
Computer Strategies for Solitaire Yahtzee

James R. Glenn
Department of Computer Science

Loyola College in Maryland
jglenn@cs.loyola.edu

Abstract— Solitaire Yahtzee has been solved completely. How-
ever, the optimal strategy is not one a human could practically
use, and for computer play it requires either a very large
database or significant CPU time. We present some refinements
to the techniques used to solve solitaire Yahtzee and give a
method for analyzing other solitaire strategies and give some
examples of this analysis for some non-optimal strategies,
including some produced by evolutionary algorithms.

Keywords: computer games, retrograde analysis, evolu-
tionary computation, non-deterministic games

I. I NTRODUCTION

Solitaire Yahtzee has been studied extensively: around
the same time, several groups independently computed the
optimal strategy for different versions of the game [1] [2]
[3]. In all cases, the optimal strategy was considered to be
the strategy that maximizes the expected score. Four years
later, Woodward repeated the computations and published
the results [4]. We present some non-optimal strategies,
including some a human could easily follow, and a technique
for analyzing them. We also present some refinements to the
earlier work that significantly decrease the time required to
compute the optimal strategy; these refinements are used in
the analysis of non-optimal strategies as well.

II. OPTIMAL SOLITAIRE YAHTZEE

Yahtzee is a game played with five six-sided dice and a
scoresheet listing 13 categories. On each turn, the player rolls
the dice, rerolls any subset of them zero, one, or two times
(it does not have to be the same subset rerolled the second
time), and then chooses a category in which to score the final
roll. Each category has its own rules for scoring (see Table
I), and each category may be used only once per game.

In addition to the rules in Table I, there are two pos-
sibilities for bonus points. One is a 100 point bonus for
the second and subsequent Yahtzees, provided that the first
was scored as 50 points inYahtzee. The second is a 35
point bonus for achieving at least 63 points in the first
six categories (corresponding to three of each matching
die in each category). For this reason, it is useful to split
the categories into the Upper Categories and the Lower
Categories.

Definition 1: C, U , andL are sets of Yahtzee categories
as defined below:

1) C is the set of all categories
{1, 2, 3, 4, 5, 6, 3K, 4K, FH, SS, LS, C, Y };

2) U is the set of upper categories{1, 2, 3, 4, 5, 6}; and
3) L is the set of lower categoriesC − U .

TABLE I

SCORINGRULES

Category Rule

Aces one point for every die showing one pip
Deuces two points for each two

Treys three points for each three
Fours four points for each four
Fives five points for each five
Sixes six points for each six

Three of a Kind the total on all the dice provided that three
show the same number; zero otherwise

Four of a Kind the total on all the dice provided that four
show the same number; zero otherwise

Full House 25 points if three dice show one number and
two show another; zero otherwise

Small Straight 30 points for four dice showing consecutive
numbers; zero otherwise

Large Straight 40 points for five dice showing consecutive
numbers; zero otherwise

Chance the total on all the dice
Yahtzee 50 points if all five dice show the same

number; zero otherwise

During a game the player has many choices to make. For
example, having finished a turn with [5 5 6 6 6], a player
may choose to score the roll in (among other choices)Sixes,
Full House, or Three of a Kind. Having rolled [1 1 1 3 3]
at the beginning of a turn, the player has to choose whether
to reroll no dice and take aFull House, or risk losing the
Full Houseto try for Yahtzee. The optimal strategy specifies
which choices will maximize the expected score.

A. Solitaire Yahtzee Position Graph

Games like Yahtzee that are characterized by random
events followed by player reponses to those random events
can be modelled as bipartite graphs in which one set of
vertices represents states of the game in which a random
event is about to happen, and the other set represents statesin
which the player has a choice to make [5]. The previous work
indeed treats solitaire Yahtzee in this way. We quickly present
the technique used by Glenn [1], Holderied [3], Verhoeff [2],
and Woodward [4] to compute the optimal strategy. Some
important differences in the work of the four will be noted
in a subsequent section.

It is useful to refine the graph further by grouping vertices
together according to where in a turn they occur in addition to
whether the next move is a random event or a player choice.
Solitaire Yahtzee can then be viewed as a 6-partite graph
G = (V1, V2, . . . , V6, E) whereE ⊂ (V1×V2)∪(V2×V3)×

· · · × (V5 × V6) × (V6 × V1). Vertices inV1 are positions
at the start of turns, vertices inV2 represent the outcome
of the initial roll, vertices inV3 represent the choices of
which dice to keep, and so on. We need enough vertices so
that all of the information relevant to the optimal strategy
can be encoded in the vertices. The necessary information
includes what categories have been used, but not what scores
have been obtained in those categories. In other words, a
player who has scored 30 inSmall Straightand 40 inLarge
Straightshould play exactly the same way as a player who
has scored zero in those two categories. Both players play to
maximize theirfuturescore without regard to what has been
done in the past. There are two exceptions: the total in the
upper categories is relevant because of the upper bonus, and
whether the Yahtzee category has 0 or 50 is relevant because
of the 100-point bonus for extra Yahtzees (the Yahtzee Joker
rule governing when a Yahtzee can be used asFull Houseor
one of the straights does not affect the number of positions).

