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Abstract— Solitaire Yahtzee has been solved completely. How-
ever, the optimal strategy is not one a human could practicdy
use, and for computer play it requires either a very large

TABLE |
SCORINGRULES

database or significant CPU time. We present some refinements

Rule

to the techniques used to solve solitaire Yahtzee and give a _ C2t€gory
method for analyzing other solitaire strategies and give soe Aces
examples of this analysis for some non-optimal strategies, Deuces
including some produced by evolutionary algorithms. Treys
Keywords: computer games, retrograde analysis, evolu- Fours
tionary computation, non-deterministic games mves

Three of a Kind
I. INTRODUCTION

Solitaire Yahtzee has been studied extensively: around Four of a Kind
the same time, several groups independently computed the
optimal strategy for different versions of the game [1] [2]
[3]. In all cases, the optimal strategy was considered to be
the strategy that maximizes the expected score. Four years |arge straight
later, Woodward repeated the computations and published
the results [4]. We present some non-optimal strategies,
including some a human could easily follow, and a technique

Full House

Small Straight

Chance
Yahtzee

one point for every die showing one pip
two points for each two

three points for each three

four points for each four

five points for each five

six points for each six

the total on all the dice provided that three
show the same number; zero otherwise
the total on all the dice provided that four
show the same number; zero otherwise

25 points if three dice show one number and
two show another; zero otherwise

30 points for four dice showing consecutive
numbers; zero otherwise

40 points for five dice showing consecutive
numbers; zero otherwise

the total on all the dice

50 points if all five dice show the same
number; zero otherwise

for analyzing them. We also present some refinements to the
earlier work that significantly decrease the time requiked t

compute the optimal strategy; these refinements are used i
the analysis of non-optimal strategies as well.

II. OPTIMAL SOLITAIRE YAHTZEE

Yahtzee is a game played with five six-sided dice and
scoresheet listing 13 categories. On each turn, the plajler r
the dice, rerolls any subset of them zero, one, or two timé

rburing a game the player has many choices to make. For
example, having finished a turn with [5 5 6 6 6], a player
may choose to score the roll in (among other choi&isgs

léull House or Three of a Kind Having rolled [1 1 1 3 3]

at the beginning of a turn, the player has to choose whether
Q reroll no dice and take &ull House or risk losing the

(it does not have to be the same subset rerolled the secdﬁ%‘_l Houseto try for YahtzeeThe optimal strategy specifies

time), and then chooses a category in which to score the fin4

|1|ch choices will maximize the expected score.

roll. Each category has its own rules for scoring (see Tablg. Solitaire Yahtzee Position Graph

1), and each category may be used only once per game.
In addition to the rules in Table I, there are two pos
sibilities for bonus points. One is a 100 point bonus fo

‘events followed

Games like Yahtzee that are characterized by random

by player reponses to those random events

Ean be modelled as bipartite graphs in which one set of

the second and subsequent Yahtzees, provided that the flfshices represents states of the game in which a random

was scored as 50 points iahtzee The second is a 35
point bonus for achieving at least 63 points in the fir

event is about to happen, and the other set representsistates
hich the player has a choice to make [5]. The previous work

six _categories (corresponding to three.of each matcm'?ﬂdeed treats solitaire Yahtzee in this way. We quickly pres
die in each category). For this reason, it is useful to Sp'lhe technique used by Glenn [1], Holderied [3], Verhoeft [2]

the categories into the Upper Categories and the Lowel 4 Woodward
Categories.

[4] to compute the optimal strategy. Some

important differences in the work of the four will be noted

Definition 1: C, U, and £ are sets of Yahtzee categorie%n a subsequent section

as defined below:

1) C is the set of all
{1,2,3,4,5,6,3K,4K,FH,SS,LS,C,Y};
2) U is the set of upper categori€s, 2, 3,4,5,6}; and

3) L is the set of lower categorigs— U. G = (V1,Va,..

9

. It is useful to refine the graph further by grouping vertices
categories together according to where in a turn they occur in addition t
whether the next move is a random event or a player choice.
Solitaire Yahtzee can then be viewed as a 6-partite graph

Vs, E) whereE C (Vi x Va)U (Vo x V3) X



<o x (Vs x Vi) x (Vg x Vp). Vertices inV; are positions 462 possible values aR).

