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Abstract— Algorithm UCBL1 for multi-armed bandit problem and rewards, in order to maximize the total reward [5]. The
has already been extended to Algorithm UCT which works UCB1 algorithm proposed by Auer et al. in the multi-armed
for minimax tree search. We have developed a Monte-Carlo 1,5t framework [6] was recently extended to tree-stexiu

program, MoGo, which is the first computer Go program using . .
UCT. We explain our modification of UCT for Go application ~ S€&rch space by Kocsis et al. (algorithm UCT) [7].

and also the sequence-like random simulation with patterns ~ Th€ main contributions of the player we present (named
which has improved significantly the performance of MoGo. MoGo) are: (i) modification of UCT algorithm for Go, (ii)

UCT combined with pruning techniques for large Go board is  original use of sequence-like simulations in Monte-Carlo
discussed, as well as parallelization of UCT. MoGo is now a gy ajuation function. Several algorithmic (dynamic treeist
top-level Computer-Go program on 9 x 9 Go board. . ture [8], parallelized implementation) or heuristic (siep
Keywords: Computer Go, Monte-Carlo Go, multi-armed e . :
bandit, UCT, sequence-like simulatiohx 3 patterns pruning heuristics) issues were also ta.ckled. MoGo has
reached a comparatively good Go level: MoGo has been
|. INTRODUCTION ranked as the first Go program out of 142 %r 9 Computer
The history of Go stretches back some 4000 years arfgo Server (CGOY since August 2006; and it won all the
the game still enjoys a great popularity all over the worldtournaments (9x9 and 13x13) on the international Kiseido
Although its rules are simple (see http://www.gobase.org f Go Servet on October and November 2006.
a comprehensive introduction), its complexity has deféate This paper is organized as follows. Section Il briefly in-
the many attempts done to build a good Computer-Go play&noduces related work, assuming the reader’s familiariih w
since the late 70’s [1]. Presently, the best Computer-Gg-plathe basics of Go. Section Il describes MoGo, focussing on
ers are at the level of weak amateurs; Go is now consideredr contributions: the implementation of UCT in large sized
one of the most difficult challenges for Al, replacing Chessearch spaces, and the use of prior, pattern-based, krgsvled
in this role. to bias the Monte-Carlo evaluation. Experiment results are
Go differs from Chess in many respects. First of allreported and discussed in Section IV. The paper concludes
the size and branching factor of the tree are significantlwith some knowledge and computer-intensive perspectives
larger. Typically the Go board ranges fradnx 9 to 19 x 19  for improving MoGo.
(against8 x 8 for the Chess board); the number of potential
moves is a few hundred against a few dozen for Chess. Il. PREVIOUSRELATED WORK
Secondly, no efficient evaluation function approximatihng t ~ Our approach is based on the Monte-Carlo Go and multi-
minimax value of a position is available. For these reasong/med bandit problems, which we present respectively in
the powerful alpha-beta search used by Computer-Che8gction II-A and II-B. UCT, which applies multi-armed
p|ayer5 (See [2]) failed to provide good enough Go Stramgiebandit techniques to minimax tree search, is presented in
Recent progress has been done regarding the evaluat®@ction 1I-C. We suppose minimax tree and alpha-beta search
of Go positions, based on Monte-Carlo approaches [3] (mof& well known for the reader.
on_th?s in sect?o.n ). However, this evalu.atior) proceduss h. A. Monte-Carlo Go
a limited precision; playing the move with highest score in i .
each position does not end up in winning the game. Rather, itMonte-Carlo Go, first appeared in 1993 [3], has attracted
allows one to restrict the number of relevant candidate mov&0ré and more attention in the last years. Monte-Carlo Go
in each step. Still, the size of the (discrete) search spaf@S Peen surprisingly efficient, especially on< 9 game;
makes it hardly tractable to use some standard ReinforceménfazyStone, developed byeRi Coulom [8], a program
Learning approach [4], to enforce the explorativarsus USiNg stochastic simulations with very little knowledge of
exploitation (EVE) search strategy required for a good G&©: i the best knowh
player. . L. Ihtt p://cgos. boar dspace. net/
Another EVE setting originated from Game Theory, the 2pttp: // www weddsl i st. cont kgs/ past /i ndex. ht ni
multi-armed bandit problem, is thus considered in this pape 3CrazyStone won the gold medal for tllex 9 Go game during the
The multi-armed bandid problem models the gambler, chooglth Computer Olympiad at Turin 2006, beating several stromgrams