Therefore, we view eachv ∈ V1 as a triple
(U, upper, extras) ∈ C × {0, . . . , 63} × {0, 1}, whereU is
the set of categories that have been used at the corresponding
position,upper denotes the upper total (values greater than
63 are equivalent to 63 since then the bonus has already been
earned), andextras is a flag that indicates whether the player
earns the 100-point bonus for extra Yahtzees. There are then
213·64·2· 34 = 786, 432 total positions inV1 (taking advantage
of the fact that we cannot haveextras = 1 if the Yahtzee
category has not been used), of which at most 314,880 are
needed once reachability issues and equivalence have been
taken into consideration (for example, it is impossible that
upper > 5 if Aces is the only upper category used, and
any position(U, upper, extras) in which it is impossible to
obtain the bonus is equivalent to(U, 0, extras)).

Verticesu ∈ V −V1 represent positions in the middle of a
turn. For suchu there is a unique articulation pointv ∈ V1

such that any path from the initial position tou goes through
v. We call all of the positions with a common articulation
point acomponentand denote a component byGu whereu

is the position in the component that is inV1 (that is, it is the
position of the start of a turn). We refer tou as theanchor
of the component. For convenience, we refer to non-anchors
by listing the anchor and the state of the dice. All of the
vertices in the graph are thenn-tuples.

1) A vertex u ∈ V1 is (U, upper, extras) as described
above.

2) A vertexv ∈ V2∪V4∪V6 represents a position after the
dice have been rolled and will be written(u, R) where
u is the anchor such thatv ∈ Gu andR (the roll) is a
5-element multiset with elements from{1, 2, 3, 4, 5, 6}
representing the outcome of rolling five 6-sided dice
(note there are 252 such outcomes).

3) A vertex v ∈ V3 ∪ V5 represents a position after
the player has selected which dice to keep and will
be written (u, R) where u is again the anchor and
R is now a k-element multiset with elements from
{1, 2, 3, 4, 5, 6} for some0 ≤ k ≤ 5 (note there are

462 possible values ofR).

Some vertices within the same component may share the
same label (for example, [1 2 4 4 5] may appear as the inital
roll, or after the first or second reroll); in the subsequent
sections we will distinguish between them by explicitly
stating which of the six vertex sets we are working in.

We describe the edges within each component The edges
within a component largely do not depend on the anchor
of the component. The edges leaving a component are
dependent on the anchor, and for them we must know the
score that would be obtained by moving along that edge.

Definition 2: For any positionsu ∈ V6 andv ∈ V1

1) S(u, v) denotes the score earned by moving fromu to
v, including any bonuses; and

2) S′(u, v) denotes the score earned by moving fromu

to v, not including any bonuses.
Within a single component Gu (where u =

(U, upper, extras)), the edges are as follows:

1) there is an edge fromu to each vertexv in V2;
2) if v1 = (u, R1) ∈ V2 (or V4) and v2 = (u, R2) ∈ V3

(respectivelyV5) then(u, v) exists exactly whenR2 ⊆
R1;

3) if v1 = (u, R1) ∈ V3 (or V5) and v2 = (u, R2) ∈ V4

(respectivelyV6) then(u, v) exists exactly whenR1 ⊆
R2; and

4) if v = (u, R) ∈ V6 and u′ = (U ′, upper′, extras′) ∈
V1, then (u, v) ∈ E if and only if U ′ − U = {c} for
some categoryc, upper′ = min(upper + S′(u, v), 63)
if c ∈ U and upper′ = upper otherwise, and
extras′ = 1 if and only if eitherextras = 1 or both
c = Y andS(u, v) > 0.

Note that the structure of one component is the same as the
structure of any other, except for the edges of the last type,
which go to the anchors of other components according to
what categories are unused inU and what bonuses are earned
when moving along those edges. We will call one component
Gu a neighborof another componentGv if there is an edge
from Gv to Gu. This term can also be applied to anchors: the
neighbors of an anchoru are the anchors of the neighbors
of the componentGu.

Each component has 1,681 positions and up to 20,880
edges. There are 529,313,280 positions total in the 314,880
reachable components. Because the graph is acyclic (since
once a category is used the score there can never be erased),
we can compute the corresponding position values using
retrograde analysis: start by computing the position values
of the terminal positions, and then work backwards in order
of reverse topological sort to the initial position of the game.

Definition 3: X(u) denotes theposition valueof u, which
is the expected future score atu.

The terminal positions of the game are those positionsu =
(U, upper, extras) whereU = C. X(u) = 0 for any terminal
positionu. For any non-terminal positionu ∈ V1 ∪ V3 ∪ V5,

X(u) =
∑

(u,v)∈E

Proll(u, v)X(v) (1)

whereProll(u, v) is the probability thatv is the next position
given that the current position isu (that is, the probability of
the roll that moves the game fromu to v). For any position
in u ∈ V2 ∪ V4,

X(u) = max
(u,v)∈E

X(v). (2)

Finally, for anyu = ((U, upper, extras), R) ∈ V6,

X(u) = max
(u,v)∈E

S(u, v) + X(v). (3)

The maximum expected future score of the initial position
is the maximum expected score of the game. The entire
computation can be done in well under an hour on cur-
rent commodity desktop computers.X(s) is approximately
254.59 for the initial positions; someone following the
optimal strategy would expect to score 254.59 points.

