
Using Reinforcement Learning for City Site Selection in the
Turn-Based Strategy Game Civilization IV

Stefan Wender, Ian Watson

Abstract— This paper describes the design and implemen-
tation of a reinforcement learner based on Q-Learning. This
adaptive agent is applied to the city placement selection task
in the commercial computer game Civilization IV. The city
placement selection determines the founding sites for the cities
in this turn-based empire building game from the Civilization
series. Our aim is the creation of an adaptive machine learning
approach for a task which is originally performed by a complex
deterministic script. This machine learning approach results in
a more challenging and dynamic computer AI. We present the
preliminary findings on the performance of our reinforcement
learning approach and we make a comparison between the
performance of the adaptive agent and the original static game
AI. Both the comparison and the performance measurements
show encouraging results. Furthermore the behaviour and
performance of the learning algorithm are elaborated and ways
of extending our work are discussed.

I. INTRODUCTION

One of the main incentives for integrating machine learn-

ing techniques into video games is the ability of those

techniques to make those games more interesting in the long

run through the creation of dynamic, human-like behaviour

[1]. Among the most captivating games, especially in terms

of long-term gameplay, are the games of the Civilization
series. However these turn-based strategy games achieve

their high replay value not through advanced adaptable AI

techniques but through a high level of complexity in the later

stages of the game. The early stages however are, as we will

also see in this paper, mostly deterministic and therefore

not very challenging. These characteristics as well as the

large number of tasks involved in playing the game make

Civilization games an ideal test bed where one of those many

tasks can be replaced by a machine learning agent, thus

making the AI less predictable and improving the overall

game play experience.

II. RELATED WORK

The machine learning method we chose for our task is

Reinforcement Learning (RL) [2], a technique which allows

us to create an adaptive agent that will learn unsupervised

while playing the game. More specifically the Q-Learning

algorithm as introduced by [3] will be used to demonstrate

the applicability of reinforcement learning in the commercial

video game Civilization IV.

Because of the broad spectrum of problems involved in

Civilization video games as well as the multitude of versions

of the games that are available, several of them with open

Stefan Wender and Ian Watson are with The University of Auck-
land, Department of Computer Science, Auckland, New Zealand; e-mail:
swen011@aucklanduni.ac.nz ‖ ian@cs.auckland.ac.nz

source code, multiple variants of the game have been used

in academic research. Perhaps most popular as a test bed

is the Civilization variant FreeCiv, an open source version

of the commercial game Civilization II. FreeCiv has been

used to show the effectiveness of model-based reflection and

self adaption [4]. Furthermore an agent for FreeCiv has been

developed that plays the complete early expansion phase of

the game [5].

The development of an AI module that is based on Case-

Based Reasoning (CBR) for the open source Civilization

clone C-Evo is documented in [6]. C-Evo is an open source

variant of Civilization, which is closest related to Civilization
II and allows for the development of different AI modules

which can compete against each other.

More directly related to this paper is research which

uses the commercial Civilization games as a test bed. The

commercial Civilization game Call To Power II (CTP2) is

used as a test bed for an adaptive game AI in [7]. In

order to communicate with the game an ontology for the

domain is developed and case-based planning in combination

with CBR is used to create an adaptive AI. CTP2 has also

been integrated with the test environment TIELT [8], thus

preparing a test bed for future research using CTP2.

In [9] a Q-Learning algorithm is used to create an adaptive

agent for the fighting game Knock’em. The agent is initially

trained offline to be able to adapt quickly to the oppo-

nent in an online environment. RETALIATE (Reinforced

Tactic Learning in Agent-Tam Environments), an online

Q-Learning algorithm that creates strategies for teams of

computer agents in the commercial First Person Shooter

(FPS) game Unreal Tournament is introduced in [10]. This

approach is extended in [11], where the authors use CBR

in order to get the original RETALIATE algorithm to adapt

more quickly to changes in the environment.

III. CIVILIZATION IV AS TEST BED FOR RESEARCH IN

COMPUTER GAME AI

The variant of the Civilization game which will be used

as a test bed in this paper is Civilization IV. Civilization
IV is the latest title in the commercial series of the original

game. Large parts of its code base, including the part which

controls the AI, have been released as open source. Also the

existing computer AI is already quite sophisticated and thus

can provide a challenging opponent in empirical experiments.

Furthermore an improvement of the existing AI would show

that research from academia can be used to create a bigger

challenge and thus offer a more enjoyable playing experience

which will in the end lead to better games in general.