at the start of turns, vertices i, represent the outcome gome vertices within the same component may share the
of the initial roll, vertices inV5 represent the choices of same Jabel (for example, [1 2 4 4 5] may appear as the inital
which dice to keep, and so on. We need enough vertices g§)|, or after the first or second reroll); in the subsequent
that all of the information relevant to the optimal strateg\gections we will distinguish between them by explicitly
can be encoded in the vertices. The necessary informatigﬂmng which of the six vertex sets we are working in.
includes what categories have been used, but not what scoreg\e describe the edges within each component The edges
have been obtained in those categories. In other words#hin a component largely do not depend on the anchor
player who has scored 30 Bmall Straightand 40 inLarge  of the component. The edges leaving a component are
Straightshould play exactly the same way as a player whgependent on the anchor, and for them we must know the

has scored zero in those two categories. Both players playdgore that would be obtained by moving along that edge.
maximize theirfuture score without regard to what has been pefinition 2: For any positions: € Vs andv € V;

done in the past. There are two exceptions: the total in the

upper categories is relevant because of the upper bonus, an v, including any bonuses; and

whether the Yahtzee category has 0 or 50 is relevant becaus% S"(u v) denotes the scor,e earned by moving frem

of the 100-point bonus for extra Yahtzees (the Yahtzee Joker 0 v 7n0t including any bonuses

rule governing when a Yahtzee can be use&wasHouseor Within ' a single componentG ' (where v =

one of the straights does not affect the number of positions( ; the edges are aSufO”OWS'
Therefore, we view eachv € V; as a triple  Upper; ex_ ras)). 9 S

(U, upper, extras) € C x {0,...,63} x {0,1}, whereU is 1) .there is an edge from to each vertew in V3;

the set of categories that have been used at the corresgondinz) if v = (u, Ry) € V5 (0 V4) andwy = (u, ) € Vs

position, upper denotes the upper total (values greater than (re.spect|verV},) then(u, v) exists exactly whett, C

63 are equivalent to 63 since then the bonus has already been _Rl'

eamed), andztras is a flag that indicates whether the player ©) If v1 = (u, fi1) € Vs (or Vs) andwy = (u, Ry) € V4

earns the 100-point bonus for extra Yahtzees. There are then ~ ('€SPECtVelys) then (u, v) exists exactly whett; ©

213.64-2-2 = 786, 432 total positions irl; (taking advantage Ry; and , . , .

of the fact that we cannot havertras — 1 if the Yahtzee 4 if v = (u,R) € Vs andu’ = (U, upper, extras ) €

category has not been used), of which at most 314,880 are V1, then (u,v) € E if e/md ohly ifU’ - U/: {c} for

needed once reachability issues and equivalence have been some category, upper o min(upper + 5 (u.’v)’63)

taken into consideration (for example, it is impossiblettha ' € €u and upper’ = upper otherwise, and

upper > 5 if Acesis the only upper category used, and extras’ = 1 if and only if eitherextras = 1 or both

any position(U, upper, extras) in which it is impossible to ¢=Y andS(u,v) > 0.

obtain the bonus is equivalent (&, 0, extras)). Note that the structure of one component is the same as the
Verticesu € V — Vi represent positions in the middle of aStructure of any other, except for the edges of the last type,

turn. For suchu there is a unique articulation pointe ¥;  Which go to the anchors of other components according to

such that any path from the initial positiondogoes through What categories are unusediinand what bonuses are earned

v. We call all of the positions with a common articulation?hen moving along those edges. We will call one component

point acomponenand denote a component 6y, whereu ~ Gu @ neighborof another componerd, if there is an edge

i the position in the component that it (that is, it is the  10M G 10 G This term can also be applied to anchors: the

position of the start of a turn). We refer toas theanchor N€ighbors of an anchar are the anchors of the neighbors

of the component. For convenience, we refer to non-anchd?§ theé componeng.,.

by listing the anchor and the state of the dice. All of the Each component has 1,681 positions and up to 20,880
vertices in the graph are thentuples. edges. There are 529,313,280 positions total in the 314,880

) ) reachable components. Because the graph is acyclic (since

1) A vertexu € Vi is (U, upper, extras) as described once a category is used the score there can never be erased),

above. B we can compute the corresponding position values using
2) Avertexv € VUV, UV; represents a position after theeirograde analysis: start by computing the position \&lue

dice have been rolled and will be writtgn, R) where o the terminal positions, and then work backwards in order

u is the anchor such thate G, and i (the roll) is @ f reverse topological sort to the initial position of themga

5-element multiset with elements frofd, 2,3,4,5,6}  pefinition 3: X (u) denotes th@osition valueof u, which

representing the outcome of rolling five 6-sided dicgg the expected future score @t

(note there are 252 such outcomes). The terminal positions of the game are those positiors

3) A vertexv € V3 U V5 represents a position after ;e cxtras) wherelU = C. X (u) = 0 for any terminal
the player has selected which dice to keep and W'ﬁositionu. For any non-terminal position € V; U V3 U Vs,
be written (u, R) where u is again the anchor and

R is now a k-element multiset with elements from X(u) = Z Pron(u,v) X (v) (1)
{1,2,3,4,5,6} for some0 < k < 5 (note there are (u,0)EE

&) S(u,v) denotes the score earned by moving fraro



whereP,,;(u, v) is the probability thav is the next position All edges (vi,v2) € (V53 x Vi) U (V5 x Vi) are removed,
given that the current position is (that is, the probability of except for those where; = (u, R) and| R |= 5 (that is,
the roll that moves the game fromto v). For any position only positions where there are no more dice to roll have
inueVaUVy, edges to the next set of vertices).