B. Refinements of the Position Graph

We now present two refinements that speed up the compu-
tation of the optimal solitaire strategy by reducing the number
of edges examined per component by approximately a factor
of two. Since each edge is traversed once in the computations
of X(u) using formulas 1, 2, and 3, and evaluating these
formulas represents almost all of the work the algorithm
must perform, the time to compute the optimal strategy is
proportional to the number of edges examined in the position
graph. Therefore, halving the number of edges reduces the
running time by a factor of two. One of the refinements
is particular to Yahtzee; the other could be generalized to
similar games.

Woodward did not make use of the fact that, in each
component, it does not matter how one arrives at the second
roll [4]: he treats the positions after the sequences of moves
(Roll [1 2 3 3 5], Keep [3 3], Roll [3 3 3 3 6]) and (Roll
[3 3 3 5 6], Keep [3 3 3], Roll [3 3 3 3 6]) as different
positions, even though the optimal strategy does not depend
on how the roll [3 3 3 3 6] was obtained. As a result, it took
him “many computing days” to compute the optimal strategy.
The others working on the problem used the structure of the
components given in section II-A. Even this, however, is not
ideal.

Consider the components as defined in Section II-A. The
positions representing keeping [3 3] and [3 3 3] after the
first roll both have edges to [3 3 3 3 6]. In fact,anyposition
reachable from [3 3 3] is reachable from [3 3]. In general,
if v1 = (u, R1), v2 = (u, R2) ∈ V3 (or V5) and R1 ⊆ R2

then whenever(v2, w) ∈ E then also(v1, w) ∈ E. We wish
to capture this fact in the position graph in order to reduce
the number of edges.

Instead of viewing the next move from [3 3] as rolling the
three dice that were not kept all at once, we view the next
threemoves as rollingoneof the dice in turn. Then keeping
[3 3] and rolling a 3 as the next move results in exactly the
same position as keeping [3 3 3] in the first place. We have
thus redefined the outgoing edges from positions inV3∪V5 as
follows: if v1 = (u, R1) ∈ V3 (or V5) andv2 = (u, R2) ∈ V3

(respectivelyV5) then (v1, v2) ∈ E if and only if R1 ⊆ R2.

All edges (v1, v2) ∈ (V3 × V4) ∪ (V5 × V6) are removed,
except for those wherev1 = (u, R) and | R |= 5 (that is,
only positions where there are no more dice to roll have
edges to the next set of vertices).

Each of the positions representing the choice of keeping 4
or fewer dice now have only 6 outgoing edges; before they
had 252, 126, 56, 21, or 6 depending on how many dice
were kept. The positions where 5 dice have been kept have
1 outgoing edge each. There are then only 15,228 edges in
each component.

The first refinement took advantage of a situation particular
to Yahtzee where a move could be broken down into smaller
moves. The second refinement has the potential to be used
in a wider variety of circumstances.

Suppose there is a set of positionsC ⊂ V3 (or V5) such that
for every vertexv1 ∈ V2 (respectivelyV4), there is a vertex
v2 ∈ C such that(v1, v2) ∈ E (so C in some sense covers
V2). Let k = minv∈C X(v). Suppose further thatw ∈ V3

(V5) is such thatX(w) < k. Thenw need not be considered
as a destination vertex in Equation 2. If there is a collection
of coversC1, . . . , Cn then we let

k = max
1≤i≤n

min
v∈Ci

X(v) (4)

and the same cutoff condition applies. In terms of Yahtzee,
if we can find a set of keep positions that we can choose
no matter what we roll, then we needn’t consider any of
the incoming edges to keep positions that are worse than
the worst of that set. For example, we can always choose to
reroll all five dice. If another choice of dice to keep is worse
than keeping none of the dice, we do not have to consider it.
We modify the standard retrograde approach to computing
the position values within each component.

Algorithm 1 ComputingX(v) within a componentGu

Require: Gu is a component in a Yahtzee position graph
(V1, . . . V6, E), X(v) is known for all anchorsv neigh-
boring Gu, C1, . . . , Cn is a collection of covers.

Ensure: Program terminates with Equations (1) satisfied for
u.
∀v ∈ Gu, X(v)← 0 . Initialization
∀v ∈ Gu ∩ V6, computeX(v) according to Equation 3
∀v ∈ Gu∩V5, in reverse order of topological sort, compute

X(v) according to Equation 1
Computek according to Equation 4
Run Algorithm 2 onGu ∩ V5 using cutoffk.
∀v ∈ Gu∩V3, in reverse order of topological sort, compute

X(v) according to Equation 1
Computek according to Equation 4
Run Algorithm 2 onGu ∩ V3 using cutoffk.
∀v ∈ Gu ∩ V1, computeX(v) according to Equation 1.

