longest finish highest. Normally

a player must finish in the top 10-20% of the competitors to receive a prize. Most

tournaments use the progressive payback method in which thehigher placed finishers

receive an increasingly larger share of the prize money.

All of the above discussion on the structure of a poker tournament, and the differ-

ences with a ring game, are summarized in Table 3.1.

Following this we present an example of a typical low-stakeslimit hold’em tour-

nament in Table 3.2. In this tournament it is supposed that 47competitors each pay

$20 in real money and start with $1,000 of tournament chips. Aprogressive payback

applied to this same tournament shows the potential payoffsto the entrants in Table

3.3.

The structural differences between tournament and ring game poker lead to distinct

objectives for players in each event. Paramount amongst these differences are the con-

trasting ways in which players win or lose money. In a ring game money is collected

1The exception to this is a rebuy tournament, which allows players to purchase additional chips
during a prescribed opening period of play. For the remainder of this thesis we assume a tournament
which does not allow rebuys.
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Game Feature Tournament Ring Game

Entry Fee Fixed tournament cost Variable

Chips Game tokens Real money replacement

Blinds Rising schedule Fixed

Number of Players Unlimited Limited by table seats

Game exit No more chips remaining Player discretion

Profit and Loss Based on finishing positionDetermined on each hand

Table 3.1: The structural differences between tournament and ring game poker.

Duration Blind Sizes

15 minutes $15/$30

15 minutes $30/$60

15 minutes $50/$100

15 minutes $100/$200

15 minutes $200/$400

Interval Interval

15 minutes $300/$600

15 minutes $500/$1,000

15 minutes $1,000/$2,000

15 minutes $2,000/$4,000

15 minutes $3,000/$6,000

Table 3.2: Typical limit tournament poker structure (from [117]).



Chapter 3. All in or Fold Texas Hold’em Tournament Strategy 26

Place Prize Money Percentage

1st $376 40%

2nd $216 23%

3rd $113 12%

4th $85 9%

5th $56 6%

6th $47 5%

7th $28 3%

8th $19 2%

Table 3.3: Typical limit tournament poker payout structure (from [117]).

or forfeited with every hand played. This means that it is almost always correct2 to

choose the betting decision which has the highest expected value (EV) amongst the

alternatives in ring game play. In this way it is often said that a ring game player’s long

term winnings are simply the accumulation of the EV for each decision he makes.

Whereas the basic structural unit of a ring game is an individual hand, a tournament

is the unit in itself. Money is only collected for finishing inthe prize places in a

tournament. In this format each player must weigh the EV of their decisions in terms

of tournament chips with their EV in terms of prize money.

3.2 Strategic Factors in Tournament Poker

Players are continually forced to win chips to survive in a tournament. This is because

as a tournament progresses the players are regularly required to post blinds, which rise

according to a schedule. The process of losing chips throughthe continual posting of

blinds is known as beinganted-away. It is not usually enough, however, to simply

aim to survive in a tournament. Players also need to accumulate chips to ensure a

greater chance of finishing in the prize money. The dual objectives of survival and chip

accumulation make tournament play strategically more complex than that required in

a ring game.

There are many ways in which these objectives manifest themselves in a tourna-

ment player’s actions. To ensure survival a player might eschew positive EV on a hand

2The exception to this is due to meta-game considerations, i.e. one may make a sub-maximal play
to deceive one’s opponent in the expectation that it will lead to greater winnings in a future hand.
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if he believes that it maximizes his expected prize. Contrariwise, a player with only a

few chips may choose to bet an inferior hand and accept a negative EV if he believes it

improves his chance of receiving prize money over folding. Generally speaking, com-

petitors wishing to protect their chips and survive will play more conservatively than

in the identical ring game situation. Likewise, a player wishing to accumulate chips

will pursue a more aggressive and potentially riskier course of action.

Texas hold’em literature for ring game play abounds, as discussed in Section 2.7.

However, a lesser amount has been specifically written for tournament strategy [24,

60, 61, 81, 110, 114, 117]. The reasons for this may be due to the fact that tournament

poker is only a relatively recent phenomenon in the United States, from where the vast

majority of books are authored, or it may simply be due to the increased complexity of

tournament play.

Since an individual hand within a tournament uses exactly the same rules as those

of a ring game there are very clear similarities between the nature of successful strate-

gies in both formats. The factors of hand strength, seating position, and opponents’

prior actions are still as important in the decision making process. However, the non-

academic tournament poker literature contains many illustrations of how overall tour-

nament strategy differs from that required for a ring game. Hilger [64] states that:

You will need to make many adjustments to your ring game in tourna-
ments to consistently end up in the money.

This advice is repeated by Reuben and Ciaffone [99], who claim:

Playing in pot-limit and no-limit money games does not completely
prepare a person for tournament play. A formal competition has somewhat
different strategy, and vastly different psychology.

Within the literature there are three commonly cited factors believed to influence

correct tournament strategy, in addition to those discussed for ring game play. These

are the presence of rising blind levels, the importance of stack size, and a phenomenon

known as the “Gap Concept”. These are explained in turn in thefollowing sections.

3.2.1 Tournament Level

The style of a poker player can be crudely evaluated with reference to two comple-

mentary scales. One measures how many hands a player plays, whilst the other gauges

how often a player bets and raises.
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A player who bets with a great many poker hands is said to beloose. At the

other end of the scale atight player is one who frequently folds. There are several

ramifications depending on the looseness of players in a poker game. A competitor

who is very loose is likely to be playing hands which are weaker on average than his

opponents. Therefore he bears a greater risk of facing an opponent with a stronger

hand. However, when a loose player himself holds a very strong hand his previous

frequent betting action often proves to be a profitable disguise. Also, a loose player

may pick up many pots through his constant betting.

A very tight player usually only bets withpremiumhands. These are the highest

ranking two-card holdings. The deficiency with this strategy is that opponents are

usually quick to notice when a player frequently folds, so that when such a player

does bet they signal a strong hand. The clever tight player can then use this to their

advantage by occasionally betting with weak hands, and picking up pots unopposed.

The second scale on which poker players are often measured relates to their propen-

sity to bet the hands they play. Anaggressiveplayer will typically bet and raise,

whereas apassiveplayer prefers to check and call. Aggressive players like totake

a lead in the betting action. They reason that betting gives them an extra way to win a

hand that calling does not: their opponents may fold. Almostall professional poker au-

thors advocate a tight-aggressive strategy for ring game poker. That is to say, a player

should not play many hands, but when they do they should invariably bet and raise

with them.

With specific reference to tournament poker, the non-academic literature also coun-

sels the tight-aggressive approach, but with one significant adjunct. This rider is the

necessity for increased looseness and aggression as a tournament progresses. Poker

authors maintain that a player should be very tight and cautious in the early stages

of a tournament, and gradually become less tight to take morerisks as play proceeds.

Since the initial blinds are very small as a percentage of thestarting stacks, there is

little incentive to try to win pots with all but the very best of starting hands. Once the

blinds escalate, players must start to win pots more frequently to survive and hence

their starting requirements should be lowered.

Likewise, players in the later stages of a tournament shouldbe more willing to

bet and raise their hands, rather than simply call their opponents’ bets. The greater

chance of causing opponents to fold and steal blinds by becoming both looser and

more aggressive is believed to offset the increased chance of tournament elimination

by coming up against a stronger hand.
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Harrington [60] sums this up by saying:

As long as the cut-off point for prize payouts is distant, play proceeds
normally. As the number of players shrink and gets close to the prize
cutoff, play changes dramatically. Good players become more aggressive.

3.2.2 Stack Size

According to the poker literature, chip stack sizes are important in both ring game

and tournament play, particularly in big bet games. Stack sizes take on even greater

significance in tournaments due to the fact that players cannot replenish their chips.

Once a player loses all of their stack they are eliminated from the tournament.

In no-limit poker the correct betting decisions are often said to be determined by

the amount of chips the active players hold. This effect is most noticeable towards the

end of a tournament. For example, a player with a sizeable chip stack at the final table

is often wise to avoid confrontations with the other large stacks. The reasoning is that,

although the player may have a positive EV on the hand being played, the downside to

losing the hand and missing out on larger prize money often makes it correct to fold.

In a comprehensive book written on limit Texas hold’em tournaments, Buntjer [24]

details what he believes should be the overriding strategicconcerns in a player’s deci-

sion making at different stages of a tournament. These weightings are reproduced in

Table 3.4.

Phase Starting Playing Player Your Opp. Your

Hand Position Type Image Stack Stack

Early 60 20 10 10 0 0

Middle 20 15 30 10 10 15

Last 2-3 tables 15 15 15 15 15 25

Last table 20 20 15 5 20 20

3-4 players 5 10 10 5 30 40

Heads-up 5 0 5 10 40 40

Table 3.4: The relative importance of strategic factors in a limit Texas hold’em tourna-

ment (from [24]).

The conclusions to be drawn from this include:
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• one’s starting hand begins as the most important reason to play a hand in the

early stages of a tournament, but then becomes almost irrelevant towards the

end,

• chip level, both one’s own and one’s opponents’, begins as irrelevant but gradu-

ally becomes the most important factor in the play of a hand

A player with a large stack benefits in at least two ways. Firstly, he is able to

wait until he receives strong cards before playing a hand, since he does not risk being

anted-away. Secondly, he may choose to habitually raise hisopponents, even with

weak hands. This tactic can prove to be profitable since an opponent may then prefer

to fold a mediocre hand rather than play back, realizing thattheir tournament survival

could be at stake. The big stacked player may thereby pick up many uncontested pots.

The situation facing a player with a relatively short stack is often critical. Such a

scenario often dictates that the player should be willing tobet with any and all hands,

especially if the pot is unopened. Although they may face elimination if called and

beaten, the potential for success makes it preferable to thealternative of being anted-

away. One of the many skills of a strong poker player is determining the point at which

a bet with a weak hand should be attempted.

A series of three books detailing no-limit Texas hold’em tournament strategy has

been written by Dan Harrington [60, 61, 62]. The author is oneof the most successful

poker players of all time, having won the World Series of Poker main event in 1995

and reaching the final table in both 2003 and 2004. Harringtonintroduces many new

concepts within these books.

In the second of his trilogy [61] he comments that:

The most important single number that governs your play towards the
end of tournaments isM, which is simply the ratio of your stack to the
current total of blinds and antes...As yourM drops, your play needs to get
more and more aggressive.

He then develops strategies which depend upon the differentpossible values of this

number.

3.2.3 The Gap Concept

The need to preserve chips and avoid confrontations in a poker tournament contributes

to the Gap Concept, a term coined by David Sklansky [110]. He describes his informal

theory thus:
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You need a better hand to play against someone who has alreadyopened
the betting than you would need to open yourself. The difference between
the hand you need to call an opener with, and that with which you would
open yourself, I call the Gap... In a tournament this Gap is often extremely
high... As important as the Gap Concept is anytime in a tournament, it
becomes more important still with the Gap usually widening even more
during the last stages of the tourney.

So for example, a player with a relatively weak holding of a pair of sevens seated

halfway around the table may be correct in betting into an unopened pot, but they

would require a stronger hand (say, a pair of jacks) if an opponent has already bet. The

“gap” is the difference between these two hands. The Gap Concept also states that this

gap typically increases as a tournament progresses. Hence as a tournament progresses

weaker hands are sufficient to open a pot, but even stronger ones are required to call or

raise a prior bet.

A corollary of the Gap Concept is that it is seldom correct to open the pot with a

call (also known aslimping) in a poker tournament. This is especially true in the later

stages when the blinds have risen. The reason for this is thata raise will very often win

the blinds, since the remaining players will fold many more hands to a raise than they

would to a call.

3.3 Sklansky’s System

In the same book that introduced the Gap Concept, David Sklansky reveals the basis

for a simplistic strategy for no-limit tournament Texas hold’em. A casino owner had

entered his daughter into the $10,000 World Series of Poker main event, but she had no

previous experience of playing the game. The owner approached Sklansky one week

before the start of the tournament and asked him to help his daughter learn how to

play. Given her lack of proficiency and the short time available for training, Sklansky

developed what he termedThe System.

Sklansky’s instructions were simply:

• If someone has raised in front of you, move all in with aces, kings, or ace-king

suited. Otherwise fold.

• In no one else has raised in front of you, move all in with any pair, any ace-other
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suited, ace-king (suited or offsuit), or two suited connected cards3, except for

four-three or three-two.

• Do not play any hands in the first few rounds of the tournament.

There were two main reasons behind the given strategy. Firstly, Sklansky wanted

to keep the specifications as simple as possible since the lady had never played poker

before. He felt that the more complexity he put into the decision rules, the bigger the

chance that she would err. The second basis for playing in such a way is that it would

make her extremely difficult to play against. By committing all of one’s chips before

the flop, it removes the necessity to act on the final three betting rounds. Experienced

tournament poker players can use these rounds to make improved inferences about

their opponent’s likely holdings. Sklansky’sSystemnegates this advantage.

Since there are 1,326 possible two-card starting hands, theSystemadvocates an all

in move with 13.1% of these (see Table 3.5). With a ten-playertable, an individual

needs to win the blinds at least 10% of the time to avoid being anted-away. Assuming

an average distribution of cards, a player who employs theSystemwill therefore be

competing in a sufficient number of hands.

Hand Combinations

Any pair 78

Ace-king (suited or offsuit) 16

Any ace-other suited 44

Two suited connectors (except 43 and 32) 36

Total 174

Table 3.5: Playable hands in Sklansky’s basic System.

The downside to employing such a strategy is that at some stage its user will be

faced with an opponent who is prepared to call an all in bet. Ifthe opponent has a

larger stack then theSystemplayer must win the hand to ensure survival. Unfortunately

for the casino owner’s daughter she found herself in this position against an opponent

holding a pair of aces, and she was eliminated towards the endof the first day.

3Suited connected cards, also referred to assuited connectorsor zero-gaphands, are two cards of
adjacent rank in the same suit. By extension,one-gapandtwo-gaphands are those whose cards are two
and three ranks apart respectively.
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Sklansky’s book next includes a chapter entitled “Improving The System”. The

author points out the two major flaws in the simple strategy expounded:

• It did not take into account stack size versus blind size.

• It did not take into account how many players were yet to act.

The first of these points was behind Sklansky’s instruction not to employ the strat-

egy at the start of the tournament. His reasoning was that thedaughter would be risking

losing all her $10,000 stack for blinds totalling only $75. The risk/reward ratio in such

a case is too unfavourable. The second flaw with the originalSystemcomes from real-

izing that it is far safer to make an all in bet at a poker table if there are less players to

act behind oneself. The fewer the number of remaining players, the lower the chance

that somebody has a playable hand sufficient to call a bet.

Sklansky seeks to ameliorate his strategy by addressing these two defects. The

foundation of the improvedSystemremains the same: the user will either go all in or

fold in the pre-flop betting round. If an opponent has alreadyraised the pot then the

improvedSystemagain dictates that a player should re-raise all in with a pair of aces,

a pair of kings, or ace-king suited. Otherwise one should fold. With no prior raise

Sklansky bases his decisions around a “key number”. To calculate this value, a player

must first divide the total amount of the blinds into his stackamount. The resulting

figure is then multiplied by the number of players yet to act (including the blinds).

With no prior players in the pot, the calculated key number stands. Withn preceding

callers, the key number should be multiplied by(n+1).

The rules determining the acceptable all in starting hands in the improvedSystem

after a prior raise are given in Table 3.6. All other hands should be folded.

As an example of determining play using the improvedSystem, suppose that the

blinds are $160 and $320, and we are dealtK♥J♣ with a stack of $8,400. One player

has already called the big blind, and there are two players left to act after us. Here, the

key number is calculated to be:

k = 8400
160+320×2× (1+1) = 70

From Table 3.6 our hand requires a key number of less than 60, and so we should

fold. Note, however, that without the limper an all in would be appropriate:

k = 8400
160+320×2× (0+1) = 35
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Key Number Playable Hands

≥ 400 AA only

[200, 400) As above plus KK

[150, 200) As above plus QQ, AK

[100, 150) As above plus JJ, TT, AQ, KQ

[80, 100) As above plus any pair, any ace suited, zero-gap suited down to 54

[60, 80) As above plus any ace, any King suited, any zero- or one-gap suited

[40, 60) As above plus any king

[20, 40) As above plus any two suited cards

< 20 Any two cards

Table 3.6: Sklansky’s improved System.

Sklansky does not provide any assessment of the superiorityof his improvedSys-

temover its predecessor, but by the nomenclature employed he clearly assumes that

the extra information incorporated into the decision rulesincreases its strength.

Wishing to gauge the strength of the improvedSystemin a recent computer poker

competition we took the opportunity to encode and enter it into the ICCM 2004 Poker-

Bot Tournament.

3.4 ICCM 2004 PokerBot Tournament

In July 2004, the International Conference on Cognitive Modelling [93] held the “Poker-

Bot World Series” in which entries were solicited to play in aseries of no-limit Texas

hold’em tournaments between computer players. The purposeof the competition was

to study and evaluate cognitive models within an environment which is simple yet rep-

resentative of many real world situations. The organisers listed the cognitive abilities

required for playing strong poker as:

• Reasoning under uncertainty (one’s opponents’ cards)

• Dealing with probabilistic outcomes (the future cards)

• Decision making with multiple options (the chips used for bets)

• Individual differences (different styles of play)
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• Inference of intent (from opponents’ bets)

• Intentional deception (bluffing)

• Pattern recognition (detecting trends from the flow of the game)

• Social and emotional aspects (dealing with winning and losing)

• Economic behaviour (factoring the impact of amount of bets)

The tournament administrators specifically chose computerpoker as their experi-

mental domain because it provides a challenging problem covering a broad range of

cognitive abilities, yet remains more tractable than an environment based on human

interactions.

3.4.1 Tournament Rules

Entries were required to conform to a pre-specified protocol, and were accepted in the

form of an executable program. Each competitor commenced a no-limit Texas hold’em

tournament with $10,000 in chips. The blinds started at $10 and $20, and doubled

every 100 hands. The response times of each entry were limited to an aggregate of 100

seconds per 100 actions to ensure fairness. The winner of a tournament was simply

the player who won all of the chips. The results of the event were aggregated over 104

such tournaments.

3.4.2 Entries

Unfortunately the response to the tournament invitation was poor, and from 50 initial

expressions of interest only five working programs were entered. The reason for the

low numbers was believed to have been due to the restrictive time between the con-

ference notification and the tournament date. The five computer players entered, and

their programmers, were:

• AceGruber- Stanislav Sokorac (University of Toronto)

• Carleton- Terrence C. Stewart and Robert West (Carleton University)

• Dbot - Dan Bothell (Carnegie Mellon University)

• DumbBot- Richard Carter (University of Edinburgh)

• YesterdaySushi- Maxim Makatchev (University of Pittsburgh)
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3.4.3 DumbBot

Our entry into the PokerBot competition,DumbBot, encoded the improvedSystemset

out by David Sklansky explained previously. Since these decision rules were designed

for full-table play against nine opponents, an adjustment was made for play against

three or fewer opponents. This was done to accommodate the supposed requirement

for playing more hands later in a tournament, discussed in Section 3.2.1.

When entering an unraised pot in such a situation,DumbBotwould play as per

Sklansky’s instructions. However, if the pot had already been raised before its turn,

DumbBotwould perform a hand evaluation and only go all in if it possessed a suffi-

ciently strong two-card starting hand.

To perform the evaluation, the hole cards were compared to a ranking of all 169

possible starting hands and its percentile placing noted. The naive listing used ranks

all hands based on their expected win percentages against each other. The minimum

rankings required for an all in move dependent upon the number of opponents were

chosen to be:

• 3 opponents: 0.90

• 2 opponents: 0.85

• 1 opponent: 0.80

The selection of these values was arbitrary, but again made with the desire to play

more hands against fewer opponents.

3.4.4 Results

The overall winner of the PokerBot tournament was StanislavSokorac’sAceGruber.

It won 44 of the 104 tournaments, placing it comfortably above all other entries. The

number of tournament wins within the competition are shown in Figure 3.1.

The strategy thatAce Gruber implemented was the most complex of all the com-

petitors. The program was based on the architecture of the University of Alberta’sLoki

andPoki. It enumerated over the possible future cards in a hand, and was able to eval-

uate its present holding in terms of how the hand might develop. A superior inclusion

in Ace Gruber’s encoding was its opponent modelling. The program maintained prob-

ability tables for each opponent, representing the likelihood that each competitor held
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Figure 3.1: ICCM 2004 PokerBot Event #1.

any feasible hand. This allowed the program to learn its opponents’ playing styles, and

in this regard was unique amongst the entrants.

One significant difference betweenAce Gruberand its GAMES Group predeces-

sors was its ability to play no-limit poker, sinceLoki andPoki were only designed for

limit betting. Possible bet sizes were grouped into “small”, “big”, and “giant”, and

treated as distinct actions.

3.4.5 Extra Tournaments

In addition to the main competition, the organizers ran a supplementary event which

included an extra player of their own design. This program, namedMr-AI, simply

pushed all in every time it was its turn to act. The purpose behind including this

program was to see how well such a simple strategy would perform, and also to notice

whether the other players were able to adapt against it. The results of this extra event

are shown in Figure 3.2.

The results from these 68 extra tournaments reinforceAceGruber’s dominance

over its competitors. Sokorac’s program won 34% of the tournaments, again well

ahead of the second placed program.

The results forDumbBotshow a marked difference between the first and second

events. Placing only fourth out of five for the first competition, the program improved

to second place out of six in the extra event. One plausible reason for this is that
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Figure 3.2: ICCM 2004 PokerBot Event #2.

the increased number of opponents suitedDumbBot’s strategy better. As we have

noted, Sklansky’sSystemwas only meant for full-table play and he expected that it

would be inappropriate for fewer than nine opponents. The additional player made the

tournament slightly more appropriate for theSystem’s intended setting.

Whilst it is unreasonable to expect that a simple pre-flop allin or fold strategy could

outplay a sophisticated program such asAceGruber, the results of this competition do

support Sklansky’s assertion that such an approach is one ofthe most effective simple

ways of participating in a no-limit Texas hold’em tournament.

3.4.6 Comments

Using theZ-test for a proportion (binomial distribution) [123], it ispossible to deter-

mine the number of tournament wins that are required to reject the null hypothesis that

a program scored a naive average proportion of victories: one fifth in the first event,

and one sixth in the second. The test statistic is given by

Z =
(p−p0)

{

p0(1−p0)
n

}
1
2

wherep is the observed proportion,p0 the assumed proportion, andn the number of

observations.
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Given n and p0 we can find what values ofp are required such thatZ ≥ 1.65,

the 5% one-tailed significance level. Multiplying these proportions up by the number

of tournaments in each event yields the values 28.0 and 16.9.In scoring 44 and 23,

AceGruber is statistically far better than average.

The results of these events bolster the argument that opponent modelling is the

single most important facet of a strong computer poker player. It would have been

interesting to note the difference inAceGruber’s performance with its opponent mod-

elling turned off.