. . . _Including GnuGo, Aya and Golntellect.
ing the next machine to play based on her past selections g v



Two principle methods in Monte-Carlo Go are also usedhachine is played exponentially more often than any other
in our program. First we evaluate Go board situations bgnachine uniformly when the rewards are[ih 1]. Note
simulating random games until the end of game, where s
the score could be calculated easily and precisely. Second X;s= EZXM . Xi=Xin(m) s
we combine the Monte-Carlo evaluation with minimax tree ' et ’

Zf:gr?:r.nYVe use the tree structure of CrazyStone [8] in W an we have: o |

Remark 1:We speak of a tree, in fact what we have is Algo_r!th_m 1 Deterministic pOIIC¥' UCB1
often an oriented graph. However, the terminology "tree” is * INitialization: Play each machine once.
widely used. As to the Graph History Interaction Problem + Loop: Play machinej that maximizesX; + |/ %5,
(GHI) explained in [9], we ignore this problem considering  Wheren is the overall number of plays done so far.
it not very serious, especially compared to other diffi@dti ~ One formula with better experimental results is suggested

in Computer-Go. in [6]. Let
i 1< _ [2logn
B. Bandit Problem o - . - Vi(s) = [+ ZX?'Y _ st n ogn
A K-armed bandit, is a simple machine learning problem s ’ s

armed bandit) but with more than one arm. When playe € an estimated upper bound on the variance of machine

. PP hen we have a new value to maximize:
each arm provides a reward drawn from a distribution as-

sociated to that specific arm. The objective of the gambler _ logn
is to maximize the collected reward sum through iterative i T;(n)
. . . J
plays'. Itis classically assumed that the gambler has no initial _ _ o
knowledge about the arms, but through repeated trials, he cAccording to Auer and Al., the policy maximizing (1)
focus on the most rewarding arms. named UCB1-TUNED, considering also the variance of the
The questions that arise in bandit problems are relaté@mpirical value of each arms, performs substantially bette
to the problem of balancing reward maximization baseéan UCBL in all his experiments. This corresponds to our
on the knowledge already acquired and attempting ne@@ry results and then we use always the policy UCB1-
actions to further increase knowledge, which is known as tHEUNED in our prograrf.
explqitation-exp_lorqtion dilemma in reinforcement léa® -~ ycT UCB1 for Tree Search
Precisely, exploitation in bandit problems refers to setee
current best arm according to the collected knowledge,evhil
exploration refers to select the sub-optimal arms in order Li
gain more knowledge about them.

based on an analogy with a traditional slot machine (on%-

min{1/4,V,(T;(n)}. (@)

UCT [7] is the extension of UCB1 [6] to minimax tree
earch. The idea is to consider each node as an independent
andit, with its child-nodes as independent arms. Instéad o

A K-armed bandit problem is defined by random variablegea"ng with each node once iteratively, it plays sequences
of bandits within limited time, each beginning from the root

X;, forl <4 < K andn > 1, where each: is the X
’ and ending at one leaf.

ind f bli hi i.e., the "arm” of a bandit). ; | ' .
Index of a gambling machine (i.e e "arm’ of a bandit) The algorithm UCT is defined in Tabl€.1The program

Successive plays of machineyield rewardsX; 1,X; 2,... X ) . L )
which are independent and identically distributed accagdi continues playing one sequence each time, which is defined
from line 1 to line 8. Line 9 to line 21 are the function using

to a certain but unknown law with unknown expectatjon i . .
Here independence holds also for rewards across machingtg,;'?’1 for choosing one arm (one child-node in the UCT

ie., X; , and X;, are independent (probably not identicallycase)' Line 15_ensures each arm be selected once before
distributed) for eachl < i < j < K and eachs,t > 1. further exploration. Line 16 applies the formula of UCB1.