In order to keep the cutoff high, it is desirable to choose
covers that contain good choices of which dice to keep. The
covers should also be small, since all edges coming into a
cover must be examined. We use Algorithm 1 with the set
of covers given in Table II, and can eliminate an average of

Algorithm 2 ComputingX(v) for Gu ∩ (V2 ∪ V4).
Require: Gu is a component in a Yahtzee position graph

(V1, . . . V6, E), L = Gu ∩ V3 or L = Gu ∩ V5, X(v) is
known for allv ∈ L, C1, . . . , Cn is a collection of covers,
andk is a cutoff as computed by Equation 4.

Ensure: Program terminates with Equations (2) satisfied for
all positionsw that L neighbors.
for all v ∈ L do

if X(v) > k or v ∈ C1 ∪ · · · ∪ Cn then
for all (w, v) ∈ E do

X(w)← max(X(w), X(v))
end for

end if
end for

3,762 edges per component, which is approximately 43% of
the edges coming intoV3 ∪ V5. After both refinements, we
examine, on average, 11,466 edges per component, 55% of
the original 20,880.

TABLE II

KEEPS THATCOVER ALL ROLLS

C1 []

C2 [1 1] [2 2] [3 3]
[4 4] [5] [6]

C3 [1 1] [2 2] [3 3]
[4 4] [5 5] [6 6]

[1 2 3] [4 5 6]

C. Statistics for the Optimal Strategy

It seems unlikely that we can extract enough pithy infor-
mation from the final database of position values so that a hu-
man could follow the optimal strategy without having access
to the database. However, opportunities exist for using the
optimal strategy to coach human players. One such coaching
method beyond the obvious (simply show the human the
optimal move at each position and let the human try to
extract patterns) would be to examine the player’s average
score in each category and compare that average to that
obtained when following the optimal strategy. This way the
human player will know which categories he is overvaluing
(those where his average exceeds the optimal strategy’s) and
which he is undervaluing. This style of coaching requires us
to know the relevant statistics for the optimal strategy. The
relevant values can be estimated by simulation, but because
the variances are so high (see Table III) it would require
many runs to estimate them with any precision. We now
present a way to obtain these statistics exactly for the optimal
strategy. These statistics form the basis of some of the non-
optimal strategies presented in Section III.

The optimal strategy, or any other solitaire Yahtzee strat-
egy, can be viewed as a functiono : V2 ∪ V4 ∪ V6 →
V3∪V5∪V1 that determines which dice to keep after the first

TABLE III

CATEGORY STATISTICS FOR THEOPTIMAL STRATEGY

Category s̄(c) σ2(c)

Aces 1.8813 1.4786
Deuces 5.2825 3.9916

Treys 8.5693 7.3641
Fours 12.1583 10.8039
Fives 15.6874 14.8300
Sixes 19.1889 21.5585

Three of a Kind 21.6614 31.5904
Four of a Kind 13.0977 122.6289

Full House 22.5918 54.4056
Small Straight 29.4612 15.8734
Large Straight 32.7113 238.4223

Chance 22.0091 6.4477
Yahtzee 16.8683 558.8751

Upper Bonus 23.8413 266.0375
Yahtzee Bonus 9.5801

roll or second rolls, and what category to use at the end of a
turn. We must require that ifo(u) = v then(u, v) ∈ E (that
is, the strategy must always choose a move that is legal).

Denote byPvisit(u) and Pvisit(u, v) the probability that
an anchor is visited and an edge is traversed (respectively)
when following the optimal strategy. The values ofP can be
computed by forward induction:Pvisit(s) = 1 for the initial
positions, and for(u, v) ∈ (V1×V2)∪(V3×V4)∪(V5×V6),

Pvisit(u, v) = Pvisit(u)Proll(u, v). (5)

For any other edge(u, v),

Pvisit(u, v) =

{

Pvisit(u), if o(u) = v,
0, otherwise.

(6)

For any anchoru other than the initial position,

Pvisit(u) =
∑

(v,u)∈E

Pvisit(v, u). (7)

What we are most interested in are the values of
Pvisit(u, v) for u ∈ V6; from these values we can obtain
the probability of scoringn points in categoryc, which we
will denotePscore(c, n): let c ∈ C be a category and denote
the set of edges inV6 × V1 that use categoryc by E(c)
(that is, E(c) is the set of edges that can be written as
((U, upper, extras, R), (U ∪ {c}, upper′, extras′))). Then

Pscore(c, n) =
∑

(u,v)∈E(c)
S′(u,v)=n

Pvisit(u, v) (8)

All of these quantities can be computed in one pass through
the position graph using Algorithm 3. The algorithm will
work for any other deterministic solitaire Yahtzee strategy
by replacingo with the appropriate function. We can easily
modify the algorithm so it also computes the probability of
earning the upper bonus (by treating it as a separate category)
and the expected number of Yahtzee bonuses (by summing
Pvisit(u, v) for all moves(u, v) that earn a Yahtzee bonus).