It is not accurately known to what extent each program used the game factors previ-

ously discussed in their decision making procedures. At least two -DbotandDumbBot

- used some form of ratio of bet size to blind sizes in selecting their actions.

The second competition results are very encouraging in showing how many tour-

naments it is possible to win by using an all in or fold strategy. Although the strength

of the competitors cannot be objectively measured, it appears that such a strategy can

perform adequately against more realistic opposition.

3.5 Kill Phil Strategies

One of the most recently published books on tournament pokerstrategy is that co-

authored by Blair Rodman and Lee Nelson [101]. This work builds upon Sklansky’s

Systemto make a collection of four no-limit Texas hold’em tournaments strategies.

The different approaches are entitled “Kill Phil Rookie”, “Kill Phil Beginner”, “Kill

Phil Basic Plus”, and “Kill Phil Expert”, and are ordered in increasing levels of sophis-

tication. All share the common premise of being all in or foldstrategies. The Kill Phil

Rookie strategy is given in Table 3.7.

The authors argue that there are essentially two methods that can be utilized in

playing a no-limit poker tournament. They call these “smallball” and “long ball”. The

first of these strategies is identified as being the most complex and difficult to master. It

is symbolized by playing many hands and trying to win small pots through outplaying

one’s opponents in all betting rounds of a Texas hold’em event. It is the strategy that

the top professional poker players employ, and it allows them to amass many chips in

the early stages of a tournament without putting a significant proportion of their stack

at risk.

Long ball poker is the opposite technique, being far simplerto realize and requiring

much less subtlety. A player using the long ball strategy will play very few hands, but



Chapter 3. All in or Fold Texas Hold’em Tournament Strategy 40

Tournament Stage No Prior Bet Prior Bet

Early AA, KK AA, KK

Middle Pairs, AK, any ace-suited,

suited connectors 54s or

higher

AA, KK, AKs

Final 4-6 players Pairs, A7 or highera, KT or

higher, any ace-suited, suited

connectors 54s or one-gaps

64s or higher

Pairs 66 or higher; AT or

higher

Final 3 players Pairs, any ace or king, suited

connectors 54s or one-gaps

64s or two-gaps 63s or higher

Pairs; A7 or higher, KJ or

higher; any ace-suited

Final 2 players Move in every hand Move in every hand

aNote that the term “A7 or higher” means a hand with an ace andat leasta 7.

Table 3.7: Kill Phil Rookie Strategy.

when he does he will often commit all of his chips to his decision before any of the

board cards have been dealt. This approach is far more hazardous because it constantly

puts the player at risk of elimination. However, successfuluse of the long ball game can

be an effective way to maintain chips by stealing blinds, andalso scores the occasional

“double-up” when one is called and wins the pot.

Like Sklansky, Rodman and Nelson argue that the all in or foldmethod is an effec-

tive approach for a tournament poker player wishing to reduce the disparity between

his abilities and those of more experienced opponents. Theybelieve that their strate-

gies, especially the more sophisticated ones, are sufficiently strong to give their users

a good chance of positive returns from real Texas hold’em tournaments.

3.6 Summary

In this chapter we introduced tournament poker, and highlighted several of the ways

in which it differs from its ring game equivalent. We discussed the ramifications of

the tournament structure, and examined some of the strategic considerations that are

deemed crucial for strong decision making.
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The factors previously discussed for ring game play - hand strength, seating posi-

tion, and opponents’ prior actions - are still important in tournament play. In addition

to these, knowledge of the tournament level and chip stack sizes should also be ac-

counted for.

In seeking to understand tournament poker play, we have studied Sklansky’sSys-

tems, and shown through application in the ICCM 2004 PokerBot Tournament that all

in or fold strategies do have some merit. We have seen that a strong tournament poker

player requires opponent modelling to achieve top results,but that all in or fold sys-

tems which incorporate some of the factors mentioned above can perform adequately

against more elaborate opposition.

Given the relative success of the above methodology, and thesimplifications it

makes to encoding a strategy, we continue our research by examining the importance

of the aforementioned strategic factors in an all in or fold Texas hold’em tournament

domain.



Chapter 4

Initial Tournament Poker

Investigations using Exhaustive

Simulations

We have seen how an all in or fold strategy can be used with reasonable success in

no-limit Texas hold’em tournaments. In this chapter we further investigate this ap-

proach by performing simulations of different strategies against three static opponents

from the non-academic literature, and gauging the impact ofknowledge of certain

game factors. Specifically we seek to determine whether the inclusion of knowledge

of seating position, opponents’ prior actions, tournamentlevel, and stack size leads to

improved tournament performance over strategies based on hand strength alone.

4.1 Exhaustive Simulations Experimental Framework

4.1.1 Tournament Structure

In our experimental work we wish to discover whether the strategic considerations

noted by poker authors in Sections 2.7 and 3.2 can be demonstrated empirically. To do

this on a full scale no-limit Texas hold’em tournament wouldbe very difficult given

the complexity of the game. Therefore we seek to make simplifications to full scale

poker, but still retain a sufficient amount of realism.

One of the first restrictions we can impose to reduce the strategy space to a tractable

size is to limit the players’ betting actions to all in or fold. In real poker a player

choosing to bet may decide the amount he wishes to stake. Replacing this possibility

42
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with the binary choice of all or nothing shifts the focus to the more general and im-

portant strategic question of when to bet, rather than how much. We commented in

the previous chapter that pre-flop strategies have been proposed for use in real poker

tournaments. We also noticed that such a system can score a significant number of

tournament successes when we entered one into a computer poker competition.

The use of the all in or fold restriction for the competitors removes the necessity for

the final three betting rounds in Texas hold’em. This is because all active players will

have committed the whole of their stack to the pot in the pre-flop betting. Since the

poker professionals’ recommendations relate to the full game, they implicitly apply

to the first, pre-flop round of betting. Concentrating on the pre-flop form of Texas

hold’em should not therefore affect the applicability of the authors’ advice.

All of the subsequent experiments employ all in or fold Texashold’em between

ten players with a winner-takes-all prize format. Whilst itis more usual for ten-player

tournaments to employ a percentage payout structure, thesatelliteformat is also some-

times employed. This design only credits a player for finishing first, and hence second

place is equivalent to finishing last. Formulating the competitions in this way ensures

that we assess each strategy’s ability to win tournaments, and not just their capacity for

tournament survival1. Also, by solely concentrating on whether a given strategy wins a

tournament or not we are able to cease a simulation once our test player is eliminated.

This condition saves a large amount of computation time.

In our experiments all players commence with $1,000 in tournament chips. The

blind structure is based on the number of hands played. Afterevery ten hands the blinds

rise through a possible eleven levels according to the schedule given in Table 4.1. If

reached, the blinds stay at the final level until the tournament’s cessation. The structure

chosen is very similar to those used in ten-player poker tournaments found online.

The deals in each tournament are seeded so that each experiment uses the same card

ordering. However, the nature of tournament poker precludes precise comparison of

two players in separate tournaments. As chips move between players and competitors

are eliminated, the situations faced by two test players in simultaneous tournaments

will start to differ. For example, once a player is eliminated from a tournament the first

card that he would have been dealt had he survived automatically passes to the next

remaining player with a predetermined deck. This offset then applies to all subsequent

cards. Seeding the deals only keeps comparable tournamentssimilar until such an

1With a percentage payout format profitable strategies will exist which win few tournaments but
score a sufficiently high number of 2nd and 3rd place finishes. The satellite format allows us to sharpen
our definition of what constitutes a successful strategy.
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Level Small Blind Big Blind

1 $5 $10

2 $10 $20

3 $25 $50

4 $50 $100

5 $100 $200

6 $200 $400

7 $300 $600

8 $500 $1,000

9 $1,000 $2,000

10 $2,000 $4,000

11 $5,000 $10,000

Table 4.1: Blind sizes at each tournament level.

inevitable divergence.

The computer code used in performing these experiments incorporated much of

the GAMES Group’s publicly available Texas hold’em poker resources [92]. Their

framework was designed for limit Texas hold’em in a ring gamesetting, and so sev-

eral modifications and new classes had to be written to allow for no-limit poker in a

tournament format. The random number generation used throughout our experiments

for the card shuffle is an implementation of the Mersenne Twister [6], which ensures

unbiased sampling.

4.1.2 Hand Groupings

Appendix A details how the 1,326 possible two-card startinghands in Texas hold’em

can be reduced to 169 using suit equivalence. Due to the length of time required to

run a sufficient number of poker tournaments on all of these hands the list was further

condensed. This reduction is non-trivial since starting hands in Texas hold’em do not

readily conform to a total ordering, and are best conceptualized as a partially ordered

set.

To illustrate this point, take the three starting hands:

2♥2♣, J♠T♠, andA♣K♦.
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Calculating the pairwise expected win percentages of thesehands yields:

Pairing Winner Loser

2♥2♣ vs. J♠T♠ J♠T♠ (54.0%) 2♥2♣ (46.0%)

2♥2♣ vs. A♣K♦ 2♥2♣ (52.6%) A♣K♦ (47.4%)

J♠T♠ vs. A♣K♦ A♣K♦ (58.8%) J♠T♠ (41.2%)

Table 4.2: Pairwise expected win percentages of three Texas hold’em starting hands.

Hence we see that the hands possess an intransitive relation.

There is no doubt amongst poker players that some starting hands are superior to

others. By far the most desired starting hand is a pair of aces, and similar high pairs

are also strongly coveted. Several attempts have been made to rank the starting hands

by strength value, although all such listings are inherently flawed due to intransitivities

as noted above. One very recent book [112] contains a plausible ranking of all 169

possible starting hands. For the complete ranking of the hands, and an explanation of

how this list was prepared, refer to Appendix B.

Given this total ordering we split the hands into thirteen groups, each contain-

ing thirteen elements. Group one contains the strongest hands, group two the next

strongest, and so forth down to the weakest in group thirteen. These groupings are

shown in Table 4.3.

Note that there are some general comments that we can make about the strength of

hands within these rankings. Firstly, high cards and pairs are more likely to be found

near the top of the listings. These hands have a high chance ofwinning in a showdown

without any improvement from the board cards. Secondly, twosuited cards are always

stronger than the respective offsuit hand due to the increased chances of making a

flush. Finally we see that zero-gap hands are generally more highly rated than similar

one- and two-gap hands due to their straight potential.

It should also be noted that although these groupings each contain thirteen elements

they are not all of equal size with regard to unique starting hands. This is due to the

different frequencies of pairs, suited, and offsuit hands,as explained in Appendix A.

Although the classification employed is coarse, it helps to provide a distinction be-

tween the strengths of starting hands and reduce the strategy space to a more tractable

size.
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Group Starting Hands #

1 AA, KK, AKs, QQ, AKo, JJ, AQs, TT, AQo, 99, AJs, 88, ATs 82

2 AJo, 77, 66, ATo, A9s, 55, A8s, KQs, 44, A9o, A7s, KJs, A5s 84

3 A8o, A6s, A4s, 33, KTs, A7o, A3s, KQo, A2s, A5o, A6o, A4o, KJo110

4 QJs, A3o, 22, K9s, A2o, KTo, QTs, K8s, K7s, JTs, K9o, K6s, QJo 94

5 Q9s, K5s, K8o, K4s, QTo, K7o, K3s, K2s, Q8s, K6o, J9s, K5o, Q9o100

6 JTo, K4o, Q7s, T9s, Q6s, K3o, J8s, Q5s, K2o, Q8o, Q4s, J9o, Q3s100

7 T8s, J7s, Q7o, Q2s, Q6o, 98s, Q5o, J8o, T9o, J6s, T7s, J5s, Q4o100

8 J4s, J7o, Q3o, 97s, T8o, J3s, T6s, Q2o, J2s, 87s, J6o, 98o, T7o 108

9 96s, J5o, T5s, T4s, 86s, J4o, T6o, 97o, T3s, 76s, 95s, J3o, T2s 92

10 87o, 85s, 96o, T5o, J2o, 75s, 94s, T4o, 65s, 86o, 93s, 84s, 95o 108

11 T3o, 76o, 92s, 74s, 54s, T2o, 85o, 64s, 83s, 94o, 75o, 82s, 73s 100

12 93o, 65o, 53s, 63s, 84o, 92o, 43s, 74o, 72s, 54o, 64o, 52s, 62s 108

13 83o, 42s, 82o, 73o, 53o, 63o, 32s, 43o, 72o, 52o, 62o, 42o, 32o 140

Table 4.3: The 13 groups of the 169 possible starting hands used within the experi-

ments. The suffices “s” and “o” denote suited and offsuit hands respectively. The final

column shows the number of unique starting hands contained within each group.

4.1.3 Decision Making

All of the experiments performed in this chapter associate either an all in or fold bet-

ting action to a test player’s starting hand depending on a number which governs the

playable groups. This threshold value has a minimum of zero and a maximum of thir-

teen. So for example, a strategy which has a threshold of two will move all in with any

hand from the first two groups shown above and fold all hands from the lower eleven.

Hence a player using a threshold of zero will fold all hands, and one with a threshold

of thirteen moves all in every time.

For the first set of experiments utilizing hand strength alone there are fourteen pos-

sible strategies. We can denote these by the threshold value(x), wherex∈ [0,1, ...,13].

The simulations which follow on from these use hand strengthin conjunction with

one of the decision making factors discussed in the previoustwo chapters. The four

factors we examine in this manner are seating position, opponents’ prior actions, tour-

nament level, and chip stack amount.

For parsimony the experiments treat each of these factors asa binary variable as
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follows:

• Seating position: The test player is in an early/late position with respect to the

dealer.

• Opponents’ prior actions: There are no bets/at least one betprior to the test

player’s action

• Tournament level: The decision is made early/late in a tournament

• Chip stack amount: The test player has few/many chips

The precise definitions of these distinctions are made clearin the following sec-

tions.

In accord with our previous notation, a strategy within thisexpanded framework

can be represented by the tuple(x,y), with x,y ∈ [0,1, ...,13]. The x-value denotes

the threshold hand group when the binary variable is in its first state, and they-value

gives the minimum playable hand group when the binary variable is in its second state.

Therefore in each of these experiments our search space is squared to yield a total of

196 possible strategies.

In all of the experiments our test player competes against nine identical opponents.

The player then plays numerous tournaments against these opponents, and the number

of wins totalled. We perform multiple tournaments for the same strategy to reduce

the effects of luck. The more tournaments played, the more wecan be sure of the

effectiveness of a given strategy.

In each suite of experiments we sequentially cycle our test player’s strategy through

all allowable threshold values: there are fourteen such possibilities based on hand

strength alone, and 196 with the inclusion of a binary variable. We use the term exhaus-

tive simulation to convey the fact that all permissible strategies within our framework

are enumerated over.

4.1.4 Tournament Opponents

There are three different opponents used in all the simulations. These encode the

original and improved SklanskySystems, and the Kill Phil Rookie (KPR) strategy.

We refer to the former as Sklansky Basic (SB) and Sklansky Improved (SI) strategies.

All three are termed “static opponents” to reinforce the fact that these strategies are

rule-based and unchanging.
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The first two strategies are taken from the book “Tournament Poker for Advanced

Players” [110], and were previously discussed in Section 3.3. To recap, the Sklansky

Basic strategy is highly restrictive, and will only bet the very best starting hands once

another player has already opened the pot. If no other playerhas yet bet, this strategy

will move all in with a slightly larger subset of hands.

The Sklansky Improved strategy is similarly restrained in the hands it will play if

an opponent has entered the pot. Where this strategy differsfrom the first is in its use

of a key number to determine playable hands when no other player has yet made a bet.

The key number is calculated primarily as the ratio of the player’s stack to the total

amount of the blinds. Each starting hand is given a thresholdvalue, and a comparison

between this value and the key value determines whether the player should move all in

or fold.

The third opponent employed is based on one from “Kill Phil” [101]. This book

contains several strategies of increasing complexity, andour experiments use the sim-

plest “Rookie” strategy , met previously in Section 3.5. Similar to the two Sklan-

sky strategies, the Kill Phil Rookie strategy contains instructions on which hands are

playable depending upon whether or not an opponent has yet bet into the pot. The ma-

jor difference in this strategy is that the classification ofplayable hands is determined

by the number of players remaining and the tournament level.

For our experimental purposes the Kill Phil Rookie tournament stages “early” and

“middle” shown in Table 3.7 were interpreted as the first and the following two levels

respectively. Where the table cites the “Final 4-6 players”, we extended this for any

number of players greater than or equal to four. This is because it is possible to have

more than six players remaining after the first three levels.

4.2 Exhaustive Simulation Results

4.2.1 Hand Strength Only

The first suite of simulations seek to determine how well a player can fare when their

betting action is based solely upon knowledge of their own cards. These results are

important to form a baseline for comparison with the future experiments, in which

extra information is combined with hand strength in the decision making process.

Each simulation contains a test player with a strategy consisting of a simple thresh-

old representing which groups of hands are playable. If the hand they are dealt is
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contained within a group numbered less than or equal to that specific threshold value,

the player will move all in. Otherwise, they will fold.

Within this framework there are fourteen possible strategies, and each was tested

over 1,000 tournaments against each of the three opponents.Every individual competi-

tion contained nine such opponents, and a record was made of how many tournaments

the test player won.

The results from this experiment are shown in Figure 4.1.
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Figure 4.1: Tournament wins with corresponding 95% confidence intervals against the

three static opponents using hand strength knowledge only.

The first point to note about this graph is that there appears to be a clear ranking

in the relative strength of the opponents. The most wins wereachieved against the

Sklansky Basic strategy, followed by the Sklansky Improvedand then the Kill Phil

Rookie ones. This result shows that the win rates of the threeopposing strategies

mirror their own relative complexities.

Trends are clear in the results against all the opponents. When no hand groups are

played the test players unsurprisingly fare poorly. Against the Sklansky Improved and

Kill Phil Rookie strategies the test players never win a tournament. Fortuitously, the

test player does win three tournaments against the SklanskyBasic strategy by never

betting a hand. This outcome can be explained by the structure of tournament play. A

player who is all in on posting his blind is still able to compete in the showdown, and

hence retains the chance to win the pot. Although highly unlikely, we see here that it

is possible for a player to win a tournament solely through winning sufficient hands in
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this manner.

The best results for each player occur when they play with a threshold of four.

These strategies relate to moving all in with approximatelythe top 30% of starting

hands. Playing more or fewer hands than this causes a declinein the test players’

scores. The explanation for this result is straightforward. Betting with too few hands

means that the test player will frequently be anted-away by the increasing blind struc-

ture employed. At the other end of the spectrum, a player who bets too many hands is

employing a high risk strategy, and will eventually face an opponent with a playable

hand who knocks them out.

It should be noted that the trend within the Kill Phil Rookie graph is not pre-

cisely monotonically decreasing to the right of the optimumvalue. The results for

the points representing thresholds of eight and nine against this strategy would appear

to be anomalous. The reason for this is almost certainly due to the inherent noise

contained within the experiment. It is expected that a re-sampling rate larger than the

figure of 1,000 tournaments used here would correct this irregularity, although this was

not attempted.

4.2.2 Hand Strength and Coin Toss

Following on from the previous experiments we now include extra information in ad-

dition to hand strength for the test players to base their betor fold decisions on. These

extra criteria take the form of a binary variable, and allow the player to make a differ-

ent decision depending on the variable’s state. Unlike the previous experiments where

there were a total of only fourteen possible strategies, incorporating the state of the

binary variable squares the strategy space to 196 possibilities. Due to the increased

computational burden of simulating over this higher number, the re-sampling rate for

this and all subsequent experiments in this chapter was chosen to be 200 tournaments.

This figure was selected to keep the run-times down, whilst being large enough to elicit

trends in the results. On a Pentium IV 2.60GHz machine the evaluation of, for exam-

ple, a single Sklansky Basic counter-strategy over 200 tournaments takes an average

of approximately four minutes2.

Before we start to include game knowledge that we believe maybe useful in a

player’s decision making, we first experiment with a piece ofdummy information for

use as a control experiment. In these first simulations we imagine that the test player

2The length of a single tournament varies since a tournament ends once the test player is eliminated,
meaning different numbers of hands are required in different cases.
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(a) Sklansky Basic: maxima of 40 out of 200 at (1,8) and (5,4).
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(b) Sklansky Improved: maximum of 32 out of 200 at (3,5).
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(c) Kill Phil Rookie: maxima of 18 out of 200 at (2,9) and (8,2).

Figure 4.2: Tournament wins against the three static opponents using hand strength

and the outcome of a coin flip.
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flips a fair coin before choosing his action. If the coin landsheads, he compares his

hand to thex-value in his strategy(x,y). Similarly, if the coin lands tails he uses the

y-value as his betting criterion. Clearly the result of the coin toss is independent of

any information contained within the game. The results fromthis experiment allow us

to gauge the impact of extra knowledge when we replace the binary variable from the

outcome of a coin toss to other game-related information.

Figure 4.2 plots the number of tournaments won using hand strength and the out-

come of the coin flip to make betting decisions against each ofthe three opponents.

This figure contains three pairs of graphs, one pair for each of the three aforemen-

tioned opponents. The left hand graph of each pair shows a surface plot of the number

of tournament wins for each of the 196 allowable strategies.The complementary graph

gives a two-dimensional depiction of the same data.

Since the outcome of a coin toss is independent of any game-related information,

we would expect the scores along they = x diagonal to show a similar profile to the

hand strength only experiments. This is because a strategy(x,x) along the diagonal

uses the threshold valuex, regardless of the coin flip.

Previously we observed that the total number of tournament wins was reduced by

using a threshold value other than four in the hand strength only experiments. There-

fore in the limit as the number of tournaments rises, we wouldexpect to see peaks

in all graphs at(4,4) and lower values elsewhere. All three pairs of plots do show

high scores around this value, but the globally highest peaks are typically elsewhere.

This is due to the increased amount of noise resulting from re-sampling over just 200

tournaments in these experiments.

One way of testing whether the extra information conveyed inthe binary variable

has moved the maxima off-diagonal is by assessing the symmetry of the resulting plots.

If we consider a general strategy(x,y) in these experiments, we note that with an

unbiased coin we would expect to select each threshold 50% ofthe time. This is

exactly the same for the corresponding strategy(y,x). Therefore we should expect to

observe a degree of symmetry in the diagonaly = x, subject to noise.

Symmetry in the results can be tested for using the statistical method of paired com-

parisons. In this test the null hypothesis states that the mean difference,µd, between

paired observations is equal to zero. The test statistic is given by

t = d−µd
s/
√

n

wheredi = zxy− zyx is the difference in then paired observations, withzxy the score
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achieved by strategy(x,y). The value ofs is the standard deviation of thedi.

The method for paired comparisons applied to the scores resulting from hand

strength and coin toss knowledge yields the p-values shown in Table 4.4.

SB SI KPR

P-value 0.7459 0.4653 0.8615

Table 4.4: P-values for the method of paired differences test applied to the hand strength

and coin toss knowledge results against the three static opponents.