Each of the positions representing the choice of keeping 4

X(u) = (ﬂ?gEX(U)‘ @ or fewer dice now have only 6 outgoing edges; before they
had 252, 126, 56, 21, or 6 depending on how many dice
were kept. The positions where 5 dice have been kept have
X(u) = max S(u,v)+ X(v). (3) 1 outgoing edge each. There are then only 15,228 edges in
(uv)eB each component.

The maximum expected future score of the initial position The first refinement took advantage of a situation particular
is the maximum expected score of the game. The entite Yahtzee where a move could be broken down into smaller
computation can be done in well under an hour on cumoves. The second refinement has the potential to be used
rent commodity desktop computerX.(s) is approximately in a wider variety of circumstances.

254.59 for the initial positions; someone following the  Suppose there is a set of positiarisc V3 (or V5) such that

optimal strategy would expect to score 254.59 points. for every vertexv; € V, (respectivelyVy), there is a vertex
) - vy € C such that(vq,v2) € E (so C in some sense covers

B. Refinements of the Position Graph V3). Let k — mingeo X (v). Suppose further thab < V;

We now present two refinements that speed up the compyz) js such that¥ (w) < k. Thenw need not be considered
tation of the optimal solitaire strategy by reducing the bem 55 5 destination vertex in Equation 2. If there is a collectio

Finally, for anyu = ((U, upper, extras), R) € Vg,

of edges examined per component by approximately a factgy coversCy, ....C,, then we let
of two. Since each edge is traversed once in the computations Y .
of X(u) using formulas 1, 2, and 3, and evaluating these k = max min X (v) 4)

i 1<i<nveC;
formulas represents almost all of the work the algorithm

must perform, the time to compute the optimal strategy jand the same cutoff condition applies. In terms of Yahtzee,

proportional to the number of edges examined in the positidﬁ we can find a set of keep positions that we can choose

graph. Therefore, halving the number of edges reduces tj8 Matter what we roll, then we needn't consider any of
running time by a factor of two. One of the refinementd® iNcoming edges to keep positions that are worse than

is particular to Yahtzee: the other could be generalized f5€ Worst of that set. For example, we can always choose to
similar games. reroll all fl\_/e dice. If anothe_r choice of dice to keep is worse
Woodward did not make use of the fact that, in eacinan keeping none of the dice, we do not have to consider it.
component, it does not matter how one arrives at the secoff Modify the standard retrograde approach to computing
roll [4]: he treats the positions after the sequences of movd€ Position values within each component.
(Roll [1 2 3 3 5], Keep [3 3], Roll [3 3 3 3 6]) and (Roll - - —
[33 35 6], Keep [3 3 3], Roll [3 3 3 3 6]) as different Algorithm 1 ComputingX (v) within a component,,
positions, even though the optimal strategy does not depeRgduire: G, is a component in a Yahtzee position graph
on how the roll [3 3 3 3 6] was obtained. As a result, it took (V1,-..Ve, E), X(v) is known for all anchors) neigh-
him “many computing days” to compute the optimal strategy. Poring G, Ci,...,Cy is a collection of covers.
The others working on the problem used the structure of tfensure: Program terminates with Equations (1) satisfied for
components given in section II-A. Even this, however, is not .
ideal. Yo € Gy, X(v) <0 > Initialization
Consider the components as defined in Section 1I-A. The Yv € G N Vs, computeX (v) according to Equation 3
positions representing keeping [3 3] and [3 3 3] after the Vv € G.NV5, inreverse order of topological sort, compute
first roll both have edges to [3 3 3 3 6]. In faety position X (v) according to Equation 1
reachable from [3 3 3] is reachable from [3 3]. In general, Computek according to Equation 4
if v1 = (u,R1),v2 = (u,Ry) € V3 (or Vs) and Ry C Ry Run Algorithm 2 onG,, N V5 using cutoffk.
then whenevetv,, w) € E then also(vy, w) € E. We wish Yv € G,NVs, in reverse order of topological sort, compute
to capture this fact in the position graph in order to reduce X (v) according to Equation 1
the number of edges. Computek according to Equation 4
Instead of viewing the next move from [3 3] as rolling the Run Algorithm 2 onG,, N V3 using cutoffk.
three dice that were not kept all at once, we view the next Vv € G N Vi, computeX (v) according to Equation 1.
threemoves as rollingpne of the dice in turn. Then keeping
[3 3] and rolling a 3 as the next move results in exactly the In order to keep the cutoff high, it is desirable to choose
same position as keeping [3 3 3] in the first place. We hawovers that contain good choices of which dice to keep. The
thus redefined the outgoing edges from positioniginVs as  covers should also be small, since all edges coming into a
follows: if v; = (u, R1) € V5 (or V5) andvs = (u, R2) € V3 cover must be examined. We use Algorithm 1 with the set
(respectivelyVs) then (vi,v2) € E if and only if Ry C Ro.  of covers given in Table Il, and can eliminate an average of