OncePscore(c, n) is computed for allc andn it is trivial to
compute the mean̄s(c) and varianceσ2(c) for each category

Algorithm 3 ComputingPscore(c, n)

Require: G = (V1, . . . V6, E) is a Yahtzee position graph,
f is a Yahtzee strategy.

Ensure: Program terminates with Equations (7) and (8)
satisfied.
∀c ∈ C, 0 ≤ n ≤ 50, Pscore(c, n)← 0 . Initialization
∀u ∈ V1, Pvisit(u)← 0.
Pvisit(s)← 1 for the initial positions.
for all u ∈ V1 in order of topological sortdo
∀v ∈ Gu − {u}, Pvisit(u)← 0
for all v ∈ Gu − {u} in order of topological sortdo

if v ∈ V1 ∪ V3 ∪ V5 then . v is rolling the dice
for all (v, w) ∈ E do

p← Proll(v, w) · Pvisit(v)
Pvisit(w)← Pvisit(w) + p

end for
else if v ∈ V2 ∪ V4 then . choosing dice to keep

Pvisit(f(v))← Pvisit(f(v)) + Pvisit(v)
else . v is choosing a category

write v = (U, upper, extras, R)
write f(v) = (U ′, upper′, extras′)
c← U ′ − U . the strategy chooses categoryc

n← S′(v, f(v))
Pscore(c, n)← Pscore(c, n) + Pvisit(v)

end if
end for

end for

c. Similar computations can be done for the statistics of the
upper bonus. For the Yahtzee bonus we can compute only the
mean; we cannot easily compute the probability of earning
n points for the Yahtzee bonus because those points will
have been earned while traversing several different edges.
The values ofs̄(c) and σ2(c) are given in Table III and
agree with those computed by numerical approximation by
Verhoeff [2].

D. Score Distribution for the Optimal Strategy

We can also compute, for each possible scoren, the prob-
ability Ptotal(n) that the optimal strategy scoresn points:

Ptotal(n) =
∑

u∈T
total(u)=n

Pvisit(u) (9)

whereT is the set of terminal positions andtotal(u) denotes
the total score obtained at positionu. However, the positions
as given earlier in this section do not encode enough infor-
mation to obtaintotal(u). To compute the desired values,
we must rethink what our positions are and ensure that they
encapsulate enough information to recover the total score.

In the new formulation, an anchor position is a 4-tuple
(y, U, upper, lower) ∈ {null, 0, 50, 150, . . .1250} × (C −
{Y } × {0, . . . , 63} × {0, . . . , 227}). y represents the state
of the Yahtzee category and associated bonuses,U is the set
of used categories (excluding Yahtzee),upper is the upper
total, andlower is the lower total (plus any score in the upper

categories in excess of 63). This representation was chosen
for compactness of binary representation – the number of
possible values for each component is close to a power of
two; it takes 30 bits total to store them all. There are about
123 million reachable states.

Data for the optimal strategy are presented in Table IV.

TABLE IV

DISTRIBUTION OF SCORES FOR THEOPTIMAL STRATEGY

n P (score ≥ n)

50 1 − 6.661782 · 10−12

100 0.999998
150 0.991230
200 0.863584
250 0.483683
300 0.143265
400 0.038351
500 0.007192
750 5.11603 · 10−6

1000 5.57508 · 10−9

1250 6.49213 · 10−13

1500 3.93308 · 10−19

This information can be used to compute a strategy that
beats the optimal solitaire strategy at an imperfect informa-
tion version of two-player Yahtzee in which two players play
a game simultaneously without knowing what the other is
doing. In this version of the two-player game, the players
reveal their scoresheets only once both have finished; the
player with the higher score is the winner.

To compute a strategy to beat a given solitaire strategy
at this version of the two-player game, we use the same
definition of a game position as was used to compute
the score distribution, and for each position compute the
probability of beating the optimal solitaire strategy fromthat
position. For a terminal positionu with total scoretotal(u),
the expected proportion of wins is

Xwin(u) =
∑

n<total(u)

Ptotal,f (n). (10)

We work backwards in a manner similar to that described in
Section II to compute the proability of winning from the non-
terminal positions. The only computation that has to change
is that for choosing a category: replace Equation 3 with

Xwin(u) = max
(u,v)∈E

Xwin(v) (11)

(the term involving the score has been removed; the score is
now encoded in the positions, so the expected win frequency
Xwin(v) already takes the score into account).Xwin(s) for
the initial positions then gives the optimal proportion of wins
against strategyf . This technique is similar to that used to
determine how to maximize the chance of beating a given
score [6].

When playing against the optimal solitaire strategy,
Xwin(s) is about 0.503.