Algorithms choose the next machine to play depending o,ﬁfter each sequence, the value of played arm of each bandit
the obtained results of the previous plays. [etn) be the is updated iteratively from the father-node of the leaf to the

number of times machiné has been played after the first /0! by formula UCB1, described in functicipdateV alue

n plays. Since the algorithm does not always make the befé?m line 22 to line 29. Here the code deals with the minimax

choice, its expected loss is studied. Then the regret after €3¢ In_genelral, thet;]/alue ofbeacr; npdel cgnver_ges to the real
plays is defined by max (min) value as the number of simulations increases.

In the problems of minimax tree search, what we are
. K . looking for is often the optimal branch at the root node.
wn = wiE[T;(n)] where = Jax f It is sometimes acceptable if one branch with a score near to
J=1 o the optimal one is found, especially when the depth of the
E[ ] denotes expectation. In the work of Auer and Al. [6], dree is very large and the branching factor is big, like in Go,
simple algorithm UCBL1 is given, which ensures the optimadhs it is often too difficult to find the optimal branch within

short time.
“We will use "play an arm” when refering to general multi-armed
problems, and "play a move” when refering to Go. In Go applaatithe 5We will however say UCB1 for short.
"play” will not refer to a complete game but only one move. 5In order to be clear, the optimization is not discussed here.

"Here we use the original formula in Algorithm 1.



TABLE |

Pseubocobe oFUCT FOR MINIMAX TREE.

Fig. 1. UCT search. The shape of the tree enlarges asymmbtriCely
updated valuesnfode[i].value) are shown for each visited nodes.

In this sense, UCT outperforms alpha-beta search. Indeed
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Second, UCT is robust as it automatically handles uncer-
tainty in a smooth way. At each node, the computed value

% funncélc?g[ogI?g/?on;ﬁi?jig?c:eggotNode), is the mean of the value for each child weighted by the
3. while(nodeli] is not leaf)do frequency of visits. Then the value is a smoothed estimation
4: nodeli+1] := descendByUCBZ1(nodeli]); of max, as the frequency of visits depends on the difference
S =i+l between the estimated values and the confidence of this
6:  end while; _ estimates. Then, if one child-node has a much higher value
gf updateValue(node, -nodefi].value); than the others, and the estimate is good, this child-note wi
. end function;
be explored much more often than the others, and then UCT
9: function descendByUCB1(node) selects most of the time the 'max’ child node. However, if
10: nb :=0; two child-nodes have a similar value, or a low confidence,
11: for i := 0 to node.childNode.size() - do then the value will be closer to an average.
ig engt}o'; nb + node.childNodefi].nb; Third, the tree grows in an asymmetric manner. It explores
14 for i := 0 to node.childNode.size() - do more deeply the good moves. What is more, this is achieved
15: if node.childNode[i].nb = 0 in an automatic manner. Figure 1 gives an example.
do V[i] := oo; Figure 1 and Figure 2 compares clearly the explored tree of
16: /elszv[i]r;leN-ngdg.crgldNode[i].value two algorithms within limited time. However, the theoretic
+nsc:qr?('zc*l(lag(n%)/?wdge.childNode[i].nb) analysis of U.CT is in progress [10].. We jgst gi\_/e some
17: end if: remarks on this aspect at the end of this section. It is olsviou
18: end for; that the random variables involved in UCT are not identicall
19: index := argmax(V[i]); distributed nor independent. This complicates the anslybi
200 return node.childNode{index]; convergence. In fact we can define the bias for the aby:
21: end function;
. 1
22: function updateValue(node,value) 6” =|u; — - ZXLS ,
23: for i := node.size()-2 to @o t o—1
gg; Egggﬁ{ﬁlﬁ h-ogg[id](.arguk]).\ialie + value; where 1} is the minimax value of this arm. It is clear that
26: value := 1-value; at leaf leveld; ; = 0. We can also prove that
27: end for; log ¢
28: end function; 80 < KP =2

t )

with K constant andD the depth of the arm (counted from
the root down). This corresponds to the fact that the bias is
amplified when passing from deep level to the root, which
prevents the algorithm from finding quickly the optimal arm
at the root node.