Algorithm 2 ComputingX (v) for G, N (Vo U V). TABLE I
- - - — CATEGORY STATISTICS FOR THEOPTIMAL STRATEGY
Require: G, is a component in a Yahtzee position graph
V,...Vs,E), L=G,NVzorL =G, NVs5, X(v) is

known forallv € L, C4,...,C, is a collection of covers, Category  3(c) a2(c)
andk is a cutoff as gomputeq by Equ_at|on 4, o Aces 18813 1.4786
Ensure: Program terminates with Equations (2) satisfied for Deuces 5.2825 3.9916
all positionsw that L neighbors. Treys 8.5693 7.3641
Fours 12.1583  10.8039
for _all veLdo Fives 15.6874  14.8300
if X(v)>korveCiU---UC, then Sixes 10.1889  21.5585
for all (w,v) € F do Three of a Kind 21.6614  31.5904
Four of a Kind 13.0977 122.6289
X (w) — max(X(w), X (v)) Full House 22.5918  54.4056
end for Small Straight 29.4612  15.8734
end if Large Straight 32.7113  238.4223
end for Chance 22.0091 6.4477

Yahtzee 16.8683 558.8751
Upper Bonus 23.8413  266.0375
Yahtzee Bonus  9.5801

3,762 edges per component, which is approximately 43% of
the edges coming intd3 U V;. After both refinements, we

examine, on average, 11,466 edges per component, 55% oﬁ
the original 20,880. roll or second roIIs,_and Wh_at category to use at the end of a
turn. We must require that if(u) = v then(u,v) € E (that
TABLE I is, the strategy must always choose a move that is legal).
KEEPS THATCOVER ALL ROLLS Denote byP,;s;:(u) and P, (u, v) the probability that

an anchor is visited and an edge is traversed (respectively)
when following the optimal strategy. The values@fcan be

G 0 computed by forward inductior?,;s;:(s) = 1 for the initial
Cs 11 22 [33] positions, and for(u,v) € (Vi x Va)U (Vs x Vi) U(Vs x Vs),
[4 4] (5] (6]
Pm'sit (u, 1)) - Pvisit (U)Proll (u, 1)). (5)
Cs [11] 221 383
[4 4] 55 [66] For any other edgéu, v),
23 6
[123] [456] P - Pyisit(u), if o(u) = v, ©)
visit (U, V) = 0, otherwise.
C. Statistics for the Optimal Strategy For any anchor other than the initial position,
It seems unlikely that we can extract enough pithy infor- Pyisit(u) = Z Pyisit(v,u). (7
mation from the final database of position values so that a hu- (v,u)EE

man could follow the optimal strategy without having access What we are most interested

he datab " ist f . in are the values of
to the database. However, opportunities exist for using trﬁ;isit(u,v) for u € Vg from these values we can obtain
optimal strategy to coach human players. One such coachigg, probability of scoring: points in category;, which we

method beyond the obvious (simply show the human ﬂ‘\ﬁill denote P;..-c(c,n): let ¢ € C be a category and denote

optimal move at each position and let the human try the set of edges iy x Vi that use category by E(c)

extract patterns) would be to examine the player's averagéﬁ:]at is, E(c) is the set of edges that can be written as

score in each category and compare that average to tla?g]’ upper, extras, R), (U U {¢}, upper’, extras’))). Then
obtained when following the optimal strategy. This way the

human player will know which categories he is overvaluing Pscore(c,n) = Z Pyisit(u,v) (8)
(those where his average exceeds the optimal strategyds) an (uw)EE(c)
which he is undervaluing. This style of coaching requires us §'(uv)=n

to know the relevant statistics for the optimal strategye ThAIl of these quantities can be computed in one pass through
relevant values can be estimated by simulation, but because position graph using Algorithm 3. The algorithm will
the variances are so high (see Table Ill) it would requirevork for any other deterministic solitaire Yahtzee strateg
many runs to estimate them with any precision. We nowy replacingo with the appropriate function. We can easily
present a way to obtain these statistics exactly for thev@ti modify the algorithm so it also computes the probability of
strategy. These statistics form the basis of some of the nogarning the upper bonus (by treating it as a separate cgjegor

optimal strategies presented in Section III. and the expected number of Yahtzee bonuses (by summing
The optimal strategy, or any other solitaire Yahtzee stral,;,;; (u, v) for all moves(u, v) that earn a Yahtzee bonus).
egy, can be viewed as a function: V, UV, U Vg — oncePscore(c, n) is computed for alt andn it is trivial to