978-1-4244-2974-5/08/$25.00 ©2008 IEEE 372



However the use of Civilization IV as a test bed for

research also bears a challenge. The code base that was

released as open source consists of more than 100000 lines

of code, which mostly are very sparingly commented. Since

only parts of the source code have been released, several

major functions have to be emulated, most importantly the

automatic restarting of a game which is crucial when running

tests that are supposed to last for several thousand games.

A. The Game

Civilization is the name of a series of turn-based strategy

games. In these games the player has to lead a civilization

of his choice from the beginnings BC to the present day. It

involves building and managing cities and armies, advancing

the own empire through research and expansion as well

as interacting with other, computer-controlled civilizations

through means of diplomacy or war in a turn-based envi-

ronment. The popularity of the original game has lead to a

multitude of incarnations of the game, both commercial and

open source.

B. The City Placement Task

The most important asset in a game of Civilization IV

are the cities. The three major resources a city produces

are food (used for growth and upkeep of a city), commerce

(used among others for research and income) and production

(used to produce units and buildings). Furthermore special

bonuses which grant additional basic resources or other

benefits like accelerated building speed can be gained. The

playing field in Civilization IV is partitioned into ”plots”

with each plot producing a certain amount of the resources

mentioned above. A city can gain access only to the resources

of a plot which is in a fix shape of 21 plots surrounding the

city: Figure 1.

Fig. 1. Civilization IV: Workable City Radius

In addition the borders of an empire and thus the area of

influence of its player are defined by the summarized borders

of the cities of that empire. Therefore the placement of cities

is a crucial decision and influences the outcome of a game

to a large degree. This is the reason why we chose to apply

RL to the city site selection task.

Cities are founded by mobile settler units which can be

exchanged for a city on the plot they are located on. The

standard AI uses a strictly sequential method of determining

which are the best sites for building new cities. Each plot on

the map is assigned a ”founding value” which is based on

numerous attributes like the position of the plot in relation to

water, proximity of enemy settlements, proximity of friendly

cities and of course the resources that can be gained from

plots. We replace this sequential computation of founding

values with reinforcement learning.

At the current stage of our research the task of the

reinforcement learner is limited to choosing the best location

for an existing settler. The decision of when to build a settler

is still made by the original game AI.

IV. REINFORCEMENT LEARNING MODEL

Reinforcement learning is an unsupervised machine learn-

ing technique, in which an agent tries to maximise the reward

signal [2]. This agent tries to find an optimal policy, i.e. a

mapping from states to the probabilities of taking possible

actions in order to gain the maximum possible reward. The

reinforcement learning model for the city placement task

consisting of the set of states S, possible actions A and the

scalar reward signal r is defined as follows:

A. States

A state s ∈ S contains the coordinates of all existing cities

of the active player. The other important information besides

the position of a city is when this city was created. This

information is crucial since a different order of founding can

lead to very different results. Therefore, in order to satisfy the

Markov property (i.e. any state is as well qualified to predict

future states as a complete history of all past sensations up

to this state would be) and thus for the defined environment

to represent a Markov Decision Processes (MDP) each plot

also contains the information when, in relation to the other

cities, this city was founded.

A state s ∈ S can be described as a set of triples (X-
Coordinate, Y-Coordinate, Rank in the Founding Sequence)
and each triple is representing one city. This definition of the

states means that the resulting model will be a graph with no

cycles, i.e. a tree. Figure 2 shows a part of such a tree with

the nodes representing the states and branches representing

the actions. Because of this structure of the state space, no

state can be reached more than once in one episode.

The set of all states S consists therefore of all possible

combinations of the (X-Coordinate, Y-Coordinate, Rank in
the Founding Sequence) triples where cities can be built on

any plot p ∈ P .The resulting size of the state space is

|S| =
c∑

i=0

|P |!
(|P | − i)!

(1)

With c = |P | since every plot on the map could be a city.

3732008 IEEE Symposium on Computational Intelligence and Games (CIG'08)



Fig. 2. Excerpt of the State Space S

B. Actions

The set A of possible actions which can be taken when in

a state s ∈ S consists of founding a city on any of the plots

(p ∈ P‖p /∈ s), i.e. any plot where there is no city of the

active player yet. Since the map size of a game varies and

for an average sized map there are |P | = 2560 plots already,

this results in a very large state space. One measure we took

to reduce this size significantly is to ignore ocean plots, as

cities can only be founded on land. This reduces the number

of possible plots to about one third of the map size.