An advantage of UCT is that it adapts automatically to the
'real’ depth. For each branch of the root, its real’ deptlthe
depth from wheré); , = 0 holds true. For these branches, the
bias at the root is bounded tfyf“ngt with the real depthl <
D. The values of these branches converging faster than the
other, UCT spends more time on other interesting branches.

@ Max
.

ofo

Max

we can outlight three major advantages. First, it works in an
anytime manner. We can stop at any moment the algorithm,
and its performance can be somehow good. This is not the
case of alpha-beta search. Figure 2 shows if we stop alpha-
beta algorithm prematurely, some moves at first level has
even not been explored. So the chosen move may be far

from optimal. Of course iterative deepening can be usedig. 2.

olo
olelelo

Alpha-beta search with limited time. The nodes with a#& not

Max

............. OO0

and solve partially this problem. Still, the anytime prayer explored yet. This happens often during the large-sizeel sesarch where

is stronger for UCT and it is easier to finely control time in
UCT algorithm.

entire search is impossible. Iterative deepening solvesainrthis problem.



TABLE Il

PSEUDOCODE OFUCT FOR MoGo the corresponding functiogetValueByMC' at line 7, to

give a score of the Go board at this leaf.

1: function playOneSequencelnMoGo(rootNode) In th d . lati t d is ol d
> node[0] = rootNode; i := 0; n the random simulation part, one random game is playe
3 do from the corresponding Go board till the end, where score is
4 node(i+1] := descendByUCB1(nodefil); i := i+ 1; calculated quickly and precisely according to the rulese Th
5: while node[i] is not first visited; d isited duri thi d . |ati t d
6 createNode(nodel[i]); nodes visited during this random simulation are not saved.
7 nodeli].value := getValueByMC(nodel[i]); The random simulation done, the score received, MoGo
8- updateValue(node,-nodefi].value); updates the value at each node passed by the sequence of
9:  end function; . . .
moves of this simulatich

[11. M AIN WORK
In this section we present our program MoGo using UCT
algorithm. Section 1lI-A presents our application of UCT. @ Tree
Search

Then, considering two important aspects for having a strong
Monte-Carlo program: the quality of simulations (then the i
estimation of score) and the depth of the tree, we show in i
the two following sections our corresponding improvements i
Section IlI-B presents the sequence-like random simuiatio i
with patterns. Section IlI-C presents ideas for tree search |
pruning on large Go board. Section IlI-D presents the modi- i
fication on the exploring order of non-visited nodes. At Jast :
Section III-E presents parallelization. i
i
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A. Application of UCT for Computer-Go

MoGo contains mainly two parts, namely the tree search y
part and the random simulation part, as shown in Figure 3. 0 e 1
Each node of the tree represents a Go board situation, with @m @@) @ Score
child-nodes representing next situations after corredjman
move.

The application of UCT for Computer-Go is based on thé&ig. 3. MoGo contains the tree search part using UCT and thdora
hypothesis that each Go board situation is a bandit probles ’g‘#ﬁg?g Dant gund ;;%rgs('wiTnh/ﬁ) :S‘;T"?ﬁf n%':ﬂg‘gsb%mt’;g ﬁ%’;;";hf
where each legal move is an arm with unknown reward b%dated values of the nodesodeli].value)
of a certain distribution. We suppose that there are only two

Kinds of ar_msl, the W'n?n'ng ones and thﬁ losing ofnss. We Remark 2:1n the update of the score, we use tHié score
set respectively reward and0. We ignore the case of draw, jnsiead of the territory score, since the former is much more

which is too rare in Go. . . . robust. Then the real minimax value of each node should
In the tree search part, we use a parsimonious versmnlgé either0 or 1. In practice, however, UCT approximates