V3UV;5 UV, that determines which dice to keep after the firscompute the meas(c) and variance?(c) for each category



Algorithm 3 Computing Pscore(c, 1) categories in excess of 63). This representation was chosen
Require: G = (V1,... Vs, E) is a Yahtzee position graph, for compactness of binary representation — the number of

f is a Yahtzee strategy. possible values for each component is close to a power of
Ensure: Program terminates with Equations (7) and (8)wo; it takes 30 bits total to store them all. There are about

satisfied. 123 million reachable states.

Ve e C,0<n <50, Pseore(c,n) «— 0 > Initialization Data for the optimal strategy are presented in Table IV.

Yu € Vq, Pm-sit(u) — 0.

P,isit(s) < 1 for the initial positions. TABLE IV

for all w € V; in order of topological sorto DISTRIBUTION OF SCORES FOR THEOPTIMAL STRATEGY

Yv € Gy — {u}, Pyisit(u) < 0
for all v € G,, — {u} in order of topological sortlo

; . . . n P(score > n)
if veV1UVsUV5then v is rolling the dice
for all (v,w) € E do 50 1—6.661782-10~'2
! 100 0.999998
P Prou(v,w) - Pyisit(v) 150 0.991230
Pyisit(w) < Pyisit(w) +p 200 0.863584
end for 250 0.483683
else ifv € V3, UV, then » choosing dice to keep 288 8:3;3%2?
Pyisit (f(0) = Puisit(f(v)) + Puisit(v) 500 0.007192
else > v is choosing a category 750 5.11603 - 10~
write v — (U tras, R) 1000 5.57508 - 10~9
ev= (U, upper, extras, 1250 6.49213 - 1013
write f(v) = (U’, upper’, extras’) 1500 3.93308 - 1019
¢+ U’ — U b the strategy chooses categary
n—S'(v, f(v))
Pscore(e,n) « Pscore(c,n) + Pyisit (V) This information can be used to compute a strategy that
end if beats the optimal solitaire strategy at an imperfect inform
end for tion version of two-player Yahtzee in which two players play
end for a game simultaneously without knowing what the other is

doing. In this version of the two-player game, the players

reveal their scoresheets only once both have finished; the
c. Similar computations can be done for the statistics of thglayer with the higher score is the winner.
upper bonus. For the Yahtzee bonus we can compute only theTo compute a strategy to beat a given solitaire strategy
mean; we cannot easily compute the probability of earningt this version of the two-player game, we use the same
n points for the Yahtzee bonus because those points wikfinition of a game position as was used to compute
have been earned while traversing several different edgese score distribution, and for each position compute the
The values ofs(c) and o2(c) are given in Table Il and probability of beating the optimal solitaire strategy fronat
agree with those computed by numerical approximation byosition. For a terminal position with total scoretotal (u),

Verhoeff [2]. the expected proportion of wins is
D. Score Distribution for the Optimal Strategy Xuin(u) = Z Piotar,f(n). (10)
We can also compute, for each possible segrthe prob- n<total(u) '

ability P;,:.:(n) that the optimal strategy scorespoints: ) o ] ]
We work backwards in a manner similar to that described in

Piotar(n) = Z Pyisit(u) (9) Section Il to compute the proability of winning from the non-
u€T terminal positions. The only computation that has to change
total(u)=n is that for choosing a category: replace Equation 3 with
whereT is the set of terminal positions amdtal(u) denotes
the total score obtained at positianHowever, the positions Xuwin(u) = (nax Xuwin(v) (11)
as given earlier in this section do not encode enough infor- ’
mation to obtaintotal(u). To compute the desired values,(the term involving the score has been removed; the score is
we must rethink what our positions are and ensure that theypw encoded in the positions, so the expected win frequency
encapsulate enough information to recover the total score X, (v) already takes the score into accout),;,(s) for
In the new formulation, an anchor position is a 4-tupléhe initial positions then gives the optimal proportion of wins
(y, U, upper,lower) € {null,0,50,150,...1250} x (C — against strategy’. This technique is similar to that used to
{Y} x {0,...,63} x {0,...,227}). y represents the state determine how to maximize the chance of beating a given
of the Yahtzee category and associated bonusds,the set score [6].
of used categories (excluding Yahtzeepper is the upper When playing against the optimal solitaire strategy,
total, andower is the lower total (plus any score in the upperX,,;,(s) is about 0.503.