III. OTHER SOLITAIRE STRATEGIES

The techniques of Section II-C can be applied to non-
optimal strategies as well. This can aid us in developing and
evaluating approximations to the optimal solitaire strategy.
This can be useful for four reasons: 1) we can explore
strategies that a human might be able to easily follow; 2)
we can develop a sequence of increasingly good strategies
in order to match human players of different abilities against
appropriately able computer strategies; 3) we can examine
strategies that do not require as much storage space or time
to use in simulations (for the optimal strategy, one can keep
the entire database of over half a billion position values, or
one can keep just the primary 314,880 and take the time to
recompute the others as needed); and 4) we hope to apply
what we learn designing strategies for solitaire Yahtzee to
the two-player perfect information version of the game (it is
not likely to be feasible to compute the optimal strategy for
the two-player game exactly because of the immense size of
the position graph). The following sections explore some of
these kinds of strategies.

A. Human Strategies

The first two strategies we describe are strategies that a
human player could easily follow. The first is intended to
reflect how a novice player might play: it sacrifices almost
everything in order to obtain Yahtzee bonuses. To this end, it
keeps whichever dice it has the most of, regardless of whether
the corresponding upper category is open, and regardless of
whether it is close to (or has) a straight or full house. When
choosing a category to play a roll in, it seeks to maximize
the score on that turn, with ties broken in favor of categories
that are hard to get (for example, it will put a non-zero score
in Four Of A KindbeforeChance). When it cannot obtain a
non-zero score in any category, it will zero the hard-to-get
categories first, except that it savesYahtzeeuntil the end.

The second human-playable strategy is based on sets of
rules that govern which dice to keep and what categories to
choose; the first rule that applies is followed. Table V gives
the rules for deciding which dice to keep. The first rule that
matches is followed. Table VI determines which category to
score a roll in; it is implicit that a rule does not match if
the corresponding score would be zero. As for the keeps, the
first rule that matches takes precedence. If no rule matches,
the categories are examined in the order (1, C, 2, Y, 4K, LS,
SS, 3, FH, 4, 3K, 5, 6); the first unused category is chosen.

A genetic algorithm can be devised to evolve strategies
based on rules like those in Tables V and VI. In this setup
a strategy is viewed as three lists: one list of rules that de-
termine which dice to keep; one list of rules that determines
what category to score a roll in; and one permutation of
the 13 categories that is used when no rule in the second
list matches. The rules on the first two lists are of the
form (c, score, O) ∈ C × {0, . . . , . . . 50} × P(C). A rule
(c, score, O) matches a positionv = (U, upper, extras, R)
if c 6∈ U (c is unused),R would earn more thanscore
points in c, andO ∩ U = ∅ (all of the categories inO are

TABLE V

SAMPLE RULES FORKEEPINGDICE

Rule

Yahtzeeif Y is unused or Yahtzee Joker is applicable
Large Straightif LS or SS is unused
Small straightif SS is unused or both LS and C are unused
a tripleton if the corresponding upper category is unused
any tripleton if one of 3K, 4K, FH, or C is unused
a doubleton (high preferred) if the corresponding upper
category is unused
[2 3 4] or [3 4 5] if SS unused or both LS and C are unused
any doubleton if 3K or C is unused
any tripleton (high preferred) ifYahtzeeis unused or non-zero
a singleton (low preferred) if the corresponding upper category
is unused, unless more than four upper categories are unused
any doubleton (high preferred)
a singleton 4, 5, or 6 (high preferred) if 3K, 4K, or C unused
nothing

TABLE VI

SAMPLE RULES FORSCORING ROLLS

Rule

Yahtzee
Large Straight
Small Straight
a tripleton in an upper category if it earns the bonus
four 5’s or four 6’s in the upper category
Four of a Kind
three 5’s or three 6’s in the upper category
Full House
Three of a Kindif the total is at least 22
a tripleton in an upper category
Three of a Kind
Chanceif the total is at least 22
doubletons in an upper category (lower preferred)

unused as well). For the list of rules governing which dice
to keep, the score of a roll for some of the lower categories
can be defined according to how close the roll is to fitting
that category. For example, [2 2 3 4 4] could be considered
worth 10 points towardsFull House at the beginning of a
turn. Such parameters are currently considered part of the
environment; they are not encoded in the population and are
not evolvable.

At a positionv ∈ V2∪V4, the list of keep rules is consulted.
The first matching rule is followed, and the dice are kept in
an effort to make a good score in the category of that rule.
For example, if the category in the matched rule isFour
of a Kind, then the strategy keeps the dice is has the most
of. For Small Straightit would keep the longest consecutive
sequence. If no rule matches, all five dice are rerolled.

At positionsv ∈ V6, the list of scoring rules is consulted.
The first rule that matches is followed by choosing the
corresponding category. If no rule matches, the third list is
consulted, and the first category on that list that has not been
used is selected.

The initial population of strategies contains zero or one
randomly generated rule on the keep list, and has on the
scoring list a rule for each category that expresses “score in
this category if the score would be non-zero”; these rules
are randomly permuted. The permuation of categories on the
third list is also randomly generated. Crossover is performed
individually on the three lists. For the first two, the lists
from the parents are shuffled together and half of the rules
are removed from the result. For the third list, the positionof
each category is randomly chosen to be the same as in one of
the parents. When there is a conflict, the category from the
first parent is listed first. Any holes in the list are then closed
up. Mutation is performed by either randomly swapping two
items on one of the lists, or randomly changing, deleting, or
adding an item on the first two lists.