Since these values are so large we fail to reject the null hypothesis that the mean

difference between paired observations is equal to zero. From this we conclude that

the inclusion of information relating to the toss of a coin has not moved the location of

the peaks off the diagonals with statistical significance. We shall return to this result

when considering the inclusion of game-related knowledge in the following sections.

4.2.3 Hand Strength and Seating Position

Now that we have seen the impact of incorporating a dummy binary variable into the

test player’s strategy we move on to replacing it with information that we believe may

positively affect tournament poker decision making. The first such piece of information

we include is seating position. The term seating position isalways used in the context

of a player’s location relative to the dealer. In these experiments the binary variable

takes the values “early” or “late”, depending upon whether the test player is one of the

first or last to act on a particular hand. Recall that since thedeal passes with every new

hand the player’s relative position continually rotates.

The classification of the test player’s position depends upon the number of players

competing in a hand. With an even number of competitors exactly half of the players

are termed both early and late position in our experiments. If an odd number of players

remains we place the surplus player in the late classification.

Table 4.5 shows the definitions used for all possible numbersof players during our

single table tournaments.

Note that for three or more players the competitors posting the small and big blind

are classified as late position. In a regular Texas hold’em game these seats are more

usually defined as being in early position, since in three of the four betting rounds

the small blind player is the first to act. In our all in or fold framework, however, we
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S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

10 players L L L E E E E E L L

9 players L L L E E E E L L

8 players L L L E E E E L

7 players L L L E E E L

6 players L L L E E E

5 players L L L E E

4 players E L L E

3 players E L L

2 players L E

Table 4.5: Classification of seating position as early (E) or late (L) position with respect

to the dealer by the number of players. SO represents the dealer seat, S1 the small

blind, S2 the big blind, and so on sequentially around the table.

are simulating Texas hold’em with only the pre-flop betting round. Having posted the

blinds, the players in the two seats to the left of the dealer are the last to act on this

round. This explains their late position classification.

A further point to note is that when a tournament is reduced totwo players the

dealer becomes the big blind. This is a standard rule in Texashold’em. In such a

situation the small blind acts first, followed by the big blind/dealer. Therefore we

classify the small blind to be in early position, and the big blind/dealer to be in late

position.

We observed in Section 2.7.2 that seating position is often mentioned as being

important in the non-academic literature. There is a supposed benefit to being seated

in late position, since in this case a player gets to observe the actions of many more

of his opponents before it is his turn to act. Similarly, since there are fewer players

seated behind him, a late position player is boosted by the reduced potential of strong

hands coming into the pot after him. A player in early position has the least amount

of knowledge of his opponents’ likely holdings, and faces a greater risk of coming up

against a premium hand.

Graphs of the number of tournament wins resulting from the inclusion of seating

position knowledge against the three static opponents are shown in Figure 4.3.

Examining the plots shows that the best results come from playing very differently
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(a) Sklansky Basic: maximum of 63 out of 200 at (8,2).
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(b) Sklansky Improved: maximum of 43 out of 200 at (13,2).
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(c) Kill Phil Rookie: maxima of 28 out of 200 at (8,1), (10,1) and (11,1).

Figure 4.3: Tournament wins against the three static opponents using hand strength

and seating position knowledge.
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in either early or late position. If the test player is one of the first to act the results

suggest that many hands should be played, with between five and all thirteen groups

yielding the best scores. Conversely, only the top one or twogroups should be played

when sitting in late position.

These results appear to contradict those given in the non-academic poker literature.

There we find repeated recommendations that a player should be more conservative

in early position, and be apt to play more hands in the later seats. There are three

fundamental reasons why our results are at odds to the guidance of poker professionals.

The first of these is a consequence of the simplification to thebetting that we have

employed, the second is due to the nature of the opponents, and the third is an effect of

limited information.

Late position players retain an informational advantage throughout all four betting

rounds in a hand of Texas hold’em. In the case of the all in or fold variant employed in

these simulations, however, there is only ever one round of betting. Hence the restricted

nature of the betting in this game greatly reduces the positional edge.

All three of the opposing strategies play a different range of hands depending upon

whether or not one of their opponents has bet into the pot. Specifically, all three strate-

gies are extremely tight if the pot has already been opened. Our results show that the

test players in early position benefit from this. By betting before anyone else acts, they

are able to “scare” their opponents into folding. This strategy allows the test players to

pick up the blinds uncontested. The “first-in vigorish” [60]is often enough to pick up

a sufficient number of pots.

The third reason for the discrepancy between our results andthe professionals’

guidance is because the test players do not have the benefit ofobserving their op-

ponents’ prior actions. The non-academic literature’s preference for late position is

primarily based upon the informational advantage gained through seeing one’s oppo-

nents act. Players in a late seating position with no prior action are commonly advised

to attempt to steal the blinds with more marginal holdings. Our test players do not

know whether or not an opponent has already opened the pot. Itis safer, therefore, to

bet fewer hands in late position than early.

It is clear by observation that all plots are highly asymmetrical about the liney= x,

and this gives the first indication that the scores achieved are dependent upon the extra

piece of information. We would expect that if the extra information was worthless there

would be a symmetry about the diagonal, as we observed with the previous results

incorporating coin toss knowledge.
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Using the method of paired comparisons test explained previously the results in

Table 4.6 show that there is a statistically significant asymmetry in the results.

SB SI KPR

P-value < 0.0001 < 0.0001 < 0.0001

Table 4.6: P-values for the method of paired differences test applied to the hand strength

and seating position knowledge results.

In all three cases we can reject the null hypothesis that the plots are symmetrical

abouty = x, and conclude that the inclusion of seating position knowledge has im-

pacted the location of the highest scoring strategies.

4.2.4 Hand Strength and Opponents’ Prior Actions

All in or fold hold’em simplifies the classification of opponents’ prior actions. In the

pre-flop betting of a real game there is the possibility of a player calling the big blind.

Here this option is unavailable. The binary variable we nextincorporate into our test

player’s decision making is whether at least one opposing player has already bet into

the pot or not.

Figure 4.4 plots the number of tournaments won through the inclusion of prior

action knowledge against each of the three static opponents.

The shape of all three pairs of plots suggest very clearly that a greater number of

tournament wins results from playing only the best hand groups when an opponent has

already bet, and playing almost all hand groups in the absence of a prior bet. Whilst

there is undoubtedly noise in the results, the plots clearlyshow evidence that playing

many hands after an opposing bet, or failing to bet hands intoan unopened pot, leads

to a lower overall tournament win rate.

Evidence from these experiments is in accordance with recommended tournament

poker strategy, as discussed in Section 2.7.3. Experts point to the necessity for a player

to be more restrictive in the hands they play once someone else has bet into the pot.

Indeed, it is worth noting that the three static opponents themselves incorporate this

facet into their own strategies.

What is surprising about these results are the very large numbers of hand groups

played to achieve the best results in the cases of no prior bet. The findings suggest that
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(a) Sklansky Basic: maximum of 143 out of 200 at (9,0).
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(b) Sklansky Improved: maximum of 53 out of 200 at (13,3).
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(c) Kill Phil Rookie: maxima of 29 out of 200 at (10,1), (10,2), and (12,3).

Figure 4.4: Tournament wins against the three static opponents using hand strength

and opponents’ prior bet knowledge.
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each of the three opponents’ strategies are possibly too restrictive, and that simply bet-

ting many hands and causing them to fold is the route to a largenumber of tournament

successes against them.

Notice again that these plots are unlike those seen from the inclusion of coin toss

knowledge. The asymmetry about the main diagonal is again evident, as it was with the

knowledge of seating position. Statistical significance inthe impact of opponents’ prior

bet information is confirmed in the results of using the method of paired comparisons

test, shown in Table 4.7.

SB SI KPR

P-value < 0.0001 0.0001 < 0.0001

Table 4.7: P-values for the method of paired differences test applied to the hand strength

and opponents’ prior bet knowledge results.

Again in all three cases we reject the null hypothesis that the plots are symmetrical.

Knowledge of opponents’ prior actions has moved the location of the highest scoring

strategy.

4.2.5 Hand Strength and Tournament Level

The next game-related information that we incorporate intoour test player’s decision

making classifies the stage of the tournament. This factor allows the player to make a

different decision with the same cards dependent upon whichlevel has been reached.

The binary variable representing tournament level is allowed the two stages “early”

and “late”. With reference to Table 4.1 the former classification arises when the tour-

nament is in a level up to and including level six. The latter criterion applies in levels

seven through eleven.

The purpose behind these experiments is to demonstrate whether knowledge of the

stage of a tournament affects the best strategy available toour test player, and in what

ways. The non-academic poker literature reviewed in Section 3.2.1 suggests that, in

general, a player should be more conservative in the early stages of a tournament and

that only the best hands should be played. As a tournament progresses a player should

be more aggressive with a larger number of starting hands.

This strategy has an accompanying rationale. Small blinds at the start of a tour-

nament tend to produce small pot sizes, and these are not deemed worthy of risking
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(a) Sklansky Basic: maximum of 80 out of 200 at (1,12).
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(b) Sklansky Improved: maximum of 40 out of 200 at (1,11).
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(c) Kill Phil Rookie: maximum of 27 out of 200 at (3,12).

Figure 4.5: Tournament wins against the three static opponents using hand strength

and tournament level knowledge.
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one’s tournament survival for. As the tournament progresses and the blinds increase,

then a player should become more willing to risk eliminationsince the pots won will

represent an increasingly larger percentage of the chips inplay.

The results of playing each of the 196 possible strategies over 200 tournaments

against the three opponents are shown in Figure 4.5.

All three graphs show a remarkably similar shape. We can see that the maximum

number of tournament wins are achieved when limiting the number of groups played

to only the upper three in the early stages of a competition. In the concluding levels

the test players that bet with a vast majority of their hands fare best.

As more groups are played in the early levels performance typically drops. For the

late levels the results against all three static opponents show a relatively steady and

high score for those strategies with a threshold of thirteenup to five. However, the

win rate drops dramatically as the threshold increases still further. The players which

act in such a way are being knocked out of tournaments as they wait to receive a hand

sufficiently strong enough to bet with.

Again the maxima in these plots are off-diagonal. P-values from the method of

paired comparisons are presented in Table 4.8. These verifythat we should reject the

null hypothesis that the difference between paired scores about the main diagonal is

equal to zero against all three static opponents.

SB SI KPR

P-value < 0.0001 < 0.0001 < 0.0001

Table 4.8: P-values for the method of paired differences test applied to the hand strength

and tournament level knowledge results.

Hence from the strategies giving rise to the maximal resultsin these experiments

we observe a marked difference between the number of groups that should be played

in early and late tournament levels. This distinction is in line with poker professionals’

suggestions.

4.2.6 Hand Strength and Stack Size

The final piece of game-related information that we wish to assess is whether and in

what ways knowledge of a player’s stack size affects their tournament performance.

For this set of experiments the binary decision variable represents whether the test



Chapter 4. Initial Tournament Poker Investigations using Exhaustive Simulations 62

player has few chips or many. To make this distinction we employ a method for mea-

suring stack size previously mentioned in Section 3.2.2.

Harrington [60] refers to the ratio between one’s stack sizeand the total value of

the blinds as the valueM. Large and small values ofM signify that a player has a large

or small stack respectively. To make our decision variable binary, we classify a small

stack as one which has anM of less than or equal to five. This value is consistent with

the definition given in the book.

One potential criticism of using this ratio is that it inherently incorporates knowl-

edge about the tournament level, since the denominator ofM sums the blinds. How-

ever, we still use this method of determining stack size since it is commonly used by

poker practitioners. It is useful since it equates a player’s stack to their remaining

tournament life were they not to play a hand. If we assume thatthe blinds keep at a

constant level for long enough,M represents approximately how many more orbits of

the table a player can survive before being anted-away.

As with the previous experiments, we scored the total numberof tournaments won

by each of the 196 possible strategies by playing each in 200 tournaments against tables

comprising the three opposing strategies. The scores are graphed in Figure 4.6.

Examining the plots shows that against all three opponents the strategy which fares

best is to play very few groups with a largeM, but to play many more starting hands

with a smallM. The maximal results are typically to play the top two or three groups

with a large stack, and anywhere between four and all thirteen groups with a small

stack.

The non-academic poker literature suggests two differing styles for a player with a

large stack. The first of these is to play more hands than usual, especially against oppo-

nents with a medium stack size. This is because these adversaries will often be faced

with a decision which could end their participation in the tournament if unsuccessful.

In this way the player with a large stack is capable of “bullying” his opposition.

The second recommendation for a player with a large stack is to play fewer hands

than normal. Here the reasoning is that such a player is not inany immediate danger

of tournament elimination from the increasing blinds. Having a large stack therefore

allows that player the luxury of waiting for better hands andsituations than normal.

Additionally, this method reduces the risk that they will lose chips due to bad luck.

From the graphs we observe the latter of these two tactics in evidence. Playing too

many hands with a large stack is seen to be detrimental to tournament success.

The case with a small stack is clearer in the non-academic literature. Here all
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(a) Sklansky Basic: maximum of 77 out of 200 at (5,0).
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(b) Sklansky Improved: maximum of 41 out of 200 at (12,2).
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(c) Kill Phil Rookie: maximum of 29 out of 200 at (8,2).

Figure 4.6: Tournament wins against the three static opponents using hand strength

and stack size knowledge.
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authors agree that such a player should be willing to make a stand with a weaker

starting hand than usual. This advice is particularly appropriate for situations in which

the small stacked player is first to act. The benefit of bettingin such a circumstance is

that there is always the possibility that all subsequent players will fold, thereby winning

the pot uncontested. The results from these experiments andthose previously seen on

players in early seating position mirror this advice.

For completeness we show the p-values in Table 4.9 resultingfrom the null hy-

pothesis that the mean differences between observations paired by symmetry across

the diagonal are equal to zero.

SB SI KPR

P-value < 0.0001 < 0.0001 < 0.0001

Table 4.9: P-values for the method of paired differences test applied to the hand strength

and stack size knowledge results.

We reject the null hypothesis in all three cases. The conclusion that the test player’s

best strategy is affected by stack size knowledge parallelsthose from the inclusion of

seating position, opponents’ prior actions, and tournament level information.

4.3 Further Statistical Analysis of Exhaustive Simula-

tion Results

The results presented in the previous subsections show thatthe inclusion of knowledge

related to seating position, opponents’ prior actions, tournament level, and stack size

affect a player’s best strategy in comparison to that founded on hand strength informa-

tion alone.

The counter-strategies leading to the best results againstthe Sklansky Basic, Sklan-

sky Improved, and Kill Phil Rookie strategies are summarized in Table 4.10.

It is clear that the state of each binary variable polarizes the test player’s best

counter-strategy in all non-control cases against all opponents. As we discussed, the

interpretations of these strategies generally bear favourable comparison to suggested

tournament play in the non-academic poker literature.

To extend our analysis we now assess what quantitative impact the inclusion of the

extra information has on the highest scores achieved. Table4.11 gives the percentage
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Game Knowledge SB SI KPR

Hand strength only (4) (4) (4)

Hand and position (8,2) (13,2) (8,1), (10,1) & (11,1)

Hand and prior bet (9,0) (13,3) (10,1), (10,2) & (12,3)

Hand and level (1,12) (1,11) (3,12)

Hand and stack (5,0) (12,2) (8,2)

Table 4.10: Best strategies found by exhaustive simulations against the three static

opponents.

of tournaments won by the best counter-strategies in each ofthe above scenarios.

Game Knowledge SB SI KPR

Hand strength only 21.2%± 3.1% 14.8%± 3.1% 8.5%± 3.1%

Hand and position 31.5%± 6.9% 21.5%± 6.9% 14.0%± 6.9%

Hand and prior bet 71.5%± 6.9% 26.5%± 6.9% 14.5%± 6.9%

Hand and level 40.0%± 6.9% 20.0%± 6.9% 13.5%± 6.9%

Hand and stack 38.5%± 6.9% 20.5%± 6.9% 14.5%± 6.9%

Table 4.11: Proportion of tournaments won by the best counter-strategies found by ex-

haustive simulations against the three static opponents, with corresponding 95% con-

fidence intervals. Note that the values in the first row are calculated based on 1,000

tournaments, whilst all other rows used 200 tournaments.

First we note the consistently diminishing trend in tournaments won moving from

left to right across the three opponents. This effect mirrors the opponents’ increasing

complexities.

Looking down the columns we observe that all best scores resulting from the inclu-

sion of game-related information are higher than those based on hand strength knowl-

edge alone. The greatest increases in tournaments won against all three opponents

come from the inclusion of prior bet information. Against the Sklansky Basic strat-

egy there is a tremendous improvement of over 230%, whilst gains of over 70% are

observed against both the Sklansky Improved and Kill Phil Rookie opponents.

To formally evaluate these apparent gains we return to statistical hypothesis testing.

We wish to test whether there is a statistically significant improvement in the propor-
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tion of tournaments won by those strategies which incorporate extra knowledge over

those that utilize hand strength information alone. To do this we use theZ-test for the

equality of two proportions [69].

In this test the null hypothesis states that the proportionsπ1 andπ2 of tournaments

won from two populations are equal, based on one sample from each population. With

random samples of sizesn1 andn2, and corresponding proportions of tournaments won

of p1 andp2, the test statistic is

Z =
(p1−p2)

{

P(1−P)
(

1
n1

+ 1
n2

)}
1
2

where

P = p1n1+p2n2
n1+n2

Under the null hypothesisZ is approximately distributed as a standard normal. To

test for an increase in the proportion of tournaments won we select the one-tailed test.

At a 5% significance level the null hypothesis is rejected forZ-values greater than 1.65.

To improve the accuracy of the statistical tests we take eachbest counter-strategy

and repeatedly play them against their respective opponents over a total of 5,000 tour-

naments. The effect of this is to increase the “signal-to-noise ratio” in the results above

those returned through only sampling 200 tournaments. The proportion of tournament

wins from these new experiments are shown in Table 4.12.

Game Knowledge SB SI KPR

Hand strength only 20.1%± 1.4% 11.3%± 1.4% 6.4%± 1.4%

Hand and position 28.3%± 1.4% 14.3%± 1.4% 9.2%± 1.4%

Hand and prior bet 71.2%± 1.4% 21.9%± 1.4% 11.9%± 1.4%

Hand and level 40.0%± 1.4% 14.9%± 1.4% 11.5%± 1.4%

Hand and stack 32.7%± 1.4% 16.4%± 1.4% 10.7%± 1.4%

Table 4.12: Percentage of tournament wins of the best found strategies against the

three static opponents, with corresponding 95% confidence intervals. Note that all val-

ues are calculated based on 5,000 tournaments.

Before continuing with the statistical analysis, we first highlight an issue found by

comparing these values with those in Table 4.11. It should benoted that we would
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not always expect the best counter-strategy found over 200 tournaments to score a

similar proportion of successes over 5,000 tournaments. Although 200 tournaments is

sufficient to differentiate between good and bad strategies, it is possible that the highest

scoring counter-strategies have had a relatively large amount of luck compared to other

high scorers. By allowing the luck to “even out” over a greater number of tournaments,

therefore, such strategies will achieve a lower percentageof tournament wins. This is

reflected in our results.

Returning to the analysis, the null hypothesis that we test is that the proportion of

tournaments won with the inclusion of extra game-related information is the same as

the respective proportion won based on hand strength knowledge alone. Therefore in

the notation set out above bothn1 andn2 take the value of 5,000. The proportionπ1

is taken from the hand strength row of Table 4.12, with the value of π2 being taken

from the row corresponding to the binary variable under investigation. The results of

theZ-tests are summarized in Table 4.13.

Factor SB SI KPR

Position < 0.0001 < 0.0001 < 0.0001

Prior bet < 0.0001 < 0.0001 < 0.0001

Level < 0.0001 < 0.0001 < 0.0001

Stack < 0.0001 < 0.0001 < 0.0001

Table 4.13: P-values for the proportion of tournaments won against the three static

opponents with the inclusion of an extra factor compared to the respective hand strength

knowledge alone score.

Given the low p-values observed we consistently reject the null hypotheses. There

is sufficient evidence to show that the inclusion of extra knowledge in all twelve cases

has benefited the test players, leading to significantly higher best scores.

4.4 Conclusions

Our preliminary investigations into all in or fold Texas hold’em tournament strategy

have focused on testing whether the inclusion of game-related knowledge affects and

improves the performance of a player above what they can achieve basing their betting

actions on hand strength alone. To assess this we have used exhaustive simulation to
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enumerate over all possible counter-strategies to three plausible all in or fold systems

taken from the non-academic poker literature.

We have demonstrated that knowledge of seating position, opponents’ prior ac-

tions, tournament level, and stack size all affect a player’s best strategy dependent

upon the state of the respective binary variable. These wereconfirmed statistically.

The interpretations of the best counter-strategies found were also seen to concur well

with the recommendations of poker professionals in the non-academic literature.

The resulting high scores were also observed to be higher than those achieved

through hand strength knowledge alone. To ensure thoroughness, we conducted hy-

pothesis tests on the results and established their statistical significance. We therefore

conclude that information relating to these four factors should all be important con-

siderations in a player’s decision making, and that a playercan positively benefit from

this knowledge.

The next logical step is to use all factors in concert. The exhaustive simulation

approach is expedient in the cases examined here, but with every additional binary

variable the strategy space, and therefore the time taken toenumerate over it, grows

exponentially. For this reason we seek an alternative approach.



Chapter 5

Evolutionary Algorithms

Searching the enlarged strategy space resulting from the inclusion of multiple game-

related factors becomes less feasible with the exhaustive simulation approach adopted

in the previous chapter. This chapter starts with a discussion on its limitations, and

introduces evolutionary algorithms as a potential replacement.

We continue by explaining the terminology used in EAs and itsparallels with nat-

ural selection. We summarize the key components of the four major classes of EAs:

genetic algorithms, evolutionary programming, evolutionstrategies, and genetic pro-

gramming.

Following this we review previous research employing evolutionary methods to

develop game players, and then focus specifically on their application to poker. The

chapter concludes by illustrating how such methods can be implemented for a simpli-

fied poker, called the Jack-Queen-King game.

5.1 The Difficulties of Extending the Exhaustive Simu-

lation Approach

We saw in the previous chapter how players who are able to differentiate their betting

strategy based on extra game-related information fare better than those who simply

act upon hand strength knowledge alone. The factors of seating position, opponents’

prior bets, tournament level, and stack size were all shown to positively influence the

number of tournaments that could be won against tables of three different all in or fold

opponents. We now wish to determine whether a player who utilizes the complete

knowledge set is able to score an even greater number of wins.

69
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Recall that when we first started the simulations we represented a player’s strat-

egy by a single value(x). This integer was able to take a value from{0,1, ...,13},
and denoted the threshold hand group below which a player would fold. Within this

framework there were 14 distinct strategies.

We further extended the representation when we introduced the extra game infor-

mation in the form of a binary variable. In this case we used the tuple(x,y), with the

first value denoting the minimum playable hand group when thebinary variable was in

the first state, and the second value denoting the minimum playable hand group when

the binary variable was in its second state. The space of possible strategies was then

squared to 196.