IIl. OTHER SOLITAIRE STRATEGIES

The techniques of Section II-C can be applied to non-

TABLE V
SAMPLE RULES FORKEEPINGDICE

optimal strategies as well. This can aid us in developing and
evaluating approximations to the optimal solitaire stsite

Rule

This can be useful for four reasons: 1) we can explore
strategies that a human might be able to easily follow; 2)
we can develop a sequence of increasingly good strategies
in order to match human players of different abilities again
appropriately able computer strategies; 3) we can examine
strategies that do not require as much storage space or time
to use in simulations (for the optimal strategy, one can keep
the entire database of over half a billion position values, o
one can keep just the primary 314,880 and take the time to
recompute the others as needed); and 4) we hope to apply
what we learn designing strategies for solitaire Yahtzee to
the two-player perfect information version of the gameqit i
not likely to be feasible to compute the optimal strategy for

Yahtzeef Y is unused or Yahtzee Joker is applicable

Large Straightif LS or SS is unused

Small straightif SS is unused or both LS and C are unused
a tripleton if the corresponding upper category is unused
any tripleton if one of 3K, 4K, FH, or C is unused

a doubleton (high preferred) if the corresponding upper
category is unused

[2 3 4] or [3 4 5] if SS unused or both LS and C are unused
any doubleton if 3K or C is unused

any tripleton (high preferred) i¥ahtzees unused or non-zero
a singleton (low preferred) if the corresponding upper gartg
is unused, unless more than four upper categories are unused
any doubleton (high preferred)

a singleton 4, 5, or 6 (high preferred) if 3K, 4K, or C unused
nothing

the two-player game exactly because of the immense size of
the position graph). The following sections explore some of
these kinds of strategies.

A. Human Strategies

The first two strategies we describe are strategies that a
human player could easily follow. The first is intended to
reflect how a novice player might play: it sacrifices almost
everything in order to obtain Yahtzee bonuses. To this @nd, i
keeps whichever dice it has the most of, regardless of whethe
the corresponding upper category is open, and regardless of
whether it is close to (or has) a straight or full house. When
choosing a category to play a roll in, it seeks to maximize
the score on that turn, with ties broken in favor of categorie
that are hard to get (for example, it will put a non-zero score
in Four Of A KindbeforeChancg. When it cannot obtain a
non-zero score in any category, it will zero the hard-to-get
categories first, except that it savéashtzeeuntil the end.

The second human-playable strategy is based on sets of

TABLE VI
SAMPLE RULES FORSCORINGROLLS

Rule

Yahtzee

Large Straight

Small Straight

a tripleton in an upper category if it earns the bonus
four 5’s or four 6’s in the upper category

Four of a Kind

three 5's or three 6's in the upper category

Full House

Three of a Kindif the total is at least 22

a tripleton in an upper category

Three of a Kind

Chanceif the total is at least 22

doubletons in an upper category (lower preferred)

rules that govern which dice to keep and what categories thused as well). For the list of rules governing which dice
choose; the first rule that applies is followed. Table V givet keep, the score of a roll for some of the lower categories
the rules for deciding which dice to keep. The first rule thagan be defined according to how close the roll is to fitting
matches is followed. Table VI determines which category téhat category. For example, [2 2 3 4 4] could be considered
score a roll in; it is implicit that a rule does not match ifworth 10 points toward$-ull Houseat the beginning of a
the corresponding score would be zero. As for the keeps, th#n. Such parameters are currently considered part of the
first rule that matches takes precedence. If no rule match@gvironment; they are not encoded in the population and are
the categories are examined in the order (1, C, 2, Y, 4K, L$0t evolvable.

SS, 3, FH, 4, 3K, 5, 6); the first unused category is chosen. At a positionv € V2UVy, the list of keep rules is consulted.

A genetic algorithm can be devised to evolve strategieBhe first matching rule is followed, and the dice are kept in
based on rules like those in Tables V and VI. In this setupn effort to make a good score in the category of that rule.
a strategy is viewed as three lists: one list of rules that d&or example, if the category in the matched ruleFsur
termine which dice to keep; one list of rules that determinegf a Kind, then the strategy keeps the dice is has the most
what category to score a roll in; and one permutation o¥f. For Small Straightt would keep the longest consecutive
the 13 categories that is used when no rule in the secoséquence. If no rule matches, all five dice are rerolled.
list matches. The rules on the first two lists are of the At positionsv € Vg, the list of scoring rules is consulted.
form (c, score,0) € C x {0,...,...50} x P(C). A rule The first rule that matches is followed by choosing the
(¢, score, O) matches a position = (U, upper, extras, R)  corresponding category. If no rule matches, the third Bst i
if ¢ ¢ U (cis unused),R would earn more thamcore consulted, and the first category on that list that has nat bee
points in¢c, andO N U = ( (all of the categories i) are used is selected.