The best strategy evolved using this scheme does not do
as well as the list-based strategy descirbed above. This is
perhaps not surprising considering the rules used are not
expressive enough to encode all of the rules in Table V.
Two encouraging things can be reported, however. First, the
third list, which essentially determines the order in which
categories are used when no good score can be made on a
turn, evolves well. In one run, nearly all of the population
hadOnesfirst, with ChanceandYahtzeenot far behind. This
is similar to the optimal strategy’s behavior [2]. Second, the
second list (governing scoring) shows signs of evolving well
too. The population learns the most obvious rules, such as
“score inYahtzeeif doing so earns 50 points”; it is the more
subtle rules that seem to be eluding us.

B. Strategies Based on Estimates of Position Values

As noted at the beginning of this section, when simulating
an optimal solitaire player, we need only have access to
the position values of the anchors; all of the other position
values can be recomputed as necessary using the values at
the anchors. This is a compromise between CPU time and
storage space. If we keep all of the position values then
looking up what the optimal strategy says to do is easy,
but our database must hold half a billion position values
(several gigabytes if the position values are stored in 8
bytes each). On the other hand, if we keep none of the
values we must recompute everything every time we want to
query the strategy. By keeping the partial database (several
megabytes), we need only recompute the position values for
the components that are visited in the course of a game.

We can think of the database of position values for anchor
positions as a functionX̂ : V1 → R. We can perform
the calculations of Equations 1-3 usinĝX instead ofX . If
X̂(u) = X(u) for all anchorsu, we get the optimal strategy.
Using differentX̂ functions will yield different strategies.
The point of using a differentX̂ is that we can devise
them so they use very little storage. This could be useful in
applications where storage space is extremely limited, such
as handheld devices.

The simplest partial databasêX would beX̂(u) = 0 for
all anchorsu. The corresponding strategy would then work to
maximize the number of points earned on each turn without

regard for the score in subsequent turns. We therefore call
this strategy thegreedy strategy.

1) Using the Expected Scores in Unused Categories:
Better strategies can be obtained by using better heuristics
to estimate the value that would be in the optimal partial
database. One heuristic uses the statistics given in Section II-
C. The expected future score for an anchor positionu =
(U, upper, extras) is estimated to be

X̂(u) =
∑

c∈C−U

s̄(c); (12)

adjustments can be made to estimate the probability of
earning any bonuses. Those adjustments can be made more
accurately if the variances for each category are used as well.

It should be noted that we can replace the averagess̄(c) in
each category in Equation 12 withany function s : C → R

to get
X̂(u) =

∑

c∈C−U

s(c) (13)

(for simplicity we will now ignore the adjustments for
bonuses made using the variances). We can analyze the
strategy obtained using Equation 12 using Algorithm 3 to
obtain its averages in each category. Those averages can be
used to defines(c) in Equation 13 to obtain yet another
strategy. This process can be iterated until we reach a
fixed point or see sustained regression. The average total
scores obtained by the first few strategies in this sequence
are 225.40, 236.56, 232.27, 235.79. Of course, there is no
guarantee that a fixed point will be reached, or that even if
there is one, it maximizes the average total score over all
strategies based on Equation 13.

What we want to do is find the vector of real numbers
(s(1), s(2), . . . , s(Y)) that maximizes an objective function
(the average total score of the corresponding strategy). This
is an appropriate problem for evolutionary algorithms. Some
challenges to using evolutionary algorithms in this context
include 1) the objective function takes a long time to com-
pute exactly; and 2) estimating the objective function by
simulation is extremely noisy (the standard deviation of the
final score for the optimal strategy is 59.61). In addition, we
suspect that the objective function is highly multi-modal and
that maintaining diversity (or, in evolution strategy terms,
balancing exploitation and exploration) will be essentialand
difficult.

Arnold and Beyer find that evolution strategies are more
robust than other optimization algorithms in a simple envi-
ronment with high levels of noise [7], however, efficiency
still drops with increased noise. We need to run enough
simulations to reduce noise to a managable level, but how
far should we go? Fitzpatrick and Grefenstette suggest that
in noisy environments and given a fixed number of function
evaluations, it is better to have a larger population with fewer
evaluations than a smaller population with more evaluations
(and hence less noise) [8]. Beyer contradicts this. Jin and
Branke survey more answers to this question, along with
many other approaches to dealing with noise [9].

In our preliminary exploration of using evolutionary tech-
niques to optimizes, we have used a simple genetic al-
gorithm. Initial results suggest that, in our environment,
increasing the population at the expense of more noise in
the objective function is beneficial: nine test runs using a
population of size 64 and sample size of 400 yielded an
average best generation with a score of 238.52; using a
population size of 256 and a sample size of 100 yielded an
average of 241.51. This difference is statistically significant
with P = 0.008. Intermediate population sizes (with sample
sizes chosen to keep the total number of evaluations constant)
yielded slightly lower averages (between 240.5 and 241.25),
but the differences were not statistically significant. This
suggests that there is a benefit to higher population sizes
to some point; beyond that point there is little advantage.