C. Rewards

The reward signal is based on the score of a player. In the

original game this score is used to compare the performance

of the players with each other and it is updated every turn for

all players. The game score consists of points for population

in the cities, territory (the cultural borders of the cities added

up) and technological advancement (developed with research

output from the cities). Therefore, all the parts the game score

is made up of are connected to the cities. A time step, i.e.

the time frame in which the reinforcement learner has to

choose an action and receives a reward after performing that

action, is defined as the time between founding one city and

founding the next city. The update of the Q-value Q(si, ai)
after taking an action ai in state si happens immediately

before executing the next action ai+1, i.e. founding the next

city. The selection of the appropriate plot for this foundation

however can happen several game turns before that, with

the settler unit moving to the chosen plot afterwards. The

scalar value which represents the actual reward is computed

by calculating the difference in game score between the

founding turn of the last city and the founding turn of this

city. The difference is then divided by the number of game

turns that have passed between the two foundations:

r ← (GameScorenew − GameScoreold)
(GameTurnsnew − GameTurnsold)

V. ALGORITHM

The top-level algorithm which controls the overall city site

selection task can be seen in Figure 3.

Fig. 3. Top-level Algorithm for City Site Selection

The actual Q-Learning algorithm which is based on

One-step Q-Learning as described in [2] is shown below.

Initialise Q(s, a) to 0

Repeat for each episode:

Initialise s
Repeat for each step in this episode:

Determine possible actions Ai in si

Choose action ai ∈ Ai as

I) ai ← max Q(si, ai) with probability 1-ε
OR
II) ai ← random ai ∈ Ai with probability ε

Send settler unit to plot chosen in ai

r ← gameScoreGainPerTurn()
Q(si, ai)

←Q(si, ai)
+α

[
r + γ ∗ maxai+1Q(si+1, ai+1) − Q(si, ai)

]

si ← si+1

until the number of steps is X

The setting of a fixed number of turns X is motivated by

the game mechanics. The size of X is directly related to the

size of the map and the number of opponents. The size is

usually defined in a way that after X turns, most of the map

has been divided between the different factions and the main

focus in the game shifts from expansion to consolidation of

acquired territory and conquest of enemy terrain and thus

away from the city placement task.

The discount factor γ in our experiments, which are

presented in section VI, is set to 0.1. The reason for this

rather low value lies in the large number of possible actions

in each state. All Q(s, a) values are initialised to zero

and the reward signal is always positive. Therefore, actions

which are pursued in earlier episodes are likely to be called

374 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)



disproportionally more often if a policy different to complete

randomness is pursued. The learning rate α is set to 0.2
which proved to be high enough to lead to relatively fast

convergence while being low enough to protect the Q-values

from anomalies in the reward signal. Both γ and α values

have also been tested in trial runs and proven to work best

for our purposes with the values given above.

Since Q-Learning is by definition an off-policy algorithm,

the learned action-value function Q converges with prob-

ability one to the optimal action-value function Q∗ even

following a completely random policy. However, this requires

visiting every single state infinite times, which is computa-

tionally not feasible. The algorithm uses an ε-greedy policy.

Its general behavior can be modified by altering ε, depending

on whether the main aim is learning or performing optimally,

i.e. if the focus should be on exploration or exploitation.

It is noteworthy that all Q-values show a dependency on

the starting position on the map of the respective player.

Furthermore, since the usability of a plot as founding site

for a city completely depends on the geography of the

surroundings, the Q-values obviously are correlated to the

map which is used in the game. As soon as the geography

changes, the Q-values have to be computed from scratch.

This dependency and how we intend to deal with it is further

elaborated in section VII.

VI. EMPIRICAL EVALUATION

We ran several experiments to compare our adaptive

city plot selection algorithm to the existing deterministic

sequential approach. In order to be able to compare the

growing effectiveness of greater coverage over the state

space, several experiments with differing numbers of turns

as well as different settings for the ε-greedy policy were run.

Except for the method of choosing the best spot for its cities,

the original game AI was left unchanged.

The standard setup is one computer player that uses ex-

perience gained through Q-Learning against two other com-

puter players which use the standard method of determining

founding plots. The map used is the same in every game,

as well as the starting positions. All players have exactly

the same ”character traits” (a game mechanic which leads

to advantages in certain parts of the game like research or

combat) so they are starting under exactly the same premises.