If the factors occurred independently and in isolation it would be very simple to

extend this representation in the following manner. We would be able to denote our

test player’s strategy usingn factors by the tuple

(

tT
1 , tF

1 , tT
2 , tF

2 , ..., tT
n , tF

n

)

wheretT
i indicates the threshold hand group when binary variablei is true, andtF

i gives

the threshold hand group when binary variablei is false.

However, the game factors are neither independent nor do they occur in isolation.

The states of every one of the four binary variables are simultaneously known to the

test player at all points during the play of a hand.

Enumerating over all possible combinations of the binary variables, we find there

are a total of 24 = 16 unique game scenarios for any given starting hand within our

framework. A strategy which includes knowledge of all the factors therefore needs to

ascribe a betting action to any starting hand in all of these possible situations. Modify-

ing the notation above, our test player can be represented asa 16-tuple

(t1, t2, ..., t16)

whereti is the threshold value between moving all in and folding for unique scenarioi.

Since each of theti can take one of 14 possible values, there are 1416 ≃ 2.18×
1018 distinct strategies. This strategy space is too vast to enumerate over. To run

a simulation of 200 tournaments over every one of these scenarios, each averaging

around four minutes, would take over 1.65×1013 years to complete.

The exponential explosion in the strategy space would be even further prohibitive

should we wish to increase the number of dimensions, or expand our representation

in any dimension. For example we may wish to augment the possible strategies by
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allowing the variables containing game-related information to take on more than just

two states. One potential benefit of this would be to permit separate betting action

thresholds for each individual level in tournament, not just “early” and “late” stages.

The greatly inflated run-times required to advance the exhaustive simulation-based

approach reduces its desirability. What we require is a faster method of searching the

strategy space; one which returns strong but not necessarily optimal solutions. For this

reason we turn to evolutionary algorithms.

5.2 Introduction to Evolutionary Algorithms

The term evolutionary algorithm (EA) refers to a class of computational problem solv-

ing systems that are characterized by their use of models of evolutionary mechanisms

taken from the fields of biology and genetics. Such techniques have been successfully

applied to a diverse set of domains, including scheduling [82], protein folding [78],

and games [66, 113]. Evolutionary computation is thereforeused by a wide spectrum

of researchers, from computer scientists and engineers, tophysicists, chemists and

biologists.

An EA is only usually employed when more efficient methods of searching the so-

lution space are unknown. An algorithm specifically designed to solve a given problem

will usually outperform an EA, and as such EAs are often used as a last resort when

more suitable techniques are not available. This is frequently the case in problems for

which the solution space is large and multi-modal.

The directed stochastic search within an EA seeks to balancethe exploration of the

solution space with the exploitation of previously found strong solutions. The heuristic

nature of EAs is of particular use when it suffices to find a good, but not necessarily

optimal, solution to a problem. The strength of an EA’s solution is often only limited

by the available computing time. To improve the performanceof an EA it is common

to see them combined with local search techniques to form memetic algorithms [32].

In keeping with its roots, practitioners have borrowed terms from biology and ge-

netics to describe the elements of an EA. A potential solution to a given problem is

known as acandidate(alsochromosomeor individual). Each candidate consists of

a collection ofgenes. These genes represent fundamental units in the structure of a

solution, and may be encoded as binary, real, or alphabetic tokens. The value of a

single gene is known as anallele. The genotypeof a candidate denotes its specific

genetic makeup, and an individual’s outwardly observable manifestation is termed its
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phenotype.

To assess the quality of a candidate, an EA employs afitness function. This func-

tion scores how well a solution meets the problem by providing a mapping from any

candidate to a real number. The use of a fitness function thereby allows for an or-

dering amongst many potential solutions, so that strong andweak candidates can be

differentiated. An EA maintains many candidates together in apopulationof potential

solutions.

Operators act on the population members according to evolutionary rules. As in

biological evolution, two candidates can representparentsand combine to produce

offspringthroughreproduction. This recombination operator is known ascrossover,

and parts of each parent’s genotype are selected and fused toproduce a new individual.

One recurrent method for choosing the parents is fitness-proportionate selection [84],

in which fitter individuals have a greater probability of being selected. Such methods

lead to a “survival of the fittest” [36], in which genetic material from strong candidates

is more likely to endure.

Diversity is often incorporated into the starting population of an EA by selecting

randomly generated candidates. However, the acts of fitness-proportionate selection

and crossover lead to aconvergencein the material contained within the gene pool. To

overcome this effect and maintain diversity themutationgenetic operator transforms

a small number of the alleles in some candidates chosen by random chance. This

operator ensures that new genetic material is able to enter into the population thus

allowing for further exploration of the solution space.

EAs are usually implemented in a cycle involving the evaluation of all the candi-

dates’ fitnesses followed by the application of genetic operators to create a new popu-

lation. One iteration of this loop is referred to as ageneration.

Several methods may be employed to determine the termination of an EA. One is to

conclude a simulation once a sufficiently good solution has been found, as determined

by the experimenter. Another method is to use a stopping criterion based on a measure

of the population convergence. The most common approach is simply to run the EA

for a predetermined number of generations. In all cases the best candidate found over

the span of the EA is returned as the proposed solution.
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5.3 Subclasses of Evolutionary Algorithm

There are many computational techniques which fall under the umbrella term of evolu-

tionary algorithms. The main ones are: genetic algorithms,evolutionary programming,

evolution strategies, and genetic programming. A brief description of each subclass

follows.

5.3.1 Genetic Algorithms

A genetic algorithm (GA) is an evolutionary computation model which closely mim-

ics the evolutionary methods found in nature. GAs were first proposed by John Hol-

land [67] at the University of Michigan, where much of the theoretical foundation for

the algorithms subsequently originated.

A population of individuals is maintained by the GA, with each candidate rep-

resented by chromosomes which encode for the solution to a given problem. These

chromosomes are typically of fixed length, although this is not mandatory. The canon-

ical GA uses only binary digits for its representation of solutions, but it is possible to

use any alphanumeric character to denote certain parameters or behaviours.

The implementation of a GA usually conforms to the followingrubric. An initial

random population is created, with the fitnesses of all candidates assessed using a fit-

ness function. Following this a new generation is created bythe application of genetic

operators such as fitness-proportionate reproduction, crossover, and mutation. The old

population is discarded, and the procedure iterates on the new population.

GAs have found particular application in timetabling and scheduling problems, but

are often applied to solve many other kinds of global optimization problems.

5.3.2 Evolutionary Programming

Evolutionary programming (EP) was conceived by Lawrence Fogel [49], and shares

many similarities to GAs. Unlike a GA, however, EPs tend to focus on the phenotypes

of solutions rather than the genotypes. Candidates within an EP are not constrained to

being character strings, and as such are often able to encodefor the problem solution

in more apt forms. Also, mutation is not limited to switchingbetween a discrete set

of possible values. Instead this operator often changes parts of a potential solution by

statistical perturbations.

The methodology of EP is similar to that of a GA. An initial population of random
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individuals is created, and replications of these are mutated according to a statistical

distribution. Note that unlike GAs, crossover is not normally found within an EP.

The resulting offspring’s fitnesses are evaluated, after which a tournament procedure

determines which of the candidates is retained for the subsequent generation.

Like GAs, EPs are used in optimization problems where directmethods such as

gradient descent are not applicable due to extreme unevenness of the fitness landscape.

5.3.3 Evolution Strategies

Rechenberg is accredited with originating evolution strategies (ES) in his work on op-

timization within engineering in the late 1960s [98]. The development of ES occurred

independently from the work on EP, but the two subclasses of EA share many similar-

ities. Both typically operate on real-valued encodings, and apply Gaussian mutations

followed by a selection mechanism to determine which candidates survive to the next

generation. ES differs from EP in two major concerns. Firstly, EP typically uses tour-

nament selection whereas ES uses deterministic selection.Secondly, ES does contain

recombination operators, as with GAs.

The original formulations of an ES use only one parent to generate one offspring

per generation by the application of mutations. These are known as (1 + 1) ES. This

procedure was later expanded to allow for multiple parents -(µ + 1) ES - and incorpo-

rated recombination. Schwefel [104] subsequently generalized the preceding work to

create multi-membered plus and comma ES, denoted by (µ+ λ) and (µ, λ) respectively.

In this notationµ represents the population size, andλ the number of offspring created

per generation. With plus strategies the parental generation is included in the selection

procedure, whereas the comma strategies only select from amongst the offspring. In

both of these formulations the individuals may recombine through random mating and

are subject to mutation and selection.

5.3.4 Genetic Programming

Genetic programming (GP) is the final main subclass of EAs. Whilst the first related

efforts came in the early 1980s [33, 115] the field only truly gained recognition on the

publication of a book by John Koza in 1992 [79].

Traditionally, the individuals maintained within GP are programs expressed in a

tree structure of suitable data values and functions. The programs are composed of

elements of symbols which are deemed to be appropriate to theproblem at hand. Orig-
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inally GPs were often written in LISP, due to the compatibility between this program-

ming language and the implementation of the necessary parsetrees.

As with all EAs, GP is an iterative process which evaluates potential solutions by

use of a fitness function. The crossover operator within GP uses fitness-proportionate

selection to mate subtrees of two candidates and produce newoffspring. The nature

of the programs means that candidates within a GP are not of fixed length, and this

flexibility provides GP with one of its greatest strengths over other EA techniques.

5.4 Evolutionary Algorithms Applied to Games

In Chapter 2 we examined many of the different techniques from the field of artificial

intelligence which have been successfully applied to the development of game players.

In this section we look at the utilization of evolutionary computation methods for the

same purpose.

The use of such techniques is particularly appropriate for creating a player for a

game. The rules of the environment are known and unchanging,and the space of pos-

sible solutions (in this case strategies) is extremely large and irregular. Only relatively

trivial games lend themselves to an analytic solution, for example through the use of

such methods as linear programming. Most commonly played games require other

techniques which are able to search the strategy space and discover strong results. All

of the EA techniques discussed above have been applied in thedomain of games, and

there follows a review of some of the most important results.

One of the first successful applications of EAs to games came with Robert Axel-

rod’s research on the iterated prisoner’s dilemma (IPD) [2]. The equilibrium for the

non-iterated version of the game demands that both agents defect, since this strategy

strictly dominates cooperating. However, the iterated variant introduces more com-

plexity, since each player has the opportunity to “punish” their opponent for previous

non-cooperative play. The question arises as to whether theincentive to defect is over-

shadowed by the threat of punishment.

Axelrod ran a series of tournaments, for which he invited many academic re-

searchers to design a strategy for the IPD. The target for thecompetitors was to max-

imize the payoff across a large but unknown sequence of games. Each entry was al-

lowed to maintain knowledge of its previous three games, upon which it could base a

strategic selection for its next game.

The winner of the tournament was Anatol Rapoport’s TIT FOR TAT program. This
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strategy cooperated on the first turn, but then repeated its opponent’s action from the

previous game thereafter. Playing in this way directly seeks cooperation with its ad-

versary, since any non-cooperation will be punished by a defection on the succeeding

turn.

Axelrod [3] then sought to find whether a GA could improve uponTIT FOR TAT’s

performance. He encoded strategies as a 64-bit string, witheach gene representing

the player’s action for any of the possible prior three-gamestrategy pair sequences.

From this he was able to discover strategies which outperformed TIT FOR TAT in his

chosen static environment. Whilst not necessarily better than TIT FOR TAT against

all possible opponents, Axelrod’s evolved strategies showed the power of a GA in

exploiting its given environment.

An interesting use of coevolving neural networks is found inthe development of

the checkers playerBlondie24[27, 28, 48] by Kumar Chellapilla and David Fogel.

A competing population of individuals is evaluated based ontheir ability to play the

game using only the positions of the pieces on the board and the piece differential (i.e.

the material superiority of one player over the other).

For the purposes of the program a checkerboard is represented by a vector of length

32, with each component corresponding to a permissible position on the board. Com-

ponents in the vector are elements from the set{-K, -1, 0, +1, +K}, where 0 corre-

sponds to an empty square, 1 is the value of a regular checker and K is the worth

assigned to a king. The value ofK is evolved by the algorithm. The sign of the value

indicates which player the piece belongs to: positive for the player, negative for the

opponent. A player’s move is determined by evaluating the presumed quality of the

resulting future positions.

After several months of coevolution the best neural networkwas seen to attain an

expert-level status. The program’s authors challenged theworld champion program

Chinookto a ten-game match, withBlondie24winning two and drawing four. Unlike

its opponent,Blondie24contained neither expert rules nor databases of openings or

endgame positions. Although losing the match,Blondie24’s performance was impres-

sive and highlights how well evolutionary methods can do with little or no domain

knowledge.

Another application of evolving neural networks is by DavidMoriarty and Risto

Miikkulainen [85], for the purpose of strategy discovery inthe game of Othello. The

neural networks are evolved using a GA, with only the piece placements as inputs to the

candidate solutions. The marker-based scheme employed allows the net architecture
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and connection weights to evolve. The lack of expert rules orheuristics means that any

strategies that form do so purely through self-discovery ofthe game.

The networks are first tested against a player employing random moves, from

which they quickly develop what is known as a “positional strategy” for the game.

This way of playing essentially seeks to maximize the numberof opponent’s pieces

reversed on each move, and is the way that novice human players often approach the

game.

Following this the competitor program is itself encoded with a positional strategy.

The newly evolved players then discover the more complex “mobility strategy” for

Othello. This strategy, which is characteristic of human masters, seeks to limit the

opponent’s number of good moves on their next turn. Again theevolutionary approach

shows itself to be capable of creating a game player of a high level.

Many other games have provided the test bed for research on evolutionary algo-

rithms. Graham Kendall at the University of Nottingham has applied such methods to

the African game of awari [40], cribbage [71], blackjack [72], and chess [73]. In all

such cases the strategies evolved show themselves to be at least as strong as amateur

human players.

One neoteric use of genetic algorithms is Colin Frayn’s [51]research on the board

game of MonopolyR©. In this work a GA is used to determine a valuation for all of

the properties on the board, both singly and as part of a complete set. Other game

playing parameters are evolved, including whether or not toexit jail, which properties

to mortgage in the event of bankruptcy, and the desired minimum cash position. The

results of the GA give rise to very strong computer players which the author contends

are superior to those found in commercially available Monopoly R© software.

We noted in Section 2.3 that Go is arguably the most difficult board game to de-

velop competent computer players for, and it too has been thesubject of research apply-

ing evolutionary computation. Genetic algorithms are usedin the research of Donnelly

et al. [95] to evolve a Go position evaluation network for a 9-by-9 board. This reduced

game is often played by beginners, and here helps to reduce the game space so that the

experimental runs are less time-consuming. Crossover and mutation are employed to

train the network, and the individuals compete in all-play-all tournaments.

Richardset al. [100] describe a method they christen SANE (Symbiotic, Adap-

tive Neuro-Evolution) to evolve neural networks capable ofplaying Go on similarly

truncated boards with no pre-programmed knowledge. Two separate populations are

evolved: one of neurons for the networks’ hidden layer, and the other for blueprints
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of network architecture. Networks are evaluated, selected, and recombined based on

their overall performance in the game. After initially playing moves randomly in the

experiments, the program eventually develops some well known Go strategies. Neither

Donnelly’s nor Richards’ evolved players exhibit noteworthy strength in their ability

to play the game, but this is in keeping with all computer Go results at present.

5.5 Evolutionary Algorithms Applied to Poker

The first, and to date most extensive attempts to apply evolutionary computation to

poker have been performed by Luigi Barone and Lyndon While atthe University of

Western Australia. In their work they develop poker playersthat are able to adapt

strategically given inputs from their environment, such astheir own hand strength,

seating position, bet size, and a measure of their opponents’ playing styles.

The simulations performed in their early research [4] use a simplified ring game

Texas hold’em with limit betting. The adaptive player uses the “competencies” of

hand strength, seating position, and risk management to effect decision making. Each

component generates a probability triple over each possible action (bet, call, or fold),

which are then passed to a “resolver”. The resolver weights the inputs and determines

which action is made.

One evolving player is seated at a table of static opponents encoding expert rules.

Many different types of opponent are used to cover a range of possible playing styles,

although each table only consists of multiple copies of one such adversary. Evolution

on the weightings of each competency and the maintenance of the population of candi-

dates is performed using a (1 + 1) evolution strategy. The results show that the adaptive

players are able to increase their strength sufficiently to compete against and beat their

opposition.

Further research by Barone and While [5] alters the decisionmaking structure and

dispenses with the resolver. Instead, the population of candidates is segmented into

a hypercube with dimensions relating to seating position and risk management. Each

candidate in a hypercube element consists of real values which are used as inputs into

a series of formulae to calculate the probabilities of a bet,call, or fold. Evolution

occurs on these values and determines the player’s action. During the play of a game,

a candidate is selected from the appropriate hypercube segment to carry out a betting

action. After all candidates have been cycled through a predetermined number of times

the (1 + 1) evolution strategy creates a new generation.
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The work of Barone and While gives encouragement to the use ofevolutionary

algorithms for designing a poker player. There are many possible extensions to their

work, such as using a mixture of opponents at the same table and employing com-

petitors which themselves use non-stationary strategies.Whilst their research solely

focuses on the ring game format, its findings are propitious for the applicability of

EAs to tournament poker.

In similar work by Graham Kendall and Mark Willdig [74], evolutionary methods

are shown to be able to learn to play a simplified draw poker game. Candidates from

the population are again played at tables containing opponents of different styles, and

the adaptive players are seen to adjust their strategies appropriately to each situation.

As in the evolutionary poker research cited above, however,no results concerning the

performance of the resulting players against human opposition are published. In the

work of both Barone and Kendall the encodings of hand strengths used are very coarse,

and it is almost certainly the case that the players found would not match the relative

abilities of the GAMES Groups’ poker programs discussed in Chapter 2.

Texas hold’em has also been used in research on coevolutionary techniques by Ja-

son Noble [91]. Rather than play against static opposition,his work seeks to develop

strong poker players through self-play. The author states that the resulting individu-

als do not possess strong playing abilities when measured against human opposition.

However, the focus of this study is the comparison of coevolutionary methods and is

not intentioned to produce expert-level poker strategies.

In further work, Noble [90] uses a more detailed representation for the individuals’

playing strategies. Rather than the rule-based system of threshold hand strengths and

desired betting levels in the previous paper, this work employs a sparsely encoded neu-

ral network with a large number of possible inputs. The results show that deterministic

crowding works well in conjunction with Pareto coevolutionfor maintaining a diverse

population and improving strategies. The algorithm was notparticularly successful in

finding strong poker strategies, but again this was not the specific aim.

This review confirms two salient points for our present research. Firstly, EAs have

been shown to work well in application to developing computer games players. Sec-

ondly, such techniques have been applied to various forms ofpoker, but none have so

far investigated the game within a no-limit tournament setting.
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5.6 An Example of Evolutionary Algorithm Design for a

Toy Poker

We next illustrate the implementation of an EA in application to the Jack-Queen-King

game (JQK game) [105], before returning to pre-flop Texas hold’em in the following

chapter. The ensuing subsections introduce this toy poker,discuss the implementation

issues, and analyse the results of some evolutionary experiments.

5.6.1 Jack-Queen-King Game

The Jack-Queen-King game is a simplified form of ring game poker with limit betting

for two players, hereafter known as Player 1 and Player 2. Both competitors ante $1,

then receive a card from a deck consisting of a jack, a queen, and a king.

Player 1 is first to act, and after looking at his card may either bet $1 or fold. If he

folds, Player 2 wins the pot. If he bets, Player 2 must then either call for $1 or fold.

Should Player 2 fold, Player 1 wins the pot. If Player 2 calls,the winner is determined

by a showdown (king≻ queen≻ jack).

The extensive form of the JQK game is shown in Figure 5.1. In this diagram the

conditional probabilities of the cards dealt are shown along the upper branches of the

tree. The actionsf and b for Player 1 correspond to a fold and a bet respectively.

Similarly, thef andc for Player 2 relate to fold and call actions.1

The presence of imperfect information in this toy poker is relayed by the multi-

nodal information sets, shown as dashed ovals. At any point during the game a player

knows which information set within the tree he currently resides given his card and the

previous betting action. However, he cannot identify with certainty the precise node

since he does not know his opponent’s card.

The payoffs to Player 1 are given at the terminal nodes, and are the negative of

those pertaining to Player 2.

The optimal strategy for each player in the JQK game can be determined by the

use of linear programming. Firstly, a payoff matrix is constructed for all possible pairs

of pure strategies available to each player. A pure strategy, Zi , for a player is a triple

(zJ,zQ,zK) ascribing an action to each information set. Eachzi ∈ { f ,b∨c}, with the

latter element dependent upon whether the player acts as Player 1 or 2.

1Note that since the players act in sequence, a competitor maywin pots as Player 2 with a card that
he would have folded to a bet.
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Figure 5.1: Extensive form for the JQK game.
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The payoff matrix to Player 1 for the JQK Game is shown in Table5.1.

( f, f, f ) ( f, f, c ) ( f, c, f ) ( f, c, c ) ( c, f, f ) ( c, f, c ) ( c, c, f ) ( c, c, c )

( f, f, f ) -1 -1 -1 -1 -1 -1 -1 -1

( f, f, b ) − 1
3 − 1

3 − 1
6 − 1

6 0 0 0 0

( f, b, f ) − 1
3 − 5

6 − 1
3 − 5

6 − 1
6 − 2

3 − 1
6 − 2

3

( f, b, b ) 1
3 − 1

6
1
2 0 2

3
1
6

5
6

1
3

( b, f, f ) − 1
3 − 5

6 − 5
6 − 4

3 − 1
3 − 5

6 − 5
6 − 4

3

( b, f, b ) 1
3 − 1

6 0 − 1
2

1
2 0 1

6 − 1
3

( b, b, f ) 1
3 − 2

3 − 1
6 − 7

6
1
2 − 1

2 0 -1

( b, b, b ) 1 0 2
3 − 1

3
4
3

1
3 1 0

Table 5.1: Expected payoffs to Player 1 in the JQK game.

To solve the game constraints are placed on the pure strategies such that the sum

for each player totals one. This is because we wish to find the probabilities with which

each should be played. A software package such as Maple can then solve the con-

strained optimization problem to yield the optimal strategies for each player shown in

Table 5.2.

Player 1 2
3 ( f ,b,b) and1

3 (b,b,b)

Player 2 2
3 ( f , f ,c) and1

3 ( f ,c,c)

Table 5.2: Optimal strategies in the JQK game for each player.

We observe that the optimal strategies for both players takethe form of mixed

strategies. Player 1 should always bet the queen and king, and the jack only one third

of the time. Likewise Player 2 should always fold the jack, call one third of the time

with the queen, and always call with the king.

Both the explanation and analysis above describe a single hand of the JQK game.

To imbue this with greater realism we now suppose that the twoplayers compete in

repeated hands, with the deal and thus the seating position of each alternating. Each

competitor is therefore required to act cyclically as Player 1 and Player 2.