UCT by introducing the same dynamic tree structure as iBach node by a weighted average valuéini]. This value
%}usually considered as the probability of winning.
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CrazyStone [8] in order to economize memory. The tree i
then created incrementally by adding one node after eac
simulation as explained in the following. This is differentB. Improving simulation with domain-dependent knowledge
from the one presented in [7], and is more efficient because|n this section we introduce our sequence-like random
less nodes are created during simulations. In other wordgimulation with patterns. Its advantage is obvious comgpare
only nodes visited more than twice are saved, which ecoyjth the classical random simulation, which we call pure
omizes largely the memory and accelerates the simulationgndom mode. In the following we talk about our improved
The pseudocode is given in Table Il. Again we do not talkandom mode as well as our implementation of patterns.
about optimization. In the random simulation part, it is very important to have
During each simulation, MoGo starts from the root of the;ever simulations giving credible scores. Using some &mp
tree that it saves in the memory. At each node, MoGo selecis, 3 patterns inspired by Indigo [11] (similar patterns can
one move according to the UCB1 formula 1. MoGo theryiso be found in [12]), our random simulation is likely to
descends to the selected child node and selects a new m@gge more meaningful sequences in random simulations than

(still according to UCBL1) until such a node has not yet beefefore, which has improved significantly the level of MoGo.
created in the tree. This part corresponds to the code from

line 1 to line 5. The tree search part ends by creating this®lt is possible to arrive at one end game situation during the search
new node (in fact one leaf) in the tree. This is finished bgan. In this case, one score could be calculated immediatedytizere is

’ . . 0 need to create the node nor to call the random simulation par
createNode. Then MoGo calls the random simulation part,



around the last played move and plays one randomly if there
is any; otherwise it looks for the moves capturing stones on
the Go board, plays one if there is any. At last, if still no
move is found, it plays one move randomly on the Go board.
Surely, the code of MoGo is actually complicated in details,
with many small functions equipped with hand-coded Go
knowledges. However, we believe the main frame given here
is the most essential to have sequence-like simulations.
Figure 4 shows the first 30 moves of two random games
using different modes. Moves generated by the improved

Fig. 4. Left: beginning of one random game simulated by pureleen random mode are obviously much more meaningful.
mode. Moves are sporadically played with little sense. Rigkginning of
one random game simulated by the pattern-based random mode nfioue 9The ELO http://en.w ki pedia.org/wiki/El orating-

5 to move 29 one complicated sequence is generated. system) is a rating system where the probability of winning is retat
to the difference between the ranks. ]
We now give the detailed information on our patterns. The

Essentially, we use patterns to create meaningful seatterns aréxa3 intersections centered on an empty position,
guences in simulations by finding local answers. The mové&®yp, Where is supposed to play the next move. Each pattern
played are not necessarily globally better moves. It is nd$ @ boolean function, answering the question whether the
obvious that is more important to get better sequencesmatttext move playing orp is an interesting move. True is
that better moves to make the Monte-Carlo evaluation mofgturned (when pattern is matched), if and only if the stéte o
accurate. However our experiments showed that the ma@@ch position on the Go board is the same as the one on the
improvement came from the use of local answers. If the san§@rresponding position of the pattern, or there is a cross on
patterns are used to find interesting moves everywhere §fe corresponding position (which means the situation isf th
the board instead of near the previous moves, the accuraRgsition is ignored). Normally there is no constraint on the
decreases. We believe that this claim is not obvious, arf@lor of the next move (one move good for black is supposed
one of the main contribution of MoGo. We also don't usd0 be also good for white). Some special cases are explained
patterns for pruning in the tree. We have not investigated tivhen mentioned. The symmetry, rotations and exchange of
more sophisticated patterns equipped by other prograres liRtone colors of patterns are considered. Moves are tested by
GnuGo. patterns only if they are neither illegal moves nor selfthta

In our pure random mode, legal moves are played on tHBOVES.

Go board uniformly randomly, with few rules preventing the We have tried several patterns during the development of
program from filling its own eyes. We also privilege theMoGo and implemented finally the ones shown in Figure 5,
moves capturing some stones. On CGOS our first prografa 7 and 8, where the position with a square is where the next
using exactly this mode has achieved rank score 1647%ELQnoVve is supposed to be played. We used hand-coded patterns
Currently the rank of MoGo is close to 2200 ELO. in our implementation. However, it will be more interestiig

Then, since we were not satisfied by the pure randohis can be achieved by a learning system. Another approach
simulations which gave meaningless games most of the timiéSing Bayesian generation can be found in Bouzy’'s work
local patterns are introduced in order to have some mofé3]-
reasonable moves during random simulations. Our patterns
are defined as3 x 3 intersections, centered on one free X
intersection, where one move is supposed to be played. Our m ﬁ :g %