The size of the chosen map is the second smallest in the

game and the map consists of about 300 plots which can be

settled. According to Equation (1) this leads to the number

of possible states

|S| =
c∑

i=0

300!
(300 − i)!

.

c is in this case equal to the number of cities that are ex-

pected to be built in the given number of turns. This basically

means that not the complete state-tree will be traversed but

only the tree up to a depth equal to the maximum number

of cities. The number of game turns differed between the

experiments and was decided according to the goal of the

respective test. Due to the low number of actions which are

taken in one episode, a large number of episodes had to be

played for every setup to get meaningful results.

One of our main aims was to find out how the reinforce-

ment learner performed compared to the standard game AI.

To achieve an adequate coverage of the state space, which is

necessary to reach comparable results to the static but quite

sophisticated standard game AI, the number of game turns

was set to 50 (12.5 % of the maximum length of a game).

This seems rather short but since the map on which the game

is played is small, the game phase during which the players

found new cities is usually very short as well. After 50 turns

on average about half of the map has been occupied by the

three players.

The limitation of the single episodes to a length of 50 turns

leads to an expected maximum number of cities of 2 for the

reinforcement player. This means that the possible states are

limited to about

2∑

i=0

300!
(300 − i)!

≈ 90000.

Since despite the low number of cities the high branching

factor leads to this large state space, convergence is not

guaranteed, even though the Q-Learning algorithm is usually

able to cope through the ε-greedy policy which pursues the

maximum rewards with probability 1 − ε. ε was initialised

at 0.9, i.e. in 90% of all cases our algorithm would pick

a random action while selecting the action with the high-

est Q(s, a) value in the remaining 10%. This ratio was

subsequently slowly reverted, that means after 3000 played

episodes only 10% of all actions would be random while

90% were picked according to the highest Q(s, a) value.

This is necessary to draw a meaningful comparison between

the reinforcement learner and the standard AI when both try

to play optimal or close to optimal.

3050 episodes of length 50 turns were played by the com-

puter AI. After each episode the score of the players was

recorded. For the final evaluation, the score of the RL player

was averaged across the last 50 episodes to even out the

anomalies which occur because of the explorative policy. As

a reference value, the same experiment was performed with

a standard AI player instead of the reinforcement player, i.e.

three standard computer AI players compete against each

other on the same map with the same premises as in the

previous test. Figure 4 shows the results of both experiments.

The first thing that attracts attention is the performance of

the standard computer AI under these circumstances, which

results in the same score for every single game. This is due

to the fact that there is no randomness in the decisions of

the computer AI when it comes to city placement. There are

very few non-deterministic decisions in Civilization IV, most

of them in the combat algorithms, but those do not have any

effect until later in the game when players fight against each

other. Therefore, for the first 50 turns, the three standard AIs

always performed the exact same actions.

The diagram also shows that the reinforcement learner,

3752008 IEEE Symposium on Computational Intelligence and Games (CIG'08)



350

400

450

200

250

300

am
e

 S
co

re

50

100

150

G
a

Standard AI

Reinforcement Learner

0

50

1 501 1001 1501 2001 2501 3001

Number of Training Episodes

Fig. 4. Average Score Comparison between Reinforcement Learner and
Standard AI for Games with Length 50 Turns

while initially inferior in average score, ends up beating the

average score of the standard AI. On the downside it is

noteworthy that it took the reinforcement learner more than

2000 episodes of the game to reach that point. Since the

number of the episodes played is still a lot smaller than the

state space for the placement of two cities, there also remains

room for improvement by finding even better policies.

14000

16000

18000

8000

10000

12000

14000

ar
ia

n
ce

4000

6000

8000V
a

0

2000

1 501 1001 1501 2001 2501 3001

Number of Training Episodes

Fig. 5. Variance in the Average Score: From Explorative to Exploitative
Policy by decreasing ε

Figure 5 shows the variance of the average of the scores for

the reinforcement learner. Its decline illustrates the change of

policy with increasing number of episodes.

Since the reinforcement learner performed very well for

short games and a large number of episodes, another exper-

iment was conducted to evaluate the convergence with less

episodes and more turns. The number of turns was doubled

to 100 turns per episode while the number of episodes was

reduced to 1500. The evaluation happened in the same way as

in the previous experiment through recording the game score

and averaging the score for 50 episodes. As an addition the

score was not only measured at the end of an episode, i.e.

after 100 turns but also after 50 turns like in the previous

experiment. Furthermore we performed another set of tests in

the same environment with an AI that follows a completely

random policy. This means that ε = 1, which results in the

player always picking actions at random.