5.6.2 Player Representation

When implementing an EA there exists a large amount of flexibility open to the prac-

titioner in determining the exact formulation of the algorithm and its elements. The
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first decision that is required concerns the representationof the individuals. Arguably

the simplest EA encoding of a JQK game player is to use the canonical genetic algo-

rithm [56] representation containing six bits. The ordering of the genes on the chromo-

some is discretionary. Here we choose the first three bits to denote the player’s action

when he acts as Player 1, with the genes relating to playing the jack, queen, and king

in that order. This representation is then repeated for the following three genes for the

betting actions as Player 2. This representation is summarized in Table 5.3.

Gene 1 2 3 4 5 6

Player 1 1 1 2 2 2

Card J Q K J Q K

Table 5.3: Encoding of a strategy for the JQK game.

Within the canonical GA each gene can take on an allele of one of two values. A0

signifies that the player folds with the given card in the appropriate position. An allele

of 1 relates to two different actions depending upon the position of the player. A1

denotes either a bet for Player 1, or a call in the case of Player 2.

With this representation all possible game strategies can be encoded as a chromo-

some. As an example we examine the candidate011001. With reference to Table 5.3,

we first observe that this individual will never bet the jack and always bet the king.

The second and fourth alleles relate that this player will bet the queen as Player 1, but

not call a bet with it as Player 2.

5.6.3 Implementing the EA

In accordance with the algorithm design the next stage is to ascribe the evolutionary

operators to the GA. These elements are set out in Algorithm 1.

As previously mentioned, the exact specifications used within the algorithm are left

to the practitioner’s discretion. Parameters relating to the sizing of the population, rates

for the crossover and mutation operators, and the selectionof the termination criterion

are all required. Several theoretical results have been expounded, but the choices made

are often based either on values that are known to have workedwell in previous exper-

iments, or are designed to be compatible with the available computational power or a

desired run-time.
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Algorithm 1 A Genetic Algorithm for the JQK Game
1: Initialize the population

2: while termination criterion unsatisfieddo

3: while new population not fulldo

4: Evaluate the individuals’ fitnesses

5: Select individuals from the current population

6: Perform crossover and reproduction on the selected individuals

7: Perform mutation on offspring

8: Add offspring to new population

9: end while

10: end while

11: Return best individual found as solution

To continue the example of the JQK game we select a populationof just ten indi-

viduals. A result of Goldberget al. [57] suggests using a population size of the order

of the number of genes over which the algorithm will operate.

We shall use the GA to evolve strategies against a static opponent. The chance

element of the deal of the cards means that one hand is not sufficient to give an accurate

assessment of whether one player is better than another. To reduce the effects of luck,

we require that an individual plays against the opponent for100 hands. Therefore the

natural fitness function to use in this example is the total number of hands won. This

provides any candidate with an evaluation in the interval[0,100].

For the recombination operator we choose simple one-point crossover. This takes

two parents and splits each at the same randomly chosen pointalong the chromosome.

An offspring is formed by fusing the first part of one parent with the second part of the

other. Suppose, for example, we had the parents101010 and110001 and the algorithm

determines that each should split between the second and third genes. The child of such

a reproduction taking the first two genes of the first parent and the last four genes of the

second would be100001. The crossover rate used within the GA is chosen to be 70%.

This number is in keeping with values found to work well in many other experiments.

The mutation operator in a canonical GA flips a selected bit. However, we are still

required to choose the rate at which such mutations occur. High mutation values are

often found to be disruptive in the search for strong solutions, and so here we choose a

rate of 5% in keeping with similar prior research.

For the termination criterion we choose to run the GA for twenty generations.
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Again this number is discretionary, but is found to be sufficient for the given exam-

ple.

5.6.4 Results and Conclusions

The static opponent we use to illustrate the GA is001001. This can be interpreted as

an extremely cautious player, since he will only bet and callwith the best possible card

and fold otherwise.

The best solutions found using the above implementation arethe individuals111000

and111001. The strength of these candidates can be understood in the context of the

counter-strategies that they encode for in comparison to the static opponent’s strategy.

Both of these players will bet every card as Player 1. This haspositive expectation

since the static opponent will only call with the king. Similarly, both solutions will

never call a bet as Player 2 with either the jack or queen. Thisis because the opponent

only ever bets the king as Player 1. Notice that although bothsolutions differ in the

final gene, this value is rendered irrelevant due to the opponent’s strategy. That player

will fold the jack and queen every time as Player 1, and so any competing individual

will not be required to act if it is dealt the king.

This result can be validated mathematically by calculatingthe expected payoffs

for each possible counter-strategy against the001001 opponent. These are shown in

Table 5.4.

P1 Strategy P1 Payoff P2 Strategy P2 Payoff

( f , f , f ) -1 ( f , f , f ) 1
3

( f , f ,b) −2
3 ( f , f ,c) 1

3

( f ,b, f ) −5
6 ( f ,c, f ) 1

6

( f ,b,b) −1
6 ( f ,c,c) 1

6

(b, f , f ) −5
6 (c, f , f ) 1

6

(b, f ,b) −1
6 (c, f ,c) 1

6

(b,b, f ) −2
3 (c,c, f ) 0

(b,b,b) 0 (c,c,c) 0

Table 5.4: Expected payoffs as Player 1 and Player 2 for each possible counter-strategy

to a 001001 opponent in the JQK game.

The profit-maximizing strategy as Player 1 is seen to be(b,b,b), whilst both( f , f , f )
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and( f , f ,c) are equally optimal as Player 2. Concatenating these strategies leads to

the two best evolved solutions cited above:111000 and111001. This confirms that

the GA has successfully discovered the global optima.

The example we have used to illustrate an EA is very simple. However, it serves to

demonstrate the basic methodology and implementation requirements of an EA. Also,

we gain confidence in the technique since the EA finds global optima in this small test

case.

We can also envisage how this example could be extended for the JQK game played

within a tournament. The length of the chromosomes could be enlarged to allow for

different betting actions based, for example, on the tournament level as we did in Chap-

ter 4. A simple illustration of this is given in Table 5.5, expanding the encoding used

in Table 5.3.

Gene 1 2 3 4 5 6 7 8 9 10 11 12

Player 1 1 1 2 2 2 1 1 1 2 2 2

Card J Q K J Q K J Q K J Q K

Level E E E E E E L L L L L L

Table 5.5: Encoding of a tournament strategy for the JQK game. Tournament levels

could be divided into early (E) and late (L) categories to allow for different actions.

We develop this idea when returning to our more realistic allin or fold pre-flop

Texas hold’em test bed in the following chapter.

5.7 Summary

Evolutionary algorithms replicate mechanisms found in nature to derive solutions to

difficult problems for which more effective approaches are unknown. They are strong

general purpose problem solvers and, as such, have a wide range of applicability. Four

main subclasses of EA exist, although the different strandsshare many similarities in

their implementation and procedures. EAs are not simply black box techniques, and

their use requires many specifications and parameterizations from the practitioner.

The computer game playing domain has benefited greatly from the application of

EAs. Economic games such as the iterated prisoner’s dilemmaand classic games like

checkers have all had EAs used on them to uncover strong strategies. The result-
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ing players may not in some cases be as strong as those derivedthrough other ar-

tificial intelligence techniques, but the lack of a requirement for domain knowledge

means that the players are not unintentionally handicappedby any imperfections in

pre-programmed expert rules.

In recent years poker has started to be used as a test bed for evolutionary algorithms.

The ramifications of this work show promise, but the dearth ofresults against either

human or externally developed computer opposition leaves the strength of the resulting

programs open to question.

It is also the case that no evolutionary computation research has yet been applied

to poker in a tournament setting. The following chapter addresses this directly.



Chapter 6

Discovering More Complex Strategies

Using Evolutionary Algorithms

In this chapter we employ evolutionary algorithms to discover more complex strategies

for our pre-flop Texas hold’em tournament domain. This we achieve by combining all

four game-related factors found to positively influence decision making in Chapter

4. Note that this is non-trivial, since the best counter-strategies shown in Table 4.10

contain potential conflicts for all-encompassment. For example, if playing against the

Sklansky Basic opponents in the latter half of a tournament with a large stack size, the

best counter-strategies would suggest playing any hand in the top twelve groups due to

the tournament level, and contradictorily folding all hands because of the large stack.

We first explain how the all in or fold tournament poker problem can be encoded

within an EA, and discuss the issues of representation, genetic operators, and parame-

terization. Analysis of the evolutionary runs addresses whether use of the amalgamated

factors yields stronger tournament poker players than those which used only a single

game factor found previously, and whether an EA can resolve potentially conflicting

inputs such as in the example above.

6.1 Evolutionary Algorithm Experimental Framework

Evolutionary algorithms are general purpose problem solvers that use a guided stochas-

tic search to optimize a fitness function which assigns a numerical value to potential

solutions. The different types of EA were outlined in the previous chapter, but the

choice of which to apply to a given problem is left to the practitioner’s discretion. Of-

ten this decision can be founded on the representation of candidate solutions employed.

88
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Once this has been determined there needs to be a selection onwhich genetic operators

to use, and choices made on the parameterization of the EA.

6.1.1 Strategy Representation

In Section 5.1 we saw how a strategy for our all in or fold tournament poker environ-

ment could be represented by the tuple

(t1, t2, ..., t16)

with the threshold value between moving all in and folding for unique scenarioi given

by ti .

On removing the brackets and commas this encoding is familiar as the representa-

tion of a chromosome we used in the genetic algorithm at the end of the last chapter. As

in all EAs it is necessary for the genes to encode some behaviour or parameterization

such that together they form a candidate solution to the problem. In our example all

that is required to complete the representation is to form aninjective mapping between

the genes and the sixteen unique game situations. Then when atest player is compet-

ing in a tournament, the states of the four binary variables will indicate which gene

encodes the threshold value for that particular scenario. Acomparison of their own

hand’s starting group with the determined threshold value will then return a betting

action of either all in or fold.

To make the injection between genes and scenarios we use the power set of the

binary variables, as shown in Table 6.1. Generally, the mapping used can have conse-

quences on the effects of certain crossover operators within an EA. Here this is not a

concern as we shall employ uniform crossover, discussed shortly.

The meaning of each binary variable’s state is explained in Table 6.2. The desig-

nations employed echo those of Chapter 4.

Rather than allowing the alleles to take integer values fromthe set{0,1, ...,13},
we choose instead to let them take real numbers on the interval [0,14). The exact

reason for this will be explained in an ensuing subsection onthe mutation operator.

To translate an allele to a betting action we simply take the floor of its value as the

respective threshold hand group. For example, an allele of 3.141 has a floor of 3, and

so instructs the player to move all in with any hand containedwithin the top three

groups and fold otherwise.

Now that we have formalized the strategy representation within the chromosomes,

we examine the other issues involved in constructing our EA.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

L 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

S 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 6.1: Classification of potential game scenarios for use within the chromosomes

of the EA. Each column heading is the respective gene number, with the state of each

binary variable covering seating position (P), opponents’ prior bet (B), tournament level

(L), and stack size (S) shown by row.

Binary Variable State = 0 State = 1

Seating position (P) Early position Late position

Opponents’ actions (B) No prior bet Prior bet

Tournament stage (L) Level≤ 6 Level> 6

Chip stack amount (S) M ≤ 5 M > 5

Table 6.2: Explanation of the binary variables’ states used in Table 6.1.

6.1.2 Population Initialization

Evolutionary algorithms rely on a population of candidatesto maintain a diversity

of potential solutions to explore the fitness landscape. In constructing an EA it is

necessary to decide how large a population to maintain, and how this should first be

initialized.

Deciding upon the exact size of population is the responsibility of the practitioner.

Broadly speaking, however, it is important that the number of candidate solutions em-

ployed in an EA is neither too small nor too large. If too few individuals are used the

EA will suffer from rapid convergence within the population. This means that individ-

uals will quickly come to resemble one another, with the result being that only a few

localized areas of the strategy space are explored. At the other extreme, a population

of too many individuals suffers from a different problem. Each individual is required

to be scored by way of the fitness function, and hence the more individuals maintained

the longer this takes. An overly large population size vastly increases the run-time of

each generation of the algorithm.
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For the canonical GA a useful rule of thumb is to use a population size comparable

to the number of genes within a chromosome [57]. Although we do not use the simple

binary encoding of the genes found within the canonical GA inour representation, it

was decided to use a population of 20 based upon the same reasoning.

In creating the initial population there are two main possibilities to select from.

The first is to create a population of random individuals by randomly assigning a fea-

sible allele to every gene of all chromosomes. The second is to seed the population by

introducing some candidates which are pre-defined. Seeded individuals can be used

as a way of introducing prior knowledge of likely strong solutions. This can help to

reduce the time taken to termination of the algorithm, sincethe fruitless explorations

performed by some of the randomly created individuals will be removed. The disad-

vantage of using seeded individuals is that they may handicap the EA by unintention-

ally providing poor candidate solutions. For example, individuals known to be locally

strong may obfuscate the search from finding globally optimal strategies.

In our experiments it would be very simple to seed the initialpopulation. By ex-

tending the representations of the best found strategies from the previous exhaustive

simulation experiments we could create potential startingpoints for the search. For

example, the best strategy discovered earlier to play against the Sklansky Basic oppo-

nents using hand strength and seating position knowledge was (8,2). This relates to

using the threshold hand groups of 8 in early position and 2 inlate position. To convert

this into a strategy for the chromosomal representation requires that we repeat these

two alleles in the appropriate genes found by reference to Table 6.2. This example

would yield the chromosome:

8 8 8 8 8 8 8 8 2 2 2 2 2 2 2 2

Rather than seed the population with prior solutions we choose to initialize the EA

with random individuals. At the possible cost of increased run-times we remove the

potential for adversely biasing the search with seeded candidates.

6.1.3 Selection and the Fitness Function

In common with the biological processes which EAs mimic, individuals from the ex-

isting population give rise to a subsequent generation. Howthe individual candidates

are chosen is based on the process of selection.
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Typically the method used for selection within an EA is basedon each candidate’s

fitness. The purpose of a fitness function is to quantify each solution’s ability to op-

timize the problem at hand. Therefore the fitness function simply needs to provide a

mapping from the strategy space to a number, such that any possible solution can be

quantified and ranked.

The form that the fitness function takes is heavily problem-dependent. In our do-

main of tournament poker we have a simple and natural possibility. We are ultimately

interested in how well a particular individual within the population fares as a tour-

nament poker strategy. To do this we measure each strategy’sability over several

tournaments, since random chance affects the results of anyindividual competition.

Re-sampling candidates is a commonly employed method for searching noisy environ-

ments [7, 20, 97]. In keeping with the experiments in Chapter4 we choose to play

each strategy off over 200 tournaments. The fitness of an individual is then simply the

total number of tournaments won.

Alternative fitness functions could be employed. Rather than simply counting one

point for a tournament win and zero otherwise, we could assign different numerical

values depending upon the position finished within a game. For example, we could

use a fitness function which gives ten points for a tournamentwin, nine for second

place, and so on down to one point for last.

Similarly we could use a fitness function which mirrors the payoffs to a regular

ten-player tournament, in which first place receives 50% of the prize money, second

place 30%, and third 20%. A function which awards five points to first place, three to

second, two to third and zero otherwise would suffice for thispurpose. Ultimately the

choice is dependent upon our aims, and what we consider to be the precise problem that

we wish to solve. In our experiments we continue to use the onepoint per win fitness

function as in the exhaustive simulations, for reasons explained in Section 4.1.1.

6.1.4 Reproduction

The method by which an EA creates successive generations of individuals is known as

reproduction. The typical procedure by which candidate solutions reproduce consists

of

• Fitness-based selection

• Crossover (also called recombination), and
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• Mutation

Two individuals are selected from the population as parents, and combine their

genes through crossover to produce a child. This offspring solution may then undergo

mutation, which randomly changes some of the chromosome’s gene values. The intent

behind the method is that fit parents will combine to produce even fitter children, thus

driving the optimization on to new maxima. Maintaining manyof the genes of highly

fit individuals allows the next generation to exploit previously found regions of the

search space, whilst the inclusion of crossover and mutation also permits investigation

of hitherto unexplored strategies.

Details regarding the specific implementation of reproduction within our experi-

ments are given in the next three subsections.

6.1.4.1 Fitness-Based Selection and Elitism

All EAs search the space of potential solutions through a careful trade-off between

exploration and exploitation. Fitness-based selection isa method for ensuring that the

population maintains many of the genes of previously found strong solutions. Candi-

dates with a higher fitness are more likely to be propagated into the next generation.

Two commonly applied methods of fitness-based selection areroulette-wheel se-

lection and tournament selection [84]. In the former the fitness of each individual is

used to assign a proportionate probability of selection. Fitter solutions are more likely

to be selected, but less fit individuals are not barred from becoming parents.

Tournament selection is the method used in our experiments.As with roulette-

wheel selection fitter individuals have a higher probability of becoming parents, but

the processes for this are somewhat different. Our tournament selection randomly

chooses two individuals as the first potential parent. The candidate with the highest

fitness amongst these is selected. The process is repeated for the second parent, with

the proviso that the two parents should not be identical.

Elitism is an optional constituent of an EA. It is a method by which certain chro-

mosomes are maintained unaltered from one generation to thenext. Its use can have

both positive and negative effects on an evolutionary run. Of benefit is that very strong

solutions are kept unchanged within the population. The components of strong candi-

dates thereby remain within the gene pool. A potential downside to elitism is that it

can encourage premature convergence. This is particularlyproblematic with a small

population size.
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After several preliminary tests were performed both with and without the use of

elitism, it was decided to use it such that the two fittest individuals pass through to

the next generation unaltered. There was little differenceobserved in the results of

EA runs both with and without a small number of elites. However the use of a larger

number was seen to lead to a faster rate of convergence.

6.1.4.2 Crossover Operator

Crossover is employed in an EA to share genes amongst candidates in the population.

After fitness-based selection has chosen the two parents, anassociated rate determines

the probability of them undergoing crossover. Without crossover the parents pass into

the next generation unaltered, otherwise they undergo a process described below to

produce offspring. Our experiments use a crossover rate of 70%, a figure which is

lower than those commonly employed [41, 58].

Different styles of crossover have been used in previous academic research. Per-

haps the most commonly employed is simple one-point crossover, and was the one

employed in our investigation of the JQK game. In this methodthe two parents are

split between the same two genes along the chromosomes, withthe genetic material to

the left-hand side of one fusing to the right-hand side of theother. This technique can

be extended ton-point crossover, by which several genetic swaps are made between

the parents.

One-point crossover is particularly desirable when there is some implicit ordering

along the chromosome so that the adjacency of consecutive genes is somehow impor-

tant within the representation. In our situation this is notthe case. Referring back to

Table 6.1 we observe that only one of the four factors (that ofseating position) has

like binary states grouped together along the chromosome. Asplit in the chromosome

between the eighth and ninth genes would cleanly separate the early and late seats.

However, such a cleave would have mixed effects on the other three factors since their

binary variables’ identical states are not contiguous.

Rather than this operator, we choose to employ uniform crossover. This scheme

almost eliminates the possibility of selecting contiguousblocks of genes in reproduc-

tion, and hence helps to search wider portion of the solutionspace. With uniform

crossover the parent chromosomes are compared and similarly numbered genes are

swapped with a fixed probability. We use a probability of 0.5,meaning that on average

half of the genes are crossed over. The result of applying uniform crossover is two

child offspring, each of which contains part of the genetic material from both parents.
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6.1.4.3 Mutation Operator

The final operator used within a typical EA is that of mutation. This scheme mirrors its

biological precedent, with some amount of genetic materialin the population changed

every generation through chance. This operator ensures that there is a positive prob-

ability of new material entering the gene pool, and helps both to search the solution

space and guard against convergence.

In the canonical GA, whereby the representation of chromosomes consists of sev-

eral binary digits, the operator’s effect is straightforward. A fixed, usually small, per-

centage of the genes of the offspring is selected for mutation. In these cases the allele

on the gene is flipped, with a1 becoming a0 and vice versa. For encodings allowing

for a greater number of alleles than just two, slightly more elaborate mutation operators

are required.

In our problem we have chosen to encode the strategies using real numbers on the

interval [0,14). Before explaining why, we consider the simpler alternative of using

the integers{0,1, ...,13}. If we did so, we could construct a mutation operator which

flipped values in a similar way to the canonical GA. In our casethe mutation would

need to swap a given allele to one of the 13 alternate possibilities with equal probability.

This mutation could have been used, but in doing so we would lose some of the

knowledge that we have contained within the representation. The hand group number-

ing means that players with similar numerical encoding reside within local areas of the

strategy space. We can assist the search by biasing it to havea greater probability of

exploring “close” strategies, and a lower probability of choosing those “further away”.

The uniform mutation operator, by contrast, is equiprobable in this respect.

To effect this kind of mutation the zero-mean Gaussian distribution is often used.

The common bell-shaped distribution ensures that small absolute changes are more

likely than large ones. Since samples from a Gaussian distribution are real-valued, we

use a real-valued encoding for the strategies. Non-integeralleles are converted into

hand group thresholds by taking their floor value.

A Gaussian with a standard deviation of two was employed. This parameter was

chosen arbitrarily, and no other choices were evaluated. Without further modifications

it is possible for some shocks to take the allele value outside of the allowable[0,14)

range. For example, an allele of 0.278 taking a negative shock of 0.5 would result in

an impermissible value of -0.222. To prevent this we use reflection at the boundaries, a

method shown to reduce bias by Bullock [23]. In this method the excess shock amount
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has its sign reversed once the boundary is reached. In the given example this would

result in an allele of +0.222.

Genes are selected for mutation at a rate of 20%. It should be noted that since only

the floor of the allele values affects behaviour at the phenotypic level, several of the

random shocks have no outwardly observable effect. For example, an allele of 3.141

receiving a positive shock of 0.5 becomes 3.641, but it stillrepresents a threshold value

of 3 for the particular scenario.

An estimate of the effect of the mutation operator can be determined by applying

shocks to random alleles from the interval[0,14), and noting the difference between

their old and new values after any necessary reflection. Different alleles have different

profiles, since those towards the boundaries are constrained in one direction. A sim-

ulated estimate of the chosen mutation scheme on 5,000 random alleles is shown in

Table 6.3.

Allele Floor Difference 0 ±1 ±2 ±3 ±4 ±5

Estimated Frequency 83.9% 7.2% 5.0% 2.6% 0.9% 0.4%

Table 6.3: An estimate of the effect of Gaussian shocks with a standard deviation of two

on the floor values of alleles, using a mutation rate of 20%.

Totalling the non-zero shocks we have an estimated effective mutation rate of

16.1%. It is acknowledged that this is high in comparison with standard mutation

rates [41, 58], and no tests were performed using different schemes.

6.1.5 Termination

The decision to end an evolutionary run is generally dependent upon one of the three

following conditions, the choice of which is left to the practitioner.