The initial population of strategies contains zero or oneegard for the score in subsequent turns. We therefore call
randomly generated rule on the keep list, and has on tligis strategy thgreedy strategy
scoring list a rule for each category that expresses “seore i 1) Using the Expected Scores in Unused Categories:
this category if the score would be non-zero”; these ruleBetter strategies can be obtained by using better hewristic
are randomly permuted. The permuation of categories on the estimate the value that would be in the optimal partial
third list is also randomly generated. Crossover is pertatm database. One heuristic uses the statistics given in 8d¢tio
individually on the three lists. For the first two, the listsC. The expected future score for an anchor position-
from the parents are shuffled together and half of the rul€®/, upper, extras) is estimated to be
are removed from the result. For the third list, the positién .
each category is randomly chosen to be the same as in one of X(u) = Z 5(c); (12)
the parents. When there is a conflict, the category from the ceC-U
first parent is listed first. Any holes in the list are then elbs adjustments can be made to estimate the probability of
up. Mutation is performed by either randomly swapping tw@arning any bonuses. Those adjustments can be made more
items on one of the lists, or randomly changing, deleting, Giccurately if the variances for each category are used ds wel
adding an item on the first two lists. It should be noted that we can replace the averagesn

The best strategy evolved using this scheme does not dach category in Equation 12 widny functions : C — R
as well as the list-based strategy descirbed above. Thistis get

perhaps_ not surprising considering the rules u_sed are not X(u) _ Z s(c) (13)
expressive enough to encode all of the rules in Table V.
Two encouraging things can be reported, however. First, the = _ ) )
third list, which essentially determines the order in whic{for simplicity we will now ignore the adjustments for

categories are used when no good score can be made ofioguses made using the variances). We can analyze the
turn, evolves well. In one run, nearly all of the populatiorstat€gy obtained using Equation 12 using Algorithm 3 to

hadOnesfirst, with Chanceand Yahtzeaot far behind. This ©Ptain its averages in each category. Those averages can be

is similar to the optimal strategy’s behavior [2]. Secoritg t US€d to defines(c) in Equation 13 to obtain yet another
second list (governing scoring) shows signs of evolving weptrategy. This process can be iterated until we reach a

too. The population learns the most obvious rules, such 4%€d Point or see sustained regression. The average total
“score inYahtzef doing so earns 50 points”; it is the more scores obtained by the first few strategies in this sequence
subtle rules that seem to be eluding us. are 225.40, 236.56, 232.27, 235.79. Of course, there is no

guarantee that a fixed point will be reached, or that even if
B. Strategies Based on Estimates of Position Values there is one, it maximizes the average total score over all

As noted at the beginning of this section, when simulatingtrategies based on Equation 13.
an optimal solitaire player, we need only have access to What we want to do is find the vector of real numbers
the position values of the anchors; all of the other positiofs(1), s(2),...,s(Y)) that maximizes an objective function
values can be recomputed as necessary using the valuegtla¢ average total score of the corresponding strategy$. Th
the anchors. This is a compromise between CPU time arglan appropriate problem for evolutionary algorithms. 8om
storage space. If we keep all of the position values theghallenges to using evolutionary algorithms in this cohtex
looking up what the optimal strategy says to do is easypclude 1) the objective function takes a long time to com-
but our database must hold half a billion position valuepute exactly; and 2) estimating the objective function by
(several gigabytes if the position values are stored in §mulation is extremely noisy (the standard deviation @ th
bytes each). On the other hand, if we keep none of tHal score for the optimal strategy is 59.61). In additior, w
values we must recompute everything every time we want guspect that the objective function is highly multi-modadia
query the strategy. By keeping the partial database (Sevethat maintaining diversity (or, in evolution strategy texm
megabytes), we need only recompute the position values foalancing exploitation and exploration) will be essentiati
the components that are visited in the course of a game. difficult.