700

800

900

400

500

600

700

g 
G

am
e

 S
co

re

100 Turns Reinforcement Learner

100 Turns Standard AI

100 T R d P li

100

200

300

400

A
ve

ra
g 100 Turns Random Policy

50 Turns Reinforcement Learner

50 Turns Standard AI

50 Turns Random Player

0

100

1 251 501 751 1001 1251 1501

Number of Training Episodes

Fig. 6. Average Score Comparison for Games of Length 100 Turns

Figure 6 shows the results of these tests. As in the previous

test run with only 50 turns, the standard AI achieves the

same score for every single game at 50 turns. According to

the diagram it also seems as if this is the case at 100 turns.

However the standard AI achieves not the same score in every

game, but alternates between two different scores which

ultimately results in the same average over 50 episodes.

This alternation suggests that a probabilistic decision is made

during the second 50 turns. At the beginning when the RL

agent has no experience yet, both RL and random agent

have about the same average score. But while the score for

the player following a completely random policy shows as

expected no sign of long term growth or decline, the average

score of the reinforcement learner improves with the growing

number of episodes played.

The score for the reinforcement learner at 50 turns shows

the same upward tendency as the score for the RL agent

in the previous experiment (Figure 5). The average score is

still lower than that of the standard AI because of the smaller

number of episodes played. If growth of the average score

continues, this would very likely change within the next 1000

episodes. The average score for the reinforcement learner

after 100 turns shows the same tendency as the score at 50

turns even though the gap between the score. However the

gap between the average score for the standard AI and the

reinforcement learner is much bigger at 100 turns than at 50

turns. This can be explained through the significant difference

in size of the state spaces for 50 turns and 100 turns. While

during 50 turns players will get a maximum of two cities, 100

turns will allow building up to five cities which multiplies

the number of possible states by nearly 3003. Therefore it

is remarkable that there is already a visible increase in the

average score at 100 turns. This also means that there is

potentially a huge margin to be gained over the standard AI

through optimising the Q-values.

VII. FUTURE WORK

As previously stated, this paper presents the first results of

a work in progress, the application of reinforcement learning

to tasks in Civilization IV. Several extensions and additions

are planned for the near future and can be divided into

376 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)



three categories. These categories are the improvement of

the Q-Learning algorithm which has been used throughout

this paper, the evaluation of other reinforcement learning

algorithms and the combination of other machine learning

techniques with RL. Furthermore the usage of Civilization IV
as a test bed for computer game AI research can be extended.

The results of the empirical evaluation show that while

the applied reinforcement learning method has potential to

outperform the static standard AI, in its current state learning

becomes computationally unfeasible when crossing a certain

threshold of game complexity, either in matters of game

turns or map plots. Therefore the optimisation of the Q-

Learning algorithm is crucial to extend the tasks for which

it can be used, i.e. longer games or larger maps. One way

to to do this is by speeding up the learning process and

as a result accelerating the convergence towards the optimal

action-value function. This can for instance be achieved

by using eligibility traces and thus having a multi-step

Q-Learning algorithm instead of the current one-step Q-

Learning. Another way to improve the speed of convergence

is the initialisation. At the moment all Q(s, a) values are

initialised to 0 at the beginning of the algorithm. This means

that every state has to be visited in order to determine its

usefulness for the exploitation part of the policy, often only

to conclude that its usefulness is very low. If the states were

instead initialised to the precomputed ”founding values” that

are used by the standard game AI, these values could serve as

indicators about the usefulness of a plot for the reinforcement

learner. This would not speed up the guaranteed convergence

to an optimal policy π∗ but generate better performance

earlier on, resulting in more challenging gameplay.

Besides extending the existing method, other reinforce-

ment learning algorithms and techniques such as the on-

policy temporal-difference algorithm SARSA or Monte Carlo

methods will be evaluated as to how well they are suited for

the city placement selection task [2].

Another field for future research on RL using Civilization

IV as a test bed is the combination of other machine learning

methods with RL. One particularly promising method is

Case-Based Reasoning (CBR). The application of CBR to

the plot selection task would allow to resolve the previously

mentioned problem with learned experience on one map be-

ing useless on another map because of the different topology.

Furthermore the application of Motivated Reinforcement

Learning (MRL) could improve the game play experience.