,x x,

patterns consist of several functions, testing if one mave i XXX fXJrXf —erx—

such a local situation3(x 3) is interesting. More precisely,

we test if one move satisfies some classical forms in GF'g. 5 Patterns for Hane. True is returned if any pattern |$chm:i In
the right one, a square on a black stone means true is retufaed ionly

games, for example cut move, "_lane move, etc. if the eight positions around are matched and it is black tg.pla
Moreover, we look for interesting moves only around the

last played move on the Go board. This is because that local
interesting moves look more likely to be the answer moves % % %
of the last moves, and thus local sequence appears when ggx 5%@ ﬁ%
several local interesting moves are tested and then played XXX ’X+X’ —XQX—
continuously in random simulations. Y o T
We describe briefly how the improved random modexig. 6. Patterns for Cutl. The Cutl Move Pattern consistaret patterns.

generates moves. It first verifies whether the last playedemorue is retumned when the first pattern is matched and the mextte not
is an Atari; if yes, and if the stones under Atari can be saveached

(in the sense that it can be saved by capturing stones O'Remark 3:We believe that it is not always better to have

increasing liberties), it chooses one saving move randpm%ore 'good’ pattems in the random modes, meanwhile what
otherwise it looks for interesting moves in the 8 positions '



XX In group mode, in the tree search part we search only
‘+I‘ the moves in the group instead of all over the Go board.
XD In random simulation part there is no more such restriction.
Using groups, we reduce the branching factor to less than
Fig. 7. Pattern for Cut2. True is returned when the 6 uppeitipos are 50 at the opening period Then depth of MoGo’s tree
matched and the 3 bottom positions are not white. ’ ’
could be around 7-8 on large Go board. Table IV shows
Lo Lo | | MoGo becomes competitive oi8 x 13 Go board by using
X X@X X X X ina techni H histicated .
bod "DO BO--tv g0 group pruning technique. However, sophisticated pruning
techniques are undoubtedly necessary to improve the level

of Computer-Go programs.
Fig. 8. Patterns for moves on the Go board side. True is reduifnany
pattern is matched. In the three right ones, a square on a plesi. white) TABLE IV
stone means true is returned if and only if the positions adcane matched

and it is black (resp. white) to play. MoGo WITH 70000SIMULATIONS PER MOVE, ON 13 x 13 GO BOARD,

USING OR NOT THE GROUP MODE HEURISTIC AGAINSGNUGO 3.6
LEVEL 0 (GG 0)OR 8 (GG 8).

is more important is whether the random simulation can haye

g . . Opponents Win. Rate Win. rate Total
some meaningful sequences often. This claim needs more for B. Games| for W. Games win. Rate
experiments. No group vs GG 0| 53.2%(216)| 51.8% (216)| 52% + 2.4%

- No group vs GG 8|  24.2%(300) 30% (300) | 27%+ 1.8%
|
The Table Ill shows clearly how patterns improve the overall grolp vs GG 01— 67.5% (80) 61.2% (80) | 64.3% £ 3.7%
performance. group vs GG 8| 51.9% (160) 60% (160) | 56% + 2.7%
TABLE Ill
DIFFERENT MODES WITH70000RANDOM SIMULATIONS/MOVE IN 9X9. As explained above, group mode limits the selection of
Random mode f \éVinG. Rate f Wng rate Wi Tth?l moves in the tree search part. It has however no restriction
or b. Games or wW. Games In. Rate . : . .

Pure 6% (250) 36% (250) | 4129 2.2% on the random simulation. As the accuracy of the S|mula_t|ons
Sequence-like]  77% (400) 82% (400) | 80% + 1.4% becomes lower as the game length increases, we tried to

generate the random moves only in a certain zone instead of
on the whole Go board. The zones were defined using the
C. UCT with pruning ideas groups presented above. However due to space limitations,
In this section we show our ideas (heuristics) to reducgnd as the zones are no more used in the current MoGo
the huge tree size, which makes MoGo relatively strong oBlayer, we do not describe them further. Interesting future
large Go board. Thus we gain a larger local depth in theesearch directions could be to define properly zones td limi
search tree by losing the global view of UCT. Obviouslythe simulations lengths.
pruning heuristics may lead to a sub-optimal solution. tFirs

we define group by Go knowledge to reduce the branching PN
factor in tree search. Then zone division is derived from | ey ® il
group, which helps to have a more precise score. We use @ b é
group and zone mode far3 x 13 and 19 x 19 Go board. T 62

Figure 9 will give one example.