• Minimal adequate solution found

• Predetermined number of generations reached, or

• Convergence of solutions / lack of appreciable improvement

For our purposes we decided to use a termination criterion based on the number

of generations. We could not easily determine a minimum adequate solution, as a

specific rate of tournament wins could be high against one opponent and low against
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the others. Also we did not wish to rely on convergence to cause the cessation of

the genetic algorithm. Through the combination of operators and parameterization

discussed we were able to construct an algorithm which was still capable of exploring

the strategy space after many generations.

The actual termination criterion of 50 generations used in the following experi-

ments was chosen after several preliminary studies were undertaken. After this amount

of time the rate of discovery of new global best solutions hadgenerally slowed. Rather

than continue an experiment for longer, the machine could then be made available for

a new run.

6.2 Evolutionary Algorithm Results

Given the set up and parameterization described above, we ran three EAs. The code

which implemented the EA was a modification of a program developed by Graham

Ritchie, a fellow research student at the University of Edinburgh. This was then linked

to the Texas hold’em architecture previously used in Chapter 4. The evolutionary

experiments were designed with an identical foundation to those of the exhaustive

simulations in all poker-related settings. The tournamentstructure, opponents, and

seating arrangements were all as previously described.

The fitness of each candidate was calculated as the score from200 tournaments. All

the chromosomes from every generation and their associatedfitness evaluations were

saved for analysis. From these figures we were able to ascertain the highest and average

fitnesses per generation achieved within each run. By maintaining high waterlines on

the iteration best fitnesses, we were also able to keep track of the incremental global

best solutions. Upon termination of the algorithm this is the candidate which best

optimizes our problem.

The average population fitness per generation, and the incremental global best so-

lutions are shown for the evolutions against Sklansky Basic, Sklansky Improved, and

Kill Phil Rookie opposition in Figures 6.1(a), 6.1(b), and 6.1(c) respectively.

The general shape of all three plots show similar trends. Thestarting points of the

average fitness lines (i.e. the intersections with the ordinate axes) give a measure of

how well a random counter-strategy performs in our experiments. The random counter-

strategy averages decrease in the order of Sklansky Basic, Sklansky Improved, and

Kill Phil Rookie opposition. This repeats previous statements about the comparative

complexity of the adversaries.
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(a) Sklansky Basic
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(b) Sklansky Improved
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(c) Kill Phil Rookie

Figure 6.1: Evolutions using knowledge from all four game factors against the three

static opponents. Global best and average fitnesses per generation are shown with

corresponding 95% confidence intervals.
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It is perhaps surprising that the average fitness of random counter-strategies against

Sklansky Basic players is able to score almost 17% (33 out of 200). Considering that

ten players compete in each tournament a score of over 10% shows a better perfor-

mance than a naive average. This demonstrates that against the space of all possible

all in or fold strategies within our framework, the SklanskyBasic one is relatively

weak. The similar intersections against the other two opponents are both below 10%,

although only just so in the case of the Sklansky Improved opponents.

Observing the average population fitnesses given by the dashed lines we see that all

are quick to increase in the first ten generations of the evolution. This is because in the

early phase of our evolutionary algorithm the randomly assigned alleles get replaced

with those from evolved solutions. In these formative generations the rate of finding

new global best counter-strategies is at its fastest. Theseresults are in keeping with

generally observed trends in the use of EAs.

Improvement in the global best solution against Sklansky Basic opponents notice-

ably levels off by generation 25. The evolutions against theother two opponents were

still finding new global bests approximately every five generations when the runs were

terminated. The difference between the global best and average counter-strategies de-

creases as an evolutionary run nears convergence. In the case of Kill Phil Rookie

opponents in particular it is clear that this stage was not reached. Therefore it is likely

that even stronger counter-strategies would have been uncovered had the number of

generations been increased.

The most remarkable aspect of these graphs is in observing the number of tourna-

ment wins achieved by the best found counter-strategies. Atthe termination of the run,

the best solution against Sklansky Basic had won 178 out of 200 tournaments, a rate of

almost 90%. This figure is a marked improvement on the comparable 212 tournament

wins out of 1,000 gained using hand strength alone shown previously in Figure 4.1.

The evolutions against Sklansky Improved and Kill Phil Rookie opposition also show

marked improvements, with both more than tripling the top scoring counter-strategy

found based on hand strength alone.
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6.3 Statistical Analysis of the Evolutionary Algorithm

Results

From the output generated by the three EA runs we observe thatthe best counter-

strategies at termination have scores exceeding those found previously utilizing only a

single game factor. To rigorously test this presumption we employ statistical hypothe-

sis testing.

As in the Chapter 4, we first take the best found counter-strategies and play them

off in 5,000 tournaments against their respective opponents. Again, the reason for this

is that the results gain greater credence over a larger number of tournaments.

The number of tournament wins in these enlarged experimentsare shown in Ta-

ble 6.4.

SB SI KPR

Score (out of 5,000) 4,340 1,165 786

Table 6.4: Tournament wins of best evolved counter-strategies against the three static

opponents.

We now test whether the proportion of tournaments won by these evolved counter-

strategies, which combine all four game factors, are statistically larger than the best

of those found using a single factor through exhaustive simulation. For this we again

compare the percentage of tournaments won, and therefore the Z-test for the equality

of two proportions is appropriate.

From Table 4.12 we recall that the game factor whose inclusion leads to the highest

scores against all three static opponents is the knowledge of one’s opponents’ prior

bets. Therefore it is the proportion of tournament wins in these cases that we use in the

tests.

The proportions we compare in the statistical tests are shown for each opponent in

the columns of Table 6.5. We reiterate that all figures are calculated from a population

of 5,000 samples.

Formally, our null hypotheses are that the proportion of tournament wins using all

four game factors (evolution bests) are the same as those achieved using only prior bet

knowledge (simulation bests), against the respective opponents.

The resulting p-values given in Table 6.6 reveal that all null hypotheses are rejected
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SB SI KPR

Evolution Best Percentage 86.8% 23.3% 15.7%

Simulation Best Percentage71.2% 21.9% 11.9%

Table 6.5: Highest proportion of tournament wins found by EA and exhaustive simula-

tion experiments against the three static opponents.

at the 95% confidence level. Indeed with the Sklansky Basic and Kill Phil Rookie

opponents we have a far greater level of confidence from the tests.

SB SI KPR

< 0.00001 < 0.05 < 0.00001

Table 6.6: P-values from the equality of proportions tests using the values in Table 6.5.

From this we conclude that the incorporation of knowledge from all four factors

has produced counter-strategies with a significantly higher win rate compared to those

utilizing only a single factor. This result is important notonly because it demonstrates

that the amalgamated knowledge produces stronger counter-strategies, but also that

these counter-strategies implicitly manage to resolve conflicting signals from the in-

dividual factors. This is one of several topics we investigate further in the following

chapter.

6.4 Conclusions

In this chapter we have sought to discover strong players that are able to incorporate

knowledge of seating position, opponents’ prior bets, tournament level, and stack size

in unison. Having previously highlighted the deficiencies in expanding the exhaustive

simulation approach we applied the evolutionary computation methodology explained

in Chapter 5 to our pre-flop no-limit Texas hold’em tournament domain.

It should be understood that the evaluation of a single strategy takes exactly the

same amount of time within the evolutionary and exhaustive simulation settings. Whereas

the exhaustive simulations simply cycle through every possible strategy by enumera-

tion, the EA is able to sample the space more intelligently bybasing its search on prior

evaluations. As the strategy space grows so do the benefits tousing the evolutionary



Chapter 6. Discovering More Complex Strategies Using Evolutionary Algorithms 102

approach.

We looked at the representation of strategies within our framework, and noted their

similarity to the chromosomes employed within a genetic algorithm. Following the EA

methodology we discussed the necessary decisions within the initialization and param-

eterization of the algorithm. Specifically, we selected an appropriate fitness function,

selection method, crossover and mutation operators.

We then ran three EAs, one for each static opponent. On plotting the output from

the evolutionary runs we saw how this technique is able to continually find stronger

solutions by guiding the search into more promising areas ofthe fitness landscape.

The results were analysed by using an appropriate statistical hypothesis test. The

evolved counter-strategies, which incorporated knowledge from all four game factors,

were shown to win a larger number of tournaments than those which utilized only a

single piece of game-related information. From this we concluded that the counter-

strategies incorporating all four game factors achieved through use of the EA were the

strongest yet found, and that they implicitly manage to resolve conflicting signals from

each of the individual factors.

One of the benefits of utilizing evolutionary computation isit enables us to store

information relating to the candidates in each generation.This can then be analysed

to help understand what drives the search towards the best found solutions. In the fol-

lowing chapter we undertake such studies, and compare our findings and the resulting

strategies to the non-academic poker literature.



Chapter 7

Additional Analysis and Interpretation

of Results

We observed at the end of the last chapter that the evolved counter-strategies are sig-

nificantly stronger than those found through exhaustive simulation. The amalgamation

of all four game-related factors produces better pre-flop Texas hold’em tournament

players than those discovered utilizing only a single factor.

In this chapter we seek to understand in what ways the former improve upon the

latter, as we interpret the solutions in the context of pokerstrategy. We firstly compare

the evolved counter-strategies against those from the exhaustive simulations, and then

to professionals’ advice taken from the non-academic pokerliterature.

Using data from the evolutionary runs we examine convergence in the populations

and assess the relative importance of the candidates’ genesin producing high scores.

The chapter concludes by questioning the necessity for a sophisticated technique

to discover strong solutions, and asks whether a simple random search would suffice.

The results from the random search are then used to confirm ourprevious findings on

the relative importance of betting actions in one particular game scenario.

7.1 Recap and Comparison of the Evolutionary Algo-

rithm and Exhaustive Simulation Results

In this section we reflect on the findings of Chapters 4 and 6. Firstly we recap the ex-

haustive simulation results. We saw in Table 4.10 that the hand strength only threshold

leading to the best scores against all three static opponents was four. After introducing

103
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knowledge in the form of a binary variable we noted in all the four cases that the two

new best thresholds diverge away from this value. Thereforeif we take the threshold

level for hand strength only as a reference point, we can say whether the new best

found counter-strategies play looser or tighter (i.e. moreor fewer hand groups) depen-

dent upon the state of the binary variables. This information is shown in Table 7.1.

Scenario SB SI KPR

Early position ↑ ↑ ↑
Late position ↓ ↓ ↓
No prior bet ↑ ↑ ↑
Prior bet ↓ ↓ ↓
Level≤ 6 ↓ ↓ ↓
Level> 6 ↑ ↑ ↑
M ≤ 5 ↑ ↑ ↑
M > 5 ↓ ↓ ↓

Table 7.1: The effect of the extra game information on the looseness or tightness of the

best found counter-strategies against each static opponent compared to the number of

hand groups played based on hand strength alone. “↑” represents more groups, and

“↓” fewer groups.

There are very clear trends in these results across all opponents. The best scores

are achieved by playing looser when in early position, when there has been no prior

bet, in a late tournament level and when small stacked. It is similarly beneficial to play

tighter in the complementary scenarios.

An interesting conundrum arises if we try to use the information from this table

in the play of a hand when we can observe all four binary states. It is clear that the

respective arrows will align in only two of the sixteen possible scenarios: either when

all signal to play looser or all signal to play tighter than the hand strength alone value.

In the other fourteen cases at least one of the factors will provide a conflicting signal

to the others.

As an example, suppose we are in a situation with a large stacklate in the tourna-

ment. In isolation, the first of these two factors suggests playing a low number of hand

groups, whereas the second recommends playing a larger number. To make a betting

decision which combines these two pieces of information requires a resolution to this
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incongruence.

The large scores of the best counter-strategies found in Chapter 6 show that the

evolutionary algorithm mechanism is implicitly able to resolve such conflicts. In an

attempt to understand how this happens, we first investigatehow similar the evolved

counter-strategies are to those found by exhaustive simulation.

For this analysis we first expand each best found counter-strategy from the exhaus-

tive simulations to a chromosomal representation, in a manner previously explained

in Section 6.2.2. We then treat these solutions and those from the EAs as points in a

multidimensional space. To measure the “closeness” of the EA best1 to each of the

simulation bests, we take the Manhattan distance between each pair of points. This

metric totals the absolute difference between each of the corresponding pairs of co-

ordinates. The solutions that are closest together will be most similar in this sense.

If it is the case that stack size, for example, dominates the other three factors against

all opponents then we might expect to consistently observe aproximity between the

evolved counter-strategies and those utilizing chip amount information.

The highest scoring chromosomes and their associated Manhattan distances are

shown in Tables 7.2(a), 7.2(b), and 7.2(c).

The results in these tables are interesting for their dissimilarity. The best evolved

solutions have varying comparabilities with the exhaustive simulation bests. With the

Sklansky Basic opponents, for example, we find that the evolved counter-strategy most

closely resembles that found using knowledge of the opponents’ prior bets. Contrarily,

with the Kill Phil Rookie counter-strategies it is the player founded on tournament

level knowledge that is closest to its evolved counterpart.

There is no discernible pattern to suggest that the best evolved counter-strategies

most closely resemble those resulting from the use of one particular factor. Nor is

there an individual factor which is consistently distant from the best evolved counter-

strategies. So although we noted consistently in Tables 4.11 and 4.12 that knowledge

of prior actions and seating position led to the greatest andleast improvements respec-

tively for a single additional factor, when we allow the testplayer access to all four

factors the significance of each one gets weighted accordingto the opponent.

We can gain a greater understanding of the play of each of the evolved counter-

strategies by calculating the mean hand group over all states of the four binary vari-

ables. For example, to find the mean hand group played in earlyseating position (i.e.

1There were actually three slightly different counter-strategies which all achieved the same high
score against Sklansky Basic opponents. We have used the first of those discovered in the analysis.
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Table 7.2: Manhattan distances of evolved (EA) bests from exhaustive simulation bests

(hand and position (P), opponents’ prior bet (B), tournament level (L), stack size (S))

against the three static opponents.

(a) Sklansky Basic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Dist

EA 9 10 12 7 3 2 6 4 12 0 13 5 0 0 0 2 -

P 8 8 8 8 8 8 8 8 2 2 2 2 2 2 2 2 57

B 9 9 9 9 0 0 0 0 9 9 9 9 0 0 0 0 43

L 1 1 12 12 1 1 12 12 1 1 12 12 1 1 12 12 83

S 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 69

(b) Sklansky Improved

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Dist

EA 6 12 13 13 7 3 9 6 1 4 8 4 5 2 5 10 -

P 13 13 13 13 13 13 13 13 2 2 2 2 2 2 2 2 60

B 13 13 13 13 3 3 3 3 13 13 13 13 3 3 3 3 68

L 1 1 11 11 1 1 11 11 1 1 11 11 1 1 11 11 60

S 12 2 12 2 12 2 12 2 12 2 12 2 12 2 12 2 82

(c) Kill Phil Rookie

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Dist

EA 13 8 13 11 2 4 4 9 0 3 12 7 9 1 11 0 -

P 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 71

B 12 12 12 12 3 3 3 3 12 12 12 12 3 3 3 3 61

L 3 3 12 12 3 3 12 12 3 3 12 12 3 3 12 12 59

S 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 75



Chapter 7. Additional Analysis and Interpretation of Results 107

when P = 0 in the notation of Table 6.1), we average a chromosome over its first eight

alleles.

The mean hand group values calculated in this way are presented in Table 7.3.

Scenario SB SI KPR

Early position 6.6 8.6 8.0

Late position 4.0 4.9 5.4

No prior bet 8.5 7.6 8.4

Prior bet 2.1 5.9 5.0

Level≤ 6 4.5 5.0 5.0

Level> 6 6.1 8.5 8.4

M ≤ 5 6.9 6.8 8.0

M > 5 3.8 6.8 5.4

Table 7.3: Average allele values in the best evolved counter-strategies against the three

static opponents.

We can comprehend these figures by taking each factor in isolation and looking

at the difference in thresholds with the binary variable in either state. In this way we

can make a relative comparison in the style of play dependentupon the state of each

individual piece of information.

Note that the players are looser on average in early seating position, with no prior

bet, in late levels, and with a small stack2. These are exactly the same tendencies that

we saw in Table 7.1. Hence, on average, the best evolved counter-strategies are also

seen to respond to the state of each individual binary variable in the same manner as

the exhaustive simulation bests.

We must be careful, however, not to exaggerate the usefulness of mean allele val-

ues. Averaging loses the context of how these strategies actually play in any one of

the sixteen specific situations. To illustrate, the best counter-strategy found against the

Sklansky Basic opponents plays an average hand group of 4.0 in late seating position.

In reality the actual number of hand groups played ranges from none (genes 10, 13,

14, and 15) to all (gene 11), as was shown in Table 7.2(a).

This flexibility to use different threshold values in different situations is where

2With the slight exception that the averages are the same, to one decimal place, for the Sklansky
Improved counter-strategy with respect to tournament level.
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the evolved strategies have a clear advantage over their previously found counter-

parts. Each evolved player has sixteen degrees of freedom inits assignment of alleles,

whereas the players found by exhaustive simulation only have two. The improved

strength of the evolved counter-strategies results from this, with alleles most appropri-

ate to specific situations against a given opponent able to beselected.

So from the parallel analysis of the best exhaustive simulation and evolved counter-

strategies we have shown that there is a consistency in the relative number of hand

groups played dependent upon the state of each binary variable. We have seen that,

all other things being equal, the best solutions in both suites of experiments play more

hands in early position, when there has been no prior bet, in alate tournament level,

and when small stacked.

The results from the “distance” analysis also show that the evolutionary algorithm

is able to find those solutions which best weight the importance of each game-related

factor dependent upon the particular opponent. This increased adaptability leads to

higher scoring players.

7.2 Comparison of the Evolutionary Results to Experts’

Tournament Strategy Suggestions

In our discussion of the strategic factors cited by poker professionals in Sections 2.7

and 3.2, we encountered several recommendations for correct play in a no-limit Texas

hold’em tournament. In Sections 4.2.3 to 4.2.6 we noted how the results of exhaustive

simulations yielded counter-strategies which agreed withthe experts’ advice for three

of the four factors. We also discussed several reasons why the anomalous factor of

seating position should produce contrary results within our framework. Now that we

have evolved even stronger counter-strategies to the threeall in or fold opponents, we

examine whether the tactics previously discussed are observed in our evolved players.

7.2.1 Seating Position

During our evaluation in Section 4.2.3 we commented on the fact that our pre-flop

Texas hold’em tournament yields contrary results for players utilizing seating position

alone to those we would expect based on the non-academic poker literature. Since

these players cannot observe whether an opponent in an earlier position has already

bet, a more conservative strategy is preferable.
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Table 7.4 breaks down the best evolved counter-strategies according to seating posi-

tion. We draw attention to the three columns headed “Diff”, which show the difference

between the number of hand groups played in late compared to early position for each

of the three best evolved counter-strategies.

SB SI KPR

B L S P=0 P=1 Diff P=0 P=1 Diff P=0 P=1 Diff

0 0 0 9 12 3 6 1 -5 13 0 -13

0 0 1 10 0 -10 12 4 -8 8 3 -5

0 1 0 12 13 1 13 8 -5 13 12 -1

0 1 1 7 5 -2 13 4 -9 11 7 -4

1 0 0 3 0 -3 7 5 -2 2 9 7

1 0 1 2 0 -2 3 2 -1 4 1 -3

1 1 0 6 0 -6 9 5 -4 4 11 7

1 1 1 4 2 -2 6 10 4 9 0 -9

Table 7.4: The differences in hand groups played by the best evolved counter-strategies

against each static opponent dependent upon seating position (P), for similar oppo-

nents’ prior bet (B), tournament level (L), and stack size (S) factors.

The predominance of negative values reaffirms that, typically, fewer hand groups

are played by the best evolved counter-strategies in a late rather than early position.

It is possible for the difference values to take integer values from the interval

[−13, ...,13]. If the values observed occurred with uniform probability,we would ex-

pect to see 13 / 27 = 48.1% of negative sign. Here we have 20 / 24 =83.3%.

Using theZ-test for a proportion (binomial distribution) [69] previously explained

in Section 3.4.6 we can assess the null hypothesis that the percentage of negative values

observed is equal to the naive expectation given above.

The test statistic is calculated to be 3.25, which is highly significant. Therefore we

reject the null hypothesis that the preponderance of negative values occurred by chance

alone. There is sufficient evidence to suggest that the evolved players are tighter in late

than in early position.
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7.2.2 Opponents’ Prior Actions

In the same manner as above we can tabulate the alleles of the three best evolved

counter-strategies to highlight the differences in their play dependent upon the presence

or otherwise of a prior bet. Table 7.5 shows this informationfor identical states of the

other three factors.

SB SI KPR

P L S B=0 B=1 Diff B=0 B=1 Diff B=0 B=1 Diff

0 0 0 9 3 -6 6 7 1 13 2 -11

0 0 1 10 2 -8 12 3 -9 8 4 -4

0 1 0 12 6 -6 13 9 -4 13 4 -9

0 1 1 7 4 -3 13 6 -7 11 9 -2

1 0 0 12 0 -12 1 5 4 0 9 9

1 0 1 0 0 0 4 2 -2 3 1 -2

1 1 0 13 0 -13 8 5 -3 12 11 -1

1 1 1 5 2 -3 4 10 6 7 0 -7

Table 7.5: The differences in hand groups played by the best evolved counter-strategies

against each static opponent dependent upon opponents’ prior bet (B), for similar seat-

ing position (P), tournament level (L) and stack size (S) factors.

It is again clear by observation that all three counter-strategies are tighter when

there has been a prior bet: 19 of the 24 values are negative. The same hypothesis test

as used above yields a test statistic of 2.84 for this proportion. The increased tightness

after a bet is statistically significant, and is in keeping with the poker professionals’

advice.

7.2.3 Tournament Level

In the Section 7.1 we commented on the fact that the average hand group played by the

best evolved counter-strategies in the late tournament levels is greater than of the early

levels against all three static opponents. This was in keeping with the best counter-

strategies found in Section 4.2.5 for players utilizing tournament level knowledge in

conjunction with hand strength.

The looseness of a player is a measure of how many hands he is prepared to play,
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whilst aggression measures the frequency of bets as opposedto calls. Within our all in

or fold framework these two metrics can be treated as one and the same, since the call

betting option is redundant.

We can evaluate the looseness/aggression in the evolved counter-strategies with

respect to the stage of a tournament by noting the differencebetween the hand groups

played in early and late levels. Table 7.6 orders the allelesof the best evolved counter-

strategies against each opponent. The differences in the number of hand groups played

dependent upon tournament level are shown in the columns headed “Diff”.

SB SI KPR

P B S L=0 L=1 Diff L=0 L=1 Diff L=0 L=1 Diff

0 0 0 9 12 3 6 13 7 13 13 0

0 0 1 10 7 -3 12 13 1 8 11 3

0 1 0 3 6 3 7 9 2 2 4 2

0 1 1 2 4 2 3 6 3 4 9 5

1 0 0 12 13 1 1 8 7 0 12 12

1 0 1 0 5 5 4 4 0 3 7 4

1 1 0 0 0 0 5 5 0 9 11 2

1 1 1 0 2 2 2 10 8 1 0 -1

Table 7.6: The differences in hand groups played by the best evolved counter-strategies

against each static opponent dependent upon tournament level (L), for similar seating

position (P), opponents’ prior bet (B), and stack size (S) factors.