One of the game mechanics in Civilization IV are ”character

traits” of the different computer AIs. Certain players have

by definition advantages in certain areas of the game like

expansion, finance or combat. These advantages are hard

coded numbers and are meant to express certain character

traits like aggressiveness or expansionism. If those agents

would instead use a reinforcement learner which gets his

rewards through a motivational function as described in [12],

this could lead to very interesting behaviour for AI players.

Also the task for which these machine learning techniques

are used can be extended. While at the moment the task only

consists of determining where a city should be, in the future

this could also include the choice if the city is needed at all,

i.e. the optimal number of cities and when to build them.

VIII. CONCLUSIONS

This paper presents the design and implementation of a

reinforcement learner which is used to perform a city site

selection task in the turn-based strategy game Civilization IV.

The Q-Learning algorithm which was used, manages to learn

city placement strategies for specific maps. After sufficient

training the RL agent outperforms the standard game AI in

short matches. The reinforcement learner also shows promis-

ing results for longer and more complex games. The findings

from these experiments on the possible shortcomings of the

algorithm lay the groundwork for future work. Furthermore

the usage of the commercial video game Civilization IV as a

test bed for AI research demonstrates great potential because

of the diversity of the tasks involved in Civilization and

the relative ease with which these deterministic tasks can

be taken over by machine learning agents. The integration

of our RL agent into Civilization IV extends the otherwise

deterministic early game by a non-deterministic, adaptable

component which enhances the game-playing experience.

REFERENCES

[1] J. Laird and M. van Lent, “Human-level AI’s Killer Application:
Interactive Computer Games,” AI Magazine, vol. Summer 2001, pp.
1171–1178, 2001.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[3] C. Watkins, “Learning from Delayed Rewards,” Ph.D. dissertation,
University of Cambridge, England, 1989.

[4] P. Ulam, A. Goel, and J. Jones, “Reflection in Action: Model-Based
Self-Adaptation in Game Playing Agents,” in Proceedings of the
Nineteenth National Conference on Artificial Intelligence American
Association for Artificial Intelligence (AAAI), 2004.

[5] P. A. Houk, “A Strategic Game Playing Agent for FreeCiv,” North-
western University, Evanston, IL, Tech. Rep. NWU-CS-04-29, 2004.

[6] R. Sanchez-Pelegrin, M. A. Gomez-Martin, and B. Diaz-Agud, “A
CBR Module for a Strategy Videogame,” in 1st Workshop on Computer
Gaming and Simulation Environments, at 6th International Conference
on Case-Based Reasoning (ICCBR), D. Aha and D. Wilson, Eds.,
2005.

[7] A. Sanchez-Ruizy, S. Lee-Urban, H. Munoz-Avila, B. Diaz-Agudoy,
and P. Gonzalez-Caleroy, “Game AI for a Turn-based Strategy Game
with Plan Adaptation and Ontology-based Retrieval,” in Proceedings
of the ICAPS 2007 Workshop on Planning in Games, 2007.

[8] D. W. Aha and M. Molineaux, “Integrating Learning in Interactive
Gaming Simulators,” Intelligent Decision Aids Group; Navy Center
for Applied Research in Artificial Intelligence, Tech. Rep., 2004.

[9] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Automatic
computer game balancing: a reinforcement learning approach,” in
AAMAS ’05: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems. New York, NY, USA:
ACM, 2005, pp. 1111–1112.

[10] M. Smith, S. Lee-Urban, and H. Muñoz-Avila, “RETALIATE: Learn-
ing Winning Policies in First-Person Shooter Games,” in AAAI, 2007.

[11] B. Auslander, S. Lee-Urban, C. Hogg, and H. Munoz-Avila, “Recog-
nizing the Enemy: Combining Reinforcement Learning with Strategy
Selection using Case-Based Reasoning,” in Advances in Case-Based
Reasoning: 9th European Conference, ECCBR 2008, Trier, Germany,
September, 2008, Proceedings, K.-D. Althoff, R. Bergmann, M. Minor,
and A. Hanft, Eds. Springer, 2008.

[12] K. E. Merrick and M. L. Maher, “Motivated Reinforcement Learning
for Adaptive Characters in Open-Ended Simulation Games,” in ACE
’07: Proceedings of the International Conference on Advances in
Computer Entertainment Technology. New York, NY, USA: ACM,
2007, pp. 127–134.

3772008 IEEE Symposium on Computational Intelligence and Games (CIG'08)