Remark 4:As we are not very experienced for Go-
knowledge-based programming and we had little time work-
ing on it, we believe other programs like GhuGo and AyaGo,
or Monte-Carlo programs have more clever pruning tech- ® 5} &
nigues. Some other techniques are mentioned in [14][15].
Due to the space limitation, we do not give the detailed
pseudo code of this part. However, our experimental results
of combining UCT with pruning techniques are already
encouraging.

First we define one group as a set of strings and free
intersections on a Go board according to certain Go knowl-
edge, which gathers for example one big living group and its
close enemies. We have implemented Common Fate Graph
(CFG) [16] in our program to help the calculation of groupsrig. 9. The opening of one game between MoGo and Indigo in thie 18
The method starts from one string and recursively add$GS Computer Go Tournament. MoGo (Black) was in advantage et th
close empty intersections and strings close to these emp§p™ning of the game, however it lost the game at the end.
intersections until no more close strings are found within a
distance controled by a parameter.




D. Modification of exploring order for non-visited nodes algorithms while allowing the same number of simulations

UCT works very well when the node is frequently visitegP€" move. All such experiments showed non significant dif-
as the trade-off between exploration and exploitation if Wefer.ents in the pla_y levé?. Second, we can compare thg Ieve!
sing the same time per move (the multithreaded version will

handled by UCB1 formula. However, for the nodes far fron{’ : ) :
the root, whose number of simulations is very small, UC'Ithen make more simulations per move). As UCT benefits

tends to be too much exploratory. This is due to the fact théjom the computational power increase, the multithreaded

all the possible moves in one position are supposed to eCT Is efficient (-100 ELO on CGOS with 4 processors).

explored before using the UCB1 formula. Thus, the values IV. RESULTS
associated to moves in deep nodes are not meaningful, s;incc-\aNe list in this section several experiment results who

the ch_ild-nodes of these node_zs_ are not all explored ygt aq%'flect characteristics of the algorithm. All the tests alds

sometimes even worse, the visited ones are selected in f|x§§J letting MoGo play against GnuGo 3.6 with default mode

or(_jrer. Thlsd.cf.an I'eads to baddpredlﬁted seguences.d Komi are set to 7.5 points. In the tables, the winning rates
wo modifications are made to have a better order. when MoGo plays black and white are given with the number

First-play urgency: UCB1 a_llgorithm begins by explqring of games played in each color (in parentheses). The number
each arm once, before using the formula (1). This ca iven after thet is the standard deviation

sometimes be unefficient especially if the number of trial
is not large comparing to the number of arms. This is théd. Dependence of Time

case for numerous nodes in the tree (number of visits is The performance of our program depends on the given
small comparing to the number of moves). For example fime (equally the number of simulations) for each move.

an arm keeps returning 1 (win), there is no good reasofaple V shows its level improves as this number increases.
to explore other arms. We have set a fixed constant namefie outstanding performance of MoGo on double-processors

name its urgency by the value of formula (1). The urgency

value is set to the value of FPU (FPU 4s>o by default) TABLE V
for each legal move before first visit (see line 15 in Table ). PURE RANDOM MODE WITH DIFFERENT TIMES
Any node, after being visited at least once, has its urgeng¢y Seconds Winning Rate Winning rate Total