We can think of the database of position values for anchor Arnold and Beyer find that evolution strategies are more
positions as a functionX : V; — R. We can perform robust than other optimization algorithms in a simple envi-
the calculations of Equations 1-3 usidy instead ofX. If  ronment with high levels of noise [7], however, efficiency
X (u) = X (u) for all anchorsu, we get the optimal strategy. still drops with increased noise. We need to run enough
Using differentX functions will yield different strategies. simulations to reduce noise to a managable level, but how
The point of using a different{ is that we can devise far should we go? Fitzpatrick and Grefenstette suggest that
them so they use very little storage. This could be useful im noisy environments and given a fixed number of function
applications where storage space is extremely limitedh suevaluations, it is better to have a larger population witheie
as handheld devices. evaluations than a smaller population with more evaluation

The simplest partial databasé would beX(u) =0 for (and hence less noise) [8]. Beyer contradicts this. Jin and
all anchorsu. The corresponding strategy would then work tdBranke survey more answers to this question, along with
maximize the number of points earned on each turn withombany other approaches to dealing with noise [9].

ceC-U



In our preliminary exploration of using evolutionary tech-average scores for the strategies described above are given
niques to optimizes, we have used a simple genetic al-in Table VII.
gorithm. Initial results suggest that, in our environment,
increasing the population at the expense of more noise in
the objective function is beneficial: nine test runs using a
population of size 64 and sample size of 400 vyielded an

TABLE VI
STATISTICS FORNON-OPTIMAL STRATEGIES

average best generation with a score of 238.52; using a Strategy Average Score
. . . . Yahtzee Bonus 170.45
population size of 256 and a sample size of 100 yielded an Rule-Based (from genetic algorithm) 189.75
average of 241.51. This difference is statistically siguifit Rule-Based (Tab. V, VI) 218.18
; _ i ; ; i Greed 218.54
vynh P = 0.008. Intermediate population sizes (Wlth sample Categgry Means Heuristic (Eq. 12) 925 40
sizes chosen to keep the total number of evaluations cdjstan Category Means Heuristic (Eq. 13) 236.56
yielded slightly lower averages (between 240.5 and 241.25) Category Means Heuristic with Variances 241.94
but the differences were not statistically significant. sThi Category Means Heuristic (from GA) 243.63
. . . . . Upper and Lower Heuristic (Eq. 14) 250.41
suggests that there is a benefit to higher population sizes Optimal 254.59

to some point; beyond that point there is little advantage.
The best strategy we have been able to evolve obtains an
average final score of 243.63, which is better than any of the
other strategies we have constructed manually based on this
technique, including the strategy that gets additionabrinf ~ We have presented improvements to the retrograde analy-
mation in the form of the variances (which was intended tsis of solitaire Yahtzee and techniques for analyzing etrat
give that strategy a better chance of earning the upper bonugies for solitaire Yahtzee. These techniques allow us to 1)
Further work will be done to optimize the parameters of oudletermine the average score in each category and the varianc
genetic algorithm to examine more complicated genotypesf those scores; and 2) determine, for anythe probability
For example, we could optimize the expected variances #zat the strategy will score points. This gives us a method
well to better predict the upper bonus. Doing that for théo evaluate approximations to the optimal solution and also
manually created strategies yields a gain of over five ppiints allows us to compute strategies to win at an imperfect
a similar gain is realized for our genetic algorithm champioinformation version of the two-player game. This work leads

IV. CONCLUSION AND FUTURE WORK

then it will be very close to our best heuristic. to the following questions.
2) A Strategy Based on Simpler GameSor our final 1) Can rule-based strategies be developed for solitaire
heuristic, imagine a version of Yahtzee with no lower cate-  Yahtzee that challenge the best heuristics or even the

gories and another version with no upper categories. These optimal strategy?

simple versions can be solved easily, and in fact the positio 2) Can evolutionary techniques be used to futher improve
values are already saved in the database for the complete on the current heuristics?

game. LetU C U, 0 < wpper < 63, L C L, and 3) Can evolutionary techniques be used to design com-
extras € {0,1}. Then (U,upper) is an anchor position petitive strategies a human could follow?

in the former game andL,extras) is an anchor in the  4) Can heuristics be developed for the perfect information
latter game. Now the maximum expected future scores for  two-player game?

those positions ar&’ (U, upper) = X (U U L, upper, 0) and
X'(L, extras) = X (LUU, 0, extras) since we can view the
modified game that uses only the upper categories as a gaifieJ. Glenn, “An optimal strategy for yahtzee,” Loyola Gage in Mary-
that Sta.r t.s on the position graph for the C(.)mplete gameﬁ 'Ilén\(je’zr-{]%g#, |3SegI.itgii;-r;/:{zs\-r?tgziz’: z(g)r())t?rﬁal player and ficeency test,”
the position where all of the lower categories are used and hitp://svsocl.win.tue.ni/ wstomv/misclyahtzee/, 200iited October
no Yahtzee bonuses can be earned. The case for the simpler30, 2006.

; ; Coni ] F. Holderied, ‘Uber das perfekte kniffel-spiel,”
game on only the lower categories is similar. We can theld http://holderied.de/kniffel/, 1999, visited October ZWOG.

estimate the value of a positian = (U, upper, extras) in 4] p. Woodward, “Yahtzee: The solutionChance vol. 16, no. 1, pp. 18—
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