We again employ theZ-test for a proportion (binomial distribution), but this time

to test the presence of the high percentage of positive values. Three quarters of the

difference values are positive, and this figure is statistically significant at the 1% level.

The evidence clearly suggests that the evolved players are more aggressive at the end of

a tournament than at the start, in keeping with the advice in the non-academic literature.

7.2.4 Stack Size

The three highest scoring counter-strategies utilizing stack size information found us-

ing exhaustive simulations each showed a tendency to play more hands with a small

stack than a large one. This observation was virtually repeated when we calculated the
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average hand groups played by the corresponding best evolved counter-strategies; one

of the three cases showed equality.

Using the same method to those undertaken above, Table 7.7 shows the pairwise

difference in the best evolved counter-strategies betweenthose hand groups played

with a small stack and a large one for otherwise identical situations.

SB SI KPR

P B L S=0 S=1 Diff S=0 S=1 Diff S=0 S=1 Diff

0 0 0 9 10 1 6 12 6 13 8 -5

0 0 1 12 7 -5 13 13 0 13 11 -2

0 1 0 3 2 -1 7 3 -4 2 4 2

0 1 1 6 4 -2 9 6 -3 4 9 5

1 0 0 12 0 -12 1 4 3 0 3 3

1 0 1 13 5 -8 8 4 -4 12 7 -5

1 1 0 0 0 0 5 2 -3 9 1 -8

1 1 1 0 2 2 5 10 5 11 0 -11

Table 7.7: The differences in hand groups played by the best evolved counter-strategies

against each static opponent dependent upon stack size (S), for similar seating position

(P), opponents’ prior bet (B), and tournament level (L) factors.

There is a slight majority of negative values in the difference columns, but the

results are certainly not as conclusive as those shown for the other factors above. The

proportion of negative values - 14 out of 24 - is not statistically significant. Therefore

it appears that any strategic difference in the number of hand groups played based on

stack size is less important in our experiments than those previously discussed.

7.2.5 The Gap Concept

As noted in Section 3.2.3, the Gap Concept states that the strength of hand needed to

open a pot is less than that required in an otherwise identical situation if an opponent

has already bet. The “gap” between the strength of the two hands is also said to increase

as a tournament progresses.

We can look for the presence of the Gap Concept in the strategies of the three

evolved players by comparing the number of hand groups played dependent upon both

the opponents’ prior actions and tournament level. If we compare situations of identical
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seating position and stack size factors we would expect the Gap Concept to dictate

firstly that fewer hands are played after a prior bet than not,and also that this difference

in the number of hand groups played with or without a prior betis larger in late levels

compared to early ones.

The results on the effect of a prior bet seen previously show that the first of these

two conditions is met. Table 7.8 tabulates the alleles of thebest evolved counter-

strategies to assess whether the size of the gap increases with tournament progression.

SB SI KPR

L=0 L=1 L=0 L=1 L=0 L=1

P=0, S=0

B=0 9 12 6 13 13 13

B=1 3 6 7 9 2 4

Diff -6 -6 1 -4 -11 -9

P=0, S=1

B=0 10 7 12 13 8 11

B=1 2 4 3 6 4 9

Diff -8 -3 -9 -7 -4 -2

P=1, S=0

B=0 12 13 1 8 0 12

B=1 0 0 5 5 9 11

Diff -12 -13 4 -3 9 -1

P=1, S=1

B=0 0 5 4 4 3 7

B=1 0 2 2 10 1 0

Diff 0 -3 -2 6 -2 -7

Table 7.8: Seeking the presence of the Gap Concept. The differences in hand groups

played by the best evolved counter-strategies against each static opponent dependent

upon opponents’ prior bet (B) and tournament level (L), for similar seating position (P),

and stack size (S) factors.

The rows headed “Diff” show the same values previously seen in the prior bet anal-

ysis. To investigate whether the gap widens between early and late levels we compare

the difference values between early (L=0) and late (L=1) levels, for each otherwise
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identical situation.

Of the twelve pairs of values the gap grows in six cases, whilst in five it contracts.

Therefore from these results we find no significant evidence of the presence of the Gap

Concept in its entirety. Whilst we do observe fewer hands being played after a bet, our

results do not validate the assertion that the gap widens later in tournaments.

7.3 Convergence in the Evolutionary Algorithms

In the foregoing discussion on the make-up of the three best evolved counter-strategies

we have looked at general strategic considerations regarding the four factors employed.

We now seek to understand whether a player’s actions in different situations have the

same consequence on their performance. We first investigatethis by analysing gener-

ational data from the evolutionary runs.

The initialization and parameterization of the EA described in Chapter 6 is in part

designed to maintain diversity in the gene pool. The diversity should at least be con-

tinued for a number of generations sufficient to find suitablesolutions. It is the nature

of EAs, though, to assign a higher probability of survival tothe strongest candidates.

Over time the genes from these individuals will start to swamp the population, to such

an extent that all candidate solutions start to resemble oneanother. This process is

known as convergence.

We are able to examine convergence within our evolutionary runs since we have

stored information on the individuals in each generation. This is one of the benefits of

using EAs as problem solvers. Not only can we find a solution, but we can also gain

an insight into how it is derived.

Here we wish to observe whether the rate of convergence is similar across all genes,

or whether some are more inclined to home in on specific alleles more rapidly. Since

the algorithm is designed to promote strong solutions we caninfer that genes with a

large convergence measure are in some way important contributors to the high scores

achieved.

To analyse the convergence we retrieve the population data from each run’s final

generation3. From these we calculate the standard deviation of the alleles at each gene.

A low standard deviation reflects a large degree of convergence, and vice versa.

3Analysis not presented here was performed which showed similar degrees of convergence within
each population from around generation 20 onwards.
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Table 7.9 gives the standard deviations of allele value in the best found counter-

strategies to the three static opponents at generation 50.

(a)

1 2 3 4 5 6 7 8

SB 8.6 8.8 10.9 7.0 2.0 2.4 5.5 3.9

SI 5.7 11.1 11.8 12.1 6.6 2.9 8.1 6.5

KPR 11.1 7.1 11.7 10.6 1.7 4.1 3.6 9.2

(b)

9 10 11 12 13 14 15 16

SB 11.5 1.3 12.2 4.4 0.8 0.3 1.8 2.3

SI 3.9 3.2 8.1 4.4 3.5 1.6 5.2 10.1

KPR 1.2 2.7 10.4 7.1 8.8 0.8 10.9 0.9

Table 7.9: Standard deviation of alleles in the EA final populations against the three

static opponents.

Before commenting on these results we must remember that mutations from the

previous generation can potentially skew some of the valuescalculated. Certain allele

values exist within the population not because they have been found to be strong, but

simply through the chance effect of mutation. However, we should also remember that

that the average population fitnesses are relatively high bygeneration 50, in spite of

any such effects.

From the table it is evident that certain genes exhibit convergence to a greater

extent than others. So in the case of Sklansky Basic opposition, for example, we find

that gene 10 shows a higher degree of convergence than its immediate neighbours. It is

also clear that some genes have converged at different ratesacross the three opponents.

Interestingly, though, gene 14 shows a large amount of convergence across all three

opponents.

7.4 The Relative Importance of Genes

Of all the sixteen possible genes, that numbered 14 has a consistently low standard

deviation of allele value in the final populations of all three evolutionary runs. With

reference to Table 6.1, the scenario which this gene represents is given in Table 7.10,

along with the corresponding alleles in the best evolved counter-strategies.
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Gene Convergence P B L S SB SI KPR

14 High Late Bet Early Large 0 2 1

Table 7.10: The counter-strategies represented by gene 14, dependent upon seating

position (P), opponents’ prior bets (B), tournament level (L), and stack size (S). The

three right hand columns show the alleles for each best evolved counter-strategies to

the three static opponents.

This table shows that in a late seating position, after a prior bet, early in a tourna-

ment, and with a large stack, the evolutionary runs have centred on playing a very low

number of hand groups.

To assess the contribution of this and the other genes on a strategy’s resulting fit-

ness, we perform a random search. This employs a uniform random sampling from

the [0,14) range for each allele within a chromosome. We employ this method since

it covers a wider range of the search space than the directed search of our EA. Taking

individuals from all points within the space avoids biasingthe sampling.

The random search samples 1,000 individuals and evaluates each over 200 tourna-

ments. Before continuing with the gene analysis, we first assess whether the random

search finds solutions as comparably strong as the EA. This isinteresting as, if it does,

it undermines the necessity for a sophisticated search. Therandom search compares

with the EA of the previous chapter in the number of individuals sampled. An EA

utilizing 20 individuals over 50 generations also samples 1,000 candidate solutions4.

After the 1,000 samples are evaluated, the best counter-strategies discovered for

each of the three opponents are played off over 5,000 tournaments for statistical testing.

The proportion of tournaments won are shown in Table 7.11. For comparison purposes

this table also includes the win proportions previously presented in Table 6.5 for the

corresponding best counter-strategies found through the evolutionary method.

Note that in all cases the evolved counter-strategies scorea higher proportion of

tournament wins than their random search counterparts. This result emphasizes the dif-

ficulty in locating strong solutions within the fitness landscape without using a guided

search, and stresses the successful realization of this task by evolutionary means.

To give statistical significance to the above results we use theZ-test for the com-

4However, it should be noted that not all of these samples are unique. Elitism means that two
individuals pass through successive generations unaltered. Also, it is possible through the effects of
crossover and mutation for an offspring solution to exactlymatch a previously sampled individual.
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SB SI KPR

Random Search 73.6% 11.9% 6.3%

Evolution 86.8% 23.3% 15.7%

Table 7.11: Highest proportion of tournament wins found by random search and evolu-

tionary experiments against the three static opponents.

parison of proportions explained previously. Here we compare the percentage of tour-

naments won by the best counter-strategies found through random search to those pro-

duced by the EA. The calculated p-values are given in Table 7.12.

SB SI KPR

Random vs Evolutionary < 0.0001 < 0.0001 < 0.0001

Table 7.12: P-values for the proportion comparison test between the best solutions

found through random search and those of the EA against the three static opponents.

Given these values we reject the null hypotheses that the random search players

score the same proportion of tournament wins as the evolved ones. The EA proves to

be superior to a purely random search in discovering stronger players.

Returning to the assessment of the importance of genes, we now use the 1,000 ran-

domly selected candidates per opponent and their associated fitnesses. We calculate

the mean fitness for the strategies conditioned on every possible allele. Hence we av-

erage over all individuals with allelex in geney, with x∈ {0,1, ...13} ,y∈ {1,2, ...16}.
The resulting plots for each of the three static opponents are shown in Figure 7.1.

The trends within each graph are striking. In all three caseswe note that the average

fitnesses of the random candidates are highly conditional upon the allele at gene 14.

Against all opponents a low allele produces high average fitnesses, whilst a high allele

results in low average fitnesses. It is also interesting to note that the three plots are

otherwise relatively flat for all other alleles of all other genes.

This shows that a strategy’s play in late position, after a prior bet, in an early tour-

nament level, and with a large stack, has a profound effect onits expected performance.

Playing a very tight game in such a situation is rewarded by a greater expected number

of tournament wins, whilst being too loose has the opposite effect. This tactic is very

simple to understand. When the prize money is far away and a player has a sufficiently
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(c) Kill Phil Rookie

Figure 7.1: Average number of tournament wins by the randomly sampled counter-

strategies, conditioned on each gene’s allele.
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large stack, there is no benefit to risking tournament elimination by betting after an

opponent has entered the pot. As Ciaffone [31] puts it:

The fold is an important weapon; don’t be afraid to use it.

As the preceding convergence analysis shows, the EA clearlypicks up on the im-

portance of this situation. By ensuring that strategies within the population cluster

around low values in gene 14, exploration can continue on theother alleles towards the

goal of finding the global maximum.

7.5 Conclusions

In this chapter we have given further thought to the best counter-strategies found by

the exhaustive simulation and evolutionary experiments. We have shown that there are

common trends in the play of the best solutions dependent upon the states of the binary

variables incorporating game-related information.

Through an analysis of the difference between the two sets ofcounter-strategies, we

showed that there is no discernible “closeness” between theevolved counter-strategies

and those of based on one particular game factor. Different tactics succeed against

different opponents.

We returned to the poker professionals’ recommendations for tournament poker

strategy, and noted that the four factors have identical manifestations in the evolved

players as we saw in those discovered by exhaustive simulations. We also observed

that the effects of stack size were less pronounced, and thatthe Gap Concept was not

totally discernible.

Convergence within the evolutionary runs was used to investigate whether the al-

leles on some genes are of greater importance than others. Weobserved that gene 14

in particular undergoes a high degree of convergence acrossall three static opponents,

and that this gene has a major effect on the number of tournaments won within our

framework. As part of this evaluation we noted that the counter-strategies found by

our EA are statistically stronger than those found using a purely random search.



Chapter 8

Further Work

The preceding results and analysis validate the use of evolutionary algorithms for re-

search into tournament poker strategies. Given that our investigations have been suc-

cessful a plethora of potential extensions - both within andto the framework - are

apparent. In this chapter we discuss the range of possibilities that this thesis opens up

to future researchers.

8.1 Extending and Enhancing the Available Knowledge

We have seen that the inclusion of game-related informationin the form of binary

variables leads to tournament poker players which have better performance than those

based on hand strength knowledge alone. The extra game factors employed have all

had a statistically significant effect on the number of wins achieved, even though the

resolution on the information contained was extremely low.Increasing the definition

in this information is the simplest enhancement to the work undertaken.

Recall that with all of the four factors investigated, a player’s betting can only be

influenced by knowing whether each piece of information is inone of two states. We

saw that the categorization of knowledge is limited to the following cases:

• Seating position: The player is in an early/late position with respect to the dealer.

• Opponents’ prior actions: There are no bets/at least one betprior to the player’s

action

• Tournament level: The decision is made early/late in a tournament

• Chip stack amount: The player has few/many chips

120
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All of these criteria can be further expanded to increase theresolution on the in-

formation available. This augmentation would also proliferate the number of possible

strategies available to the player, but we can now vouch for the evolutionary approach

in searching the space.

Potential extensions to the information relating to seating position, tournament

level, and chip stack size are obvious. Both seating position and the stage of the tourna-

ment could be modelled more accurately than the “early/late” scheme employed here.

To increase the size of the strategy space gradually it may initially be desirable to move

from a binary to a tertiary variable in these two cases. Simply adding a “middle” cat-

egory with the appropriate reclassification is a sensible first step. Following on from

this it would be possible to use each individual seating position and level as separate

states, thus giving our test player full and complete knowledge of these two factors.

Chip stack amounts could also be reclassified. Again, a recommendable prepara-

tory development would be to use a classification scheme of “small”, “medium”, and

“large”. To make the adjustment from the two-state case we could again take Harring-

ton’sM and use, for example, the gradations:M < 3, 3≤ M < 7, andM ≥ 7.

Potentially the most interesting extension to the information available to the test

players, though, is in a re-categorization of the opponents’ prior actions. We have seen

from the previous results that this is the single most important factor to consider, given

that it has the greatest effect on the number of tournaments won. The current procedure

is to act based solely upon whether at least one opponent has bet or not prior to our test

player’s action. Refinements to this suggest themselves immediately.

Within our all in or fold Texas hold’em variant it is apparentthat a bet by anyone

other than the chip leader puts at risk their tournament survival. We have seen a ten-

dency, both in the opponents’ strategies and our own, to onlybet very strong hands

once another has entered the pot. Therefore a player who actsafter two people have

moved all in has an even smaller chance of winning the pot. Notonly is he up against

more than one opponent, he is even more likely to be facing a better hand. The current

framework treats any number of prior bets as similar cases. Ascheme which incorpo-

rates the number of players to have bet into the pot should therefore increase our test

player’s ability to make good decisions.

Another consideration that would benefit our player is to know what the size of

any prior bet is. At present our test player only knowsif an opponent has bet, and

not how much. The extra information is vital for at least two reasons. Firstly, it could

be that knowing how many chips the opponent holds signifies the range of hands they
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are playing. The experiments incorporating stack size generated counter-strategies

that played a greater range of hands if low on chips. If our test player has a mid-

range hand they may not wish to fold if they believe their opponent only acted due to

imminent elimination. Secondly, the present structure does not allow our test player to

differentiate between the size of prior bets. This means that a bet of $1 is equivalent to

one of $1,000. Comprehending the bet size as both an absoluteamount and relative to

one’s own stack would likely be profitable.

The hand group classification used within the experiments was decidedly coarse.

We took all 169 possible starting hands and classified them according to a simple

segregation of thirteen hands into thirteen groups. We selected this number of groups

arbitrarily. We could have chosen 169 groups, allocating one hand to each, but by

choosing a smaller number we essentially blinkered our player into only recognizing

thirteen distinct hands. The benefit of this simplification is that it reduces the size of

the strategy space, and it made our investigations more tractable.

Even if we wished to maintain the same number of groups we could further im-

prove the ability of test players by a better classification of the hands. It is well known

by poker players and theoreticians that there is a wide dispersion in the potential prof-

itability of different starting hands. Moreover, some hands in particular have a much

greater profitability than others. The grouping scheme we used completely ignored

this fact. Referring to Appendix A, we note that each starting hand in the Sklansky-

Chubukov rankings has an associated X-value. The higher this value the better the

hand. In our creation of thirteen groups of thirteen we ignored the information con-

tained in these figures, and so we have hands of greatly varying profitability grouped

together.

One way to resolve this issue whilst maintaining the same number of groups is

to employK-means clustering [18] on the X-values. This algorithm initially allo-

cates each hand to one ofk random sets, and then iteratively reassigns them such that

the intra-cluster variance is minimized. An implementation of the algorithm was per-

formed usingk = 13, with the results shown in Table 8.1.

The group assignments differ greatly from those of our naiveclassification given in

Table 4.3. We find that there are a greater number of smaller sized groups for the best

hands, and a small number of large groups for those hands withlow profit potential.

The first new group consists solely of a pair of aces, whilst the last, conversely, contains

fifty hands.

The use of a more realistic classification such as that proposed would enable the
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Group Starting Hands #

1 AA 6

2 KK, AKs, QQ 16

3 AKo, JJ, AQs, TT 28

4 AQo, 99, AJs, 88, ATs, AJo, 77 50

5 66, ATo, A9s, 55, A8s, KQs, 44, A9o, A7s 58

6 KJs, A5s, A8o, A6s, A4s, 33, KTs, A7o, A3s, KQo, A2s,

A5o, A6o

94

7 A4o, KJo, QJs, A3o, 22, K9s, A2o, KTo, QTs 78

8 K8s, K7s, JTs, K9o, K6s 28

9 QJo, Q9s, K5s, K8o, K4s, QTo, K7o, K3s 64

10 K2s, Q8s, K6o, J9s, K5o, Q9o, JTo, K4o, Q7s, T9s, Q6s,

K3o, J8s, Q5s, K2o, Q8o

128

11 Q4s, J9o, Q3s, T8s, J7s, Q7o, Q2s, Q6o, 98s, Q5o, J8o, T9o,

J6s, T7s, J5s, Q4o

120

12 J4s, J7o, Q3o, 97s, T8o, J3s, T6s, Q2o, J2s, 87s, J6o, 98o,

T7o, 96s, J5o, T5s, T4s, 86s, J4o, T6o, 97o, T3s, 76s, 95s,

J3o, T2s, 87o, 85s

216

13 96o, T5o, J2o, 75s, 94s, T4o, 65s, 86o, 93s, 84s, 95o, T3o,

76o, 92s, 74s, 54s, T2o, 85o, 64s, 83s, 94o, 75o, 82s, 73s,

93o, 65o, 53s, 63s, 84o, 92o, 43s, 74o, 72s, 54o, 64o, 52s,

62s, 83o, 42s, 82o, 73o, 53o, 63o, 32s, 43o, 72o, 52o, 62o,

42o, 32o

440

Table 8.1: The 13 groups of the 169 possible starting hands after K -means clustering,

and the number of unique starting hands contained within each group (cf. Table 4.3).
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test player to better discriminate between hands. An added bonus of theK-means

approach is that the number of groups, and therefore the sizeof the strategy space,

could potentially be reduced. Even in using a slightly smaller number of groups the

similarity of starting hand potential within each class will be better than the naive

approach.

Deceptive plays such as bluffing could potentially be included, with an alteration

to the simplistic single threshold value used. A bluff is a bet with a hand that would

not expect to win in a showdown. Therefore within our framework a bluff is a bet with

a hand in a high numbered group.

Since we use only one threshold value to guide our players, wedivide their possible

actions into just two intervals. A player moves all in with hand groups numbered less

than or equal to the threshold, and folds otherwise. However, we could potentially

include a second threshold value greater than the firstabove whichthe player bets.

Recall from our discussion in Section 2.4 that the game theoretic optimal strategy for

the first player in von Neumann’s poker [120] is to bet with both his very bestandvery

worst hands. The use of two thresholds would allow for a similar scheme.

An example based solely on hand strength is illustrated in Table 8.2.

1 2 3 4 5 6 7 8 9 10 11 12 13

Single threshold B B B B F F F F F F F F F

Dual threshold B B B B F F F F F F F B B

Table 8.2: Incorporating bluffing into strategies by the use of a second threshold. “B”

and “F” refer to all in bets and folds respectively.

The single threshold strategy moves all in with hands in the top four groups, and

folds otherwise. By incorporating a second threshold this player would also be able

to move all in with hands in the bottom two groups. Therefore by employing two

threshold values per scenario, we would be able to examine the effects of deceptive

play and how its use alters dependent upon game-related factors.

It should finally be mentioned that the framework we have constructed is also

amenable to the inclusion of additional dimensions. One such possibility involves

incorporating opponent modelling into the structure. A very simple scheme would be

to classify opponents as “loose” or “tight”, depending uponobserved tendencies in

their betting frequencies. Maintaining separate thresholds for the two different classes
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of opponent might further improve tournament performance.This dual state classifi-

cation could be further extended in a manner similar to thosedescribed for the other

factors, allowing for better discrimination between the range of possible opponents.

8.2 Competing Against a Range of More Realistic Op-

ponents

The experiments we performed in this body of work employed the use of three fairly

basic strategies taken from the non-academic poker literature. Additionally, we only

examined cases where our test players were seated at tables completely comprised of

opponents from one of the three types. The use of a mixture of stronger, more realistic

opposition would benefit the research into finding universally strong strategies.

Throughout this research we have shown by experiments on opponents of increas-

ing complexity that several pieces of game-related information affect the counter-

strategies of our test players in exactly the same way. That is, depending upon the

state of a binary variable we have seen our test players play correspondingly more or

fewer hands, regardless of their opponent. Whilst this gives us positive results on the

importance and application of the game factors, we have stopped short of constructing

an all-encompassing tournament poker strategy that would compete well against any

style or mix of opponents. The reason for this is two-fold. Firstly, our remit was not

to produce a strong tournament strategyper se, but to identify the elements within one

and compare our findings to the suggestions of poker authors.Secondly, we recognize

that a very important element of a complete strategy for poker is opponent modelling.