; h per move for Black Games| for White Games| Winning Rate
upt?]aiid ﬁgcr(]) rdlng 1o UCI?rlh fom;t;)lz. We play the {EOV 5 26% £ 6% (50) 26% £ 6% (50) | 26% * 4.3%
wi € highest urgency. thus, 400 ensures the 20 | 41%+ 3% (250) |  42% + 3% (250) | 41.8%+ 2.2%
exploration of each move once before further exploitatién g 60 | 53% + 3.5% (200) | 50% =+ 3.5% (200) | 51.5%+ 2.5%
any previously visited move. On the other way, smaller FPU
ensures earlier exploitations if the first simulations l¢ad

an urgency larger than FPU (in this case the other unvisite®l Parametrized UCT
nodes are not selected). This improved the level of MoGo We parametrize the UCT implemented in our program

according to our experiment as shown in Table VII. by two new parameters, namelyand FPU. First we add

Use information of the parentsOne assumption that can ., coefficienty to formula UCB1-TUNED (1), which by
be magie N go game 1S that given a situation, good mOVes Ma¥ta it is1. This leads to the following formula: chooge
sometimes still be good ones on the following move. Whep i -\ ovimizes:

we encounter a new situation, instead of exploring each move
m in any order, we can use the value estimatiomofn an < +p\/ logn
J

earlier position to choose a better order. We typically une t T;(n) min{1/4, V;(n;)}

estimated values of the grandfather of the node. We believe

this helps MoGo on the large Go board, however we do néli dimdes the barllance bﬁztween_exprl]ora(;mn andhexplona_tlon.
have enough experiments to claim significant results. 0 be precise, t_e smaller the|s_, the deeper t e ree Iis
explored. According to our experiment shown in Table VI,

E. Parallelization UCB1-TUNED is almost optimal in this sense.

As UCT scales well with time, we made MoGo run The second is the first-play urgency (FPU) as explained
on a multi-processors machine with shared memory. THe Section IlI-D. Some results are shown in Table VII. We
modifications to the algorithm are quite straightforwardl. A believe that changing exploring order of non-visited nodes
the processors share the same tree, and the access to theGagebring further improvement.
is locked by mutexes. As UCT is deFerministic, all the thlsaadc' Results On CGOS
could take exactly the same path in the tree, except for the ) i
leaf. The behavior of the multithreaded UCT as presented MOGO is ranked as the first program Onx 9 Computer
here is then different from the monothreaded UCT. Twd© Server since August 2006.
experiments has _then to be done. First, we can cqmpare theowe had only access to a 4 processors computer, the behavidoecan
level of MoGo using the monothreaded or the multithreadegry different with many more processors.



COEFFICIENTp DECIDES THE BALANCE BETWEEN EXPLORATION AND

TABLE VI

EXPLOITATION. (PURE RANDOM MODE)

Winning Rate
for Black Games

Winning rate
for White Games

Total
Winning Rate

2% £ 2% (50)
30% + 6.5% (50)
33% + 4.5% (100)
40% + 4% (150)
39% + 4% (150)
40% + 4% (150)
30% + 6.5% (50)
36% + 6.5% (50)
22% + 5.5% (50)

4% L 2.5% (50)
36% + 6.5% (50)
39% + 5% (100)
38% + 4% (150)
41% - 4% (150)
44% + 4% (150)

26% + 6% (50)
24% + 6% (50)
18% & 5% (50)

3%+ 1.7%
33%+ 4.7%
36% + 3.3%
39% + 2.8%
40% + 2.8%
42% £ 2.9%
28% + 4.5%
30% + 4.5%

20% + 4%

TABLE VII
INFLUENCE OFFPU (70000SIMULATIONS/MOVE).

Winning Rate
for Black Games

Winning rate
for White Games

Total
Winning Rate

37% £ 4.5% (100)
46% =+ 5% (100)
45% + 3% (250)
49% + 3% (300)
47% + 4% (150)

40% + 7% (50)

38% £ 5% (100)
36% + 5% (100)

41% + 3% (250)
42% + 3% (300)
329 + 4% (150)
32% + 6.5% (50)

37.5%+ 3.5%
41% £ 3.5%
43.4%+ 2.2%
45% + 2%
40% + 2.8%
36% + 4.8%

The success of MoGo shows the efficiency of UCT

V. CONCLUSION

on large Go board. Having had some encouraging results, we
believe firmly further improvements in this direction.

A straightforward parallelization of UCT on shared-
memory computer is made and has given some positive
results. Parallelization on a cluster of computers can be
interesting but the way to achieve that is yet to be found.
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