The best strategy we have been able to evolve obtains an
average final score of 243.63, which is better than any of the
other strategies we have constructed manually based on this
technique, including the strategy that gets additional infor-
mation in the form of the variances (which was intended to
give that strategy a better chance of earning the upper bonus).
Further work will be done to optimize the parameters of our
genetic algorithm to examine more complicated genotypes.
For example, we could optimize the expected variances as
well to better predict the upper bonus. Doing that for the
manually created strategies yields a gain of over five points; if
a similar gain is realized for our genetic algorithm champion
then it will be very close to our best heuristic.

2) A Strategy Based on Simpler Games:For our final
heuristic, imagine a version of Yahtzee with no lower cate-
gories and another version with no upper categories. These
simple versions can be solved easily, and in fact the position
values are already saved in the database for the complete
game. Let U ⊆ U , 0 ≤ upper ≤ 63, L ⊆ L, and
extras ∈ {0, 1}. Then (U, upper) is an anchor position
in the former game and(L, extras) is an anchor in the
latter game. Now the maximum expected future scores for
those positions areX ′(U, upper) = X(U ∪L, upper, 0) and
X ′(L, extras) = X(L∪U , 0, extras) since we can view the
modified game that uses only the upper categories as a game
that starts on the position graph for the complete game at
the position where all of the lower categories are used and
no Yahtzee bonuses can be earned. The case for the simpler
game on only the lower categories is similar. We can then
estimate the value of a positionu = (U, upper, extras) in
the original game by

X̂(u) = X ′(U ∩ U , upper) + X ′(U ∩ L, extras)
= X(U ∪ L, upper, 0)

+X(U ∪ U , 0, extras). (14)

Note that we are only using26 · 64 + 26 · 3 = 4, 288 values
of X .

C. Statistics for Non-optimal Strategies

Knowing the average score for each category (obtained
from Algorithm 3) when following a given strategy allows
us to compute the average total score for that strategy. The

average scores for the strategies described above are given
in Table VII.

TABLE VII

STATISTICS FORNON-OPTIMAL STRATEGIES

Strategy Average Score

Yahtzee Bonus 170.45
Rule-Based (from genetic algorithm) 189.75
Rule-Based (Tab. V, VI) 218.18
Greedy 218.54
Category Means Heuristic (Eq. 12) 225.40
Category Means Heuristic (Eq. 13) 236.56
Category Means Heuristic with Variances 241.94
Category Means Heuristic (from GA) 243.63
Upper and Lower Heuristic (Eq. 14) 250.41
Optimal 254.59

IV. CONCLUSION AND FUTURE WORK

We have presented improvements to the retrograde analy-
sis of solitaire Yahtzee and techniques for analyzing strate-
gies for solitaire Yahtzee. These techniques allow us to 1)
determine the average score in each category and the variance
of those scores; and 2) determine, for anyn, the probability
that the strategy will scoren points. This gives us a method
to evaluate approximations to the optimal solution and also
allows us to compute strategies to win at an imperfect
information version of the two-player game. This work leads
to the following questions.

1) Can rule-based strategies be developed for solitaire
Yahtzee that challenge the best heuristics or even the
optimal strategy?

2) Can evolutionary techniques be used to futher improve
on the current heuristics?

3) Can evolutionary techniques be used to design com-
petitive strategies a human could follow?

4) Can heuristics be developed for the perfect information
two-player game?

REFERENCES

[1] J. Glenn, “An optimal strategy for yahtzee,” Loyola College in Mary-
land, Tech. Rep. CS-TR-0002, 2006.

[2] T. Verhoeff, “Solitaire yahtzee: Optimal player and proficiency test,”
http://svsoc1.win.tue.nl/ wstomv/misc/yahtzee/, 2001,visited October
30, 2006.

[3] F. Holderied, “Über das perfekte kniffel-spiel,”
http://holderied.de/kniffel/, 1999, visited October 30,2006.

[4] P. Woodward, “Yahtzee: The solution,”Chance, vol. 16, no. 1, pp. 18–
22, 2003.

[5] J. Glenn, H. Fang, and C. P. Kruskal, “A retrograde approximate
algorithm for one-player can’t stop,” in5th International Conference
on Computers and Games, 2006, (to appear).

[6] C. Cremers, “How best to beat high scores in yahtzee: A caching
structure for evaluating large recurrent functions,” Master’s thesis,
Eindhoven University of Technology, June 2002.

[7] D. Arnold and H.-G. Beyer, “A comparison of evolution strategies with
other direct search methods in the presense of noise,”Computational
Optimization and Applications, vol. 24, pp. 135–159, 2003.

[8] J. Fitzpatrick and J. Grefenstette, “Genetic algorithms in noisy environ-
ments,”Machine Learning, vol. 3, pp. 101–120, 1988.

[9] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environ-
ments – a survey,”IEEE Transactions on Evolutionary Computation,
vol. 9, no. 3, pp. 303–317, June 2005.