Hence a truly “universal” tournament poker strategy should, at some level, incorporate

a facet that we have chosen to neglect for reasons previouslyexplained.

An important extension of this research, therefore, would be to compete our test

players against mixtures of different opposing styles. Nowthat we have validated

some of the elements of a successful tournament poker strategy we could look to forge

strategies that are able to compete well against a multitudeof opponents. This could

start by using the simple addition of a binary variable whichcategorizes the style of

one’s opponents as loose or tight as discussed above, then subsequently incorporate

increased resolution with more elaborate statistical measures like those employed in

research on ring game poker [39, 65, 116].
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8.3 Changes to the Tournament Structure

Additional experiments could focus on making changes to thetournament structure

employed. The set-up that we chose in our experiments is one of many possibilities.

Obvious components to change are the number of entrants, payoff structure, hands per

level, and players per table.

The quest to program a potentially world championship winning poker player will

eventually have to tackle the issue of multi-table play. To explain, a tournament can

potentially have an unlimited number of entrants, with all seated at tables of approxi-

mately ten players. As competitors are knocked out, the remaining tables are consol-

idated such that empty seats are filled and the total number oftables in play reduces.

This procedure culminates in a single table. Our experiments have solely focused on

play at the final table.

In all prior stages of a real tournament players may have to base their betting deci-

sions on factors away from their own table. For example, a player who has the largest

stack on his table may in fact be small stacked in comparison to all competitors. Our

framework could be expanded to include this complete knowledge to develop success-

ful strategies for multi-table play.

Similarly changes to the number of players per table and hands per level is likely to

have an effect on best play. Experiments could be performed to illustrate the strategic

consequences of a change in either of these tournament components, keeping all other

constituents unchanged.

Payoff structure is one aspect of our experimental design which is uncommon in

real tournaments. It is far more usual for a ten-player competition to use the percentage

payoffs of 50%, 30%, and 20% for the top three finishers. It would be an interesting

exercise to examine the effect of a change from our winner-takes-all approach, and

see how the resulting strategies differ. These experimentscould be easily performed

within our evolutionary framework, with the only change necessary being to the fitness

function.

8.4 Removal of the All In or Fold Betting Restriction

In the attempt to investigate tournament poker strategies that are able to compete

against humans at the highest level, there are clearly two features of our experimental

investigations that need to be improved. We have already alluded to the necessity for



Chapter 8. Further Work 127

opponent modelling. The other discrepancy between our analysis and real poker is our

imposition of the all in or fold betting restriction.

Recall that we introduced the binary betting option to vastly reduce the size of

the strategy space. In making the problem of understanding tournament poker strat-

egy more tractable we negated the use of the final three betting rounds, and lost the bet

sizing finesse found in the real game. The most challenging augmentation to our exper-

imental scheme would be to remove this limitation and research the strategic elements

found in a true Texas hold’em tournament.

Two ramifications of using all in or fold are that we do not haveto consider how

much to bet, nor do we face the three post-flop betting rounds.The use of genuine

Texas hold’em in the experiments would require significant amplifications to the strat-

egy representations. Not only would our test player have to be able to respond to

different sized bet amounts, it would also have to be able to act in kind. Given that

there is a continuum of bet sizes possible in no-limit play, the two-way consideration

and implementation of this factor presents significant problems.

A similarly tricky problem arises if we wish to embrace post-flop play. The diffi-

culties arise in several forms. We first have the increase in strategy space due to the

partial hand effects of community cards. By this we mean thatwhereas in the pre-

flop game there are 1,326 unique hands to consider, the inclusion of post-flop play

increases this number dramatically. In selecting five cardsfrom fifty-two there are a

total of 2,598,960 possible poker hands.

Opponent modelling would become far more awkward with the inclusion of mul-

tiple betting rounds. The first issue concerns maintaining an opponent model based on

how they play the individual betting rounds. For this there would probably have to be

separate models for each round and each opponent. In addition to this is the challenge

of linking actions - both for the opponent and oneself - across the betting rounds within

a hand. So, for example, when humans play the final betting round of a poker hand

they are able to use knowledge of the play up to that point, andhow their opponent has

played similar situations in the past. Connecting information across these two bridges

could prove to be particularly troublesome.

8.5 Summary

This chapter has illustrated some of the many possible future adjuncts to this piece of

research. We have shown that our framework could be extendedto further refine and
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understand the results of the previous chapters. By increasing the number of different

possible states for the game factors we have seen how more detailed strategies could

be discovered in the enlarged strategy space. We have also mentioned how a reclas-

sification of the hand groups could prove to be beneficial in finding better performing

strategies whilst keeping the size of the search space constant.

Following this we remarked upon the possibility of playing tournaments against a

wider range of more complex opponents. This would be necessary to further confirm

our findings, as it is important to discover whether counter-examples to the recom-

mended strategies can be contrived.

To give the experiments a slightly more realistic edge, we have talked about how

changes in the payoff structure could easily be implementedthrough an alteration to

the evolutionary algorithm’s fitness function. We also discussed how the move to-

wards larger tournaments with a greater number of competitors requires additions to

our framework.

The removal of the all in or fold betting restriction is the most apposite direction for

future researchers aiming to develop an authentic Texas hold’em tournament program.

We mentioned how the lifting of this limitation would impactthe construction of strate-

gies, and it remains an open question whether the framework we have fashioned would

be sufficient to handle the consequential explosion in the size of the strategy space.

An EA could be used and would clearly be preferable to an exhaustive approach, but

run-times on the enlarged problem may still be too prohibitive with current computing

technology.



Chapter 9

Summary and Conclusions

Much investigation into computer games players has been undertaken, but the tech-

niques which apply to games of perfect information are not applicable to poker. Mod-

ern efforts have tackled the game with a variety of techniques, but all have focused on

the ring game format with limit betting. The most commonly played poker variant,

Texas hold’em, is the subject of increasing amounts of research, but this thesis is the

first study on the game using no-limit betting within a tournament structure.

Many professional poker players have authored books detailing their recommenda-

tions for good poker strategy in the non-academic literature. However, their assertions

are based primarily on experience and lack a scientific basis. By creating a framework

utilizing a slightly reduced form of Texas hold’em, we have been able to isolate and

test the most important messages in their writings.

The all in or fold form of Texas hold’em used simplifies the task of investigating

different poker strategies. We saw that a program encoded with one such system fared

relatively well in an organized poker tournament. This and two similar all in or fold

strategies were then employed as opponents to test different strategies against.

The first suite of experiments sought first to determine how well a strategy based

solely on a player’s hand strength fared against the different opponents. These results

then formed a baseline from which to make comparisons. We next incorporated items

of game-related information into our test player’s knowledge domain. We showed by

exhaustive simulations that utilizing factors relating toseating position, opponents’

prior actions, tournament level, and stack size all had a statistically significant effect

on the test player’s strength.

In wishing to combine all four game factors, we highlighted the difficulties of

extending the exhaustive simulation approach, and turned instead to evolutionary al-
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gorithms. These were seen to have been successfully appliedto a number of game

players, including some for poker. We also showed that an EA was able to find mathe-

matically optimal strategies in a toy poker variant.

Returning to our all in or fold pre-flop Texas hold’em test bed, we discussed the

issues of EA implementation before performing evolutionary runs on players which

could act based on all four game factors. The resulting strategies were then shown

to score a significantly larger number of tournament wins than any previously found,

both confirming that the amalgamation of knowledge is beneficial in forming stronger

strategies and that an EA is able to resolve conflicts betweencontradictory inputs.

In a further analysis of our evolved players we compared their strategies with the

poker professionals’ guidance. We found evidence of the presence of some of these

effects, but not others. By examining convergence within the evolutionary runs we

noted that some genes seemed to converge particularly rapidly. One gene in particular

was further noted to have a large effect on the resulting number of tournament wins.

We concluded our study with a discussion on the ways in which this research could

be extended by future researchers in the field of computer poker. We noted that several

augmentations present themselves immediately, and that supplementary efforts into

such topics as bluffing could be attempted to advance this work.

The challenge of developing a tournament poker program can be divided into two

parts. The first task is to gain an understanding of general tournament strategy, whilst

the second is to be able to adapt to specific opponents in real time.

This research has addressed the first of these issues. All of our experiments have

been performed offline; we have developed players that are able to counter partic-

ular opponents after several iterations of simulation. Since the solutions found are

opponent-specific, we have been careful to term them “counter-strategies” and have

avoided making claims about their potential strength against different competitors.

However, we have seen that certain strategic trends, such asplaying a wider range of

hands later in a tournament, are common across all adversaries. So whilst we cannot

go as far as to claim that the high-level strategies discussed are the correct way to play

against any opponent, our observation of similar tactics leading to the highest scores

against three increasingly complex adversaries does lend weight to this argument.

Taking this work forward will require further investigation of the strategic effects

found within tournaments. Knowing exactly when and how to adjust for different blind

and payoff structures, chip stack sizes, and opponents willrequire a large amount of

future effort. Whilst these researches may be undertaken with a variety of computa-
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tional intelligence techniques, we have shown that evolutionary algorithms can be used

to positive effect in this regard.

This thesis contributes to the growing interest in computerpoker by taking the

first scientific steps towards understanding tournament poker strategy. In so doing

we have been able to empirically validate many of the factorscited by professional

poker players as being important considerations in a player’s decision making. The

stringent use of hypothesis testing for this purpose is novel, and its results substantiate

the authors’ claims.

The ultimate test of any poker player - human or computer - is to adapt to previously

unseen opponents in real time. Once the elements of strong tournament strategy have

been refined it is interesting to ponder how these will be combined with opponent

modelling to create strong players. It can be argued that flexible opponent modelling

is the most difficult problem to overcome in the development of a world championship

winning program. This aspect would be hard enough to implement for many games,

but the pervasive deception found in poker makes the issue even more difficult.

Given the progress made in developing limit ring game Texas hold’em computer

programs and opponent modelling by the GAMES Group, it may well be that directly

converting their players will be the quickest route to success in no-limit tournament

play. Incremental additions and the honing of tournament-directed features in both

general strategy and opponent modelling could well prove triumphant. This thesis has

been the first attempt to bridge the gap between limit ring game and no-limit tourna-

ment play, but we recognize that many further studies are required to refine the ideas

contained herein.

The day when a computer poker program wins the world championship may be

some time away, but continued investigations towards this goal will not only make it

inevitable, but will further our understanding of the more general topic of reasoning

under conditions of uncertainty.



Appendix A

Texas Hold’em Starting Hands

Given that card ordering is unimportant and that it employs the standard 52-card deck

there are

52
2C = 1,326

unique starting hands for a player in Texas hold’em.

This figure can further be reduced due to the equivalence of suits. So for example,

the handA♣8♦ has exactly the same value asA♠8♥. One must take care, however, to

separate suited and offsuit hands. The handA♥8♥ should not be treated as commen-

surate with the two aforementioned, since both of its cards are of the same suit. This

differentiation is important due to the latter hand’s increasedflush-making potential. A

flush is a complete poker hand comprising five cards of the samesuit.

One way to visualize the number of different starting hands,accounting for suit

equivalence, is shown in Table A.1.

Since there are 13 distinct card ranks, there are

132 = 169

different starting hands within this matrix. The cells along the top left to bottom right

diagonal represent the paired cards. Without loss of generality we can allocate suited

hands to the cells above this line, and offsuit hands to thosebelow. Returning to our ex-

ample above, therefore, bothA♣8♦ andA♠8♥ occupy the cell(A,8), whereasA♥8♥
occupies(8,A).

The entries within each cell show the number of unique starting hands of a partic-

ular two-card combination, taking account of suit equivalence. Starting with the pairs,

132
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2 3 4 5 6 7 8 9 T J Q K A

2 6 4 4 4 4 4 4 4 4 4 4 4 4

3 12 6 4 4 4 4 4 4 4 4 4 4 4

4 12 12 6 4 4 4 4 4 4 4 4 4 4

5 12 12 12 6 4 4 4 4 4 4 4 4 4

6 12 12 12 12 6 4 4 4 4 4 4 4 4

7 12 12 12 12 12 6 4 4 4 4 4 4 4

8 12 12 12 12 12 12 6 4 4 4 4 4 4

9 12 12 12 12 12 12 12 6 4 4 4 4 4

T 12 12 12 12 12 12 12 12 6 4 4 4 4

J 12 12 12 12 12 12 12 12 12 6 4 4 4

Q 12 12 12 12 12 12 12 12 12 12 6 4 4

K 12 12 12 12 12 12 12 12 12 12 12 6 4

A 12 12 12 12 12 12 12 12 12 12 12 12 6

Table A.1: A matrix illustrating the reduction of the 1,326 unique two-card starting hands

in Texas hold’em to 169 different groups. The row and column headers each signify the

rank of a single card. Suited hands are allocated above the top left to bottom right

diagonal, with offsuit hands below. Entries within the matrix show the number of unique

hands within each group.

there are42C= 6 ways of choosing two cards of the same rank from four suits. For non-

pair hands there are 42 = 16 combinations, of which 4 are suited and the remaining 12

offsuit.

In total, therefore, there are 78 pairs, 312 suited and 936 offsuit hands. These

figures sum to 1,326.



Appendix B

Texas Hold’em Example and Five-Card

Hand Rankings

This appendix first details a step-by-step example of the play of a hand within a no-

limit Texas hold’em tournament. We then give the five-card hand rankings used in

determining the winner of a showdown.

B.1 Example Hand

This example is included to illustrate the explanation of Texas hold’em given in Section

2.2.

Ten players are competing in a single table tournament and each started with $1,000

in chips. Our player is labelled “P10”, with her opponents labelled “P1” up to “P9”.

The players’ seating positions and present chip stacks are:

The dealer for this hand is Player 1, shown by thedealer buttonon the table in
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front of him. The two players to the dealer’s left post the small blind (SB) and big

blind (BB) respectively, which for this hand are $50 and $100. Thus the pot starts at

$150. All players now receive their hole cards. The game state after the deal is:

First the pre-flop round of betting takes place. Starting to the left of the big blind

with Player 4, the competitors must in turn either call the existing bet amount, raise it,

or fold. Player 4 chooses to call the $100 big blind. The next four players fold, and

take no further part in this hand. Player 9 then calls for $100. Having been dealt 8♣7♣
our player also calls. The dealer and small blind fold, and the big blind checks. This he

can do since he has already entered $100 into the pot with his forced bet. Now, since

all active players have paid exactly the same amount into thepot, the betting round is

over with the pot standing at $450. The following diagram shows the hand after the

pre-flop betting round1.

1We show our player’s starting hand face-up for illustrativepurposes. Note that during the actual
game these cards are only visible to her.
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The dealer now deals three cards, known as the flop, face up into the middle of the

table. In this game the flop isA♣6♥9♦. The game state after the flop and before the

next round of betting is shown below.

Play now proceeds with the second round of betting. All post-flop betting rounds

start with the first active player to the left of the dealer. The options available to Player

3 are either to bet, check2, or fold3. He checks, and play passes to Player 4. This player

now has exactly the same options of bet, check or fold. He chooses to bet the relatively

small amount of $200. The next to act, Player 9, must now either call $200, raise, or

fold. He folds. Our player, with the possibility of making a straight, calls. Following

this Player 3 folds. Since the active players (Players 4 and 10) have now entered the

same amount into the pot, the betting round ends with the gamestate shown.

2Essentially a check can be thought of as calling a bet of zero in all post-flop rounds. Hence it is
only available when there has yet to be a bet.

3Although a permissible action with no prior bet in a given round, folding is strictly dominated by
checking. It costs a player nothing to check, and he still retains participation in the hand.
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The turn card dealt onto the table isT♥. This is a very good card for our player

since it completes the straight. Betting starts with Player4, who checks, then moves on

to Player 10. Our player bets $200, whereupon Player 3 raisesanother $600 to $800.

To call this raise costs our player $600, which is exactly theamount left in her stack4

In so doing she declares herself to be all in: all of her chips are now in the pot. With

this the betting round is completed.

The hand is not over yet. The dealer now places theT♦ river card onto the table,

after which there would normally be a final round of betting. Here, however, there

is only one active player with chips in his stack. Therefore the final betting round is

foregone and play proceeds directly to the showdown. Players 4 and 10 now show their

hole cards, and declare their best possible five-card poker hand using any combination

of their own two private cards and the five community cards.

4Note that had Player 3 raised by a larger amount, Player 10 would still be able to call. Thetable
stakesrule means that Player 10 could call with her final $600 and announce herself all in. Any excess
above this amount in the raise of Player 3 would immediately be returned him.
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The best hand our player can make is the straight consisting of 6♥7♣8♣9♦T♥5.

The opponent uses his hole cards to make the full houseA♣A♠T♠T♥T♦.

Since a full house ranks higher than a straight, Player 4 winsand collects the $2,450

pot. Player 10, on the other hand, no longer possess any chipsand is eliminated from

the tournament in 10th place.

B.2 Five-Card Poker Hand Rankings

Cards rank from ace high down to two, with no discrimination between different suits.

The winner of a Texas hold’em showdown is determined by reference to a complete

ranking of all possible five-card poker hands, given in TableB.1. This table also details

how ties within a hand ranking are broken.

Note that although the ranking constituent of some hands uses less than all five

cards (for example, three of a kind), the seemingly extraneous cards are required in

case of ties.

5Either available ten could be used to produce an equally ranked hand.
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Hand Description Example Tiebreaker

Straight flush Five consecutive cards of the same suit 4♠5♠6♠7♠8♠ The holder of the highest ranked card within their straight flush wins. Two similar straight flushes of

different suits split the pot.

Four of a kind Four equally ranked cards 3♥3♣3♦3♠Q♥ The highest ranked four-card set wins.

Full house Three cards of one rank and two of another 2♥2♠2♦7♣7♠ The highest ranked three-card set wins.

Flush Five cards of the same suit K♦J♦8♦4♦2♦ The holder of the highest ranked card within their flush wins.If these are identical it is decided upon

the second highest, and so on. Identical flushes of differentsuits split the pot.

Straight Five consecutively ranked cards 8♦9♦T♠J♣Q♥ The holder of the highest ranked card within their straight wins. Two similar straights split the pot.

Three of a kind Three equally ranked cards J♥J♣J♠A♥3♣ The highest ranked three-card set wins.

Two pairs Two cards of one rank and two of another Q♥Q♣4♦4♣6♠ The highest ranked pair wins. If these are identical, the next highest ranked pair wins. If these are the

same, the fifth cards are compared to determine the winner. Ifall comparisons are equivalent, the pot

is split.

Pair Two cards of equal rank K♣K♦A♥Q♥3♦ The highest ranked pair wins. If identical, the highest ranked non-paired cards are compared, the the

next highest, and so on.

High card None of the above A♠T♠8♦7♣4♣ The highest ranked cards are compared, then the next highest, and so on.

Table B.1: The ranking of all five-card poker hands, plus the rules by which ties between hands of similar rank are broken. The hands are listed

in order of decreasing strength.
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Sklansky-Chubukov Hand Rankings

In 2005 a problem appeared on the forums of Two Plus Two publishing [96] which

sought to value the worth of every possible starting hand in the following scenario.

Suppose that there are two players in a no-limit Texas hold’em game, with blinds of $1

and $2. The small blind accidentally flips over his cards so that his opponent in the big

blind sees them. The small blind decides that he will either go all in or fold his hand.

If the small blind has $X in his stack after posting the dollarblind, for what values of

X is it better to go all in than fold with? The problem assumes that the big blind has an

infinite stack, and that he will call an all in bet if he has a positive expectation on the

hand.

To calculate the values of X for each starting hand it is necessary to enumerate

over all the big blind’s possible holdings. With two cards accounted for and ignoring

suit similarities there are 1225 combinations of two cards from the remaining fifty. In

deciding whether to call the opponent weighs his expectation on the hand versus the

odds that he is getting from the pot. For example, if the smallblind bets $6 then the

big blind is getting odds of 3-to-2 on a call. This is because he stands to win $9 for

a bet of $6. If the probability of winning the hand is greater than the 40% implied by

these odds1 he should call.

There are four possible scenarios which can occur in determining the winner for

this problem:

• Small blind bets and big blind folds⇒ small blind wins

• Small blind bets and big blind calls with hand which loses a showdown⇒ small

blind wins
1To convert odds ofa-to-b to a probability, one dividesb by the sum ofa andb
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• Small blind bets and big blind calls with hand which wins a showdown⇒ big

blind wins

• Small blind folds⇒ big blind wins

Given a starting hand for the small blind, a system of equations can be constructed

over all possible hands for the big blind which equates the value of a fold and an all

in move at a specific value of $X. Below this value it is correctfor the small blind

to move all in, and with a stack larger than $X it is correct forhim to fold. These

decisions maximize the player’s expected winnings.

Ordering the starting hands in decreasing value of $X withinthis problem gives

rise to the Sklansky-Chubukov rankings. These are named after the problem initiator,

David Sklansky, and its solver Victor Chubukov.

The first and last few starting hands are given in Table C.1. The complete list can

be found online at the homepage of Victor Chubukov [30].

Hand $X-value

AA ∞

KK 954.00

AKs 554.51

QQ 478.01

AKo 331.89

JJ 319.21

... ...

72o 2.24

52o 2.18

62o 2.14

42o 1.98

32o 1.83

Table C.1: Best and worst starting hands in Texas hold’em by Sklansky-Chubukov rank-

ing.

An alternative approach is to play all combinations of handsoff against each other

with all possible community cards and note the percentage ofvictories for each starting

hand. Accurate estimates can be found by Monte-Carlo simulation over a large number
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Figure C.1: A comparison of the hand rankings of the 169 different starting hands using

roll-outs and the Sklansky-Chubukov $X-value.

of hands. The results yielded are known as “roll-out” rankings. An example of roll-out

rankings constructed by simulation can be found online [21].

Figure C.1 gives a scatterplot of all 169 starting hands based on the two different

methods.

It is clear by observation that there is a great similarity inthe relative orderings

yielded by the two approaches. The correlation between the two sets of rankings is

0.989. Three seemingly anomalous values occur towards the bottom of the plot, repre-

senting the lowest pairs: 44, 33, and 22. This shows that these hands are graded more

highly in the Sklansky-Chubukov rankings than the roll-outs.

The Sklansky-Chubukov rankings contain an advantage over those from roll-outs

since the former procedure incorporates blinds, and hence pot odds, into its formula-

tion. With this the Sklansky-Chubukov $X-value yields a better absolute distinction

between the strength of hands than the simpler percentage ofhands won.
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Published CIG 2007 Paper

This appendix contains a re-print of the paper accepted intothe IEEE Symposium on

Computational Intelligence and Games, Hawaii 2007 (CIG 2007). The paper con-

denses much of the work contained in this thesis, and was presented at the conference

by the author.
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