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Abstract— This paper is an initial approach to create a
controller for the game TORCS by learning how another
controller or humans play the game. We used data obtained
from two controllers and from one human player. The first
controller is the winner of the WCCI 2008 Simulated Car
Racing Competition, and the second one is a hand coded
controller that performs a complete lap in all tracks. First, each
kind of controller is imitated separately, then a mix of the data
is used to create new controllers. The imitation is performed
by means of training a feed forward neural network with the
data, using the backpropagation algorithm for learning.

I. INTRODUCTION

Video games are becoming more important in the present
society, in a consumer product, as well as an opportunity for
researching in AI (artificial intelligence). But, every video
game player knows that the current AI in the games is very
far from the human intelligence. When we are playing a
game versus one or more NPC (non-player character) we
realize very fast we are not playing versus another human
and we find the way to beat the NPC, then the game becomes
boring. Some ways to avoid this is by creating AI that cheats
or playing in Internet against other human players, but this
is also a problem because with a lot cheats or playing versus
experienced human makes you lose in every game and the
game becomes boring as well.

The first step for the AI should be to create opponents as
intelligent as a human player, this will be a killer application
[1]. But it is not the only step, we have to bear in mind
that this AI must be able to adapt its behavior depending
on the opponent, that is, it has to play in the same level of
the human, neither better nor worse. In this way the AI will
provide a better entertainment for the player.

This paper aims to be a starting point of our work to create
competitive NPCs that imitates the human behavior. Learning
a behavior by imitation does not only mean that we can create
a NPC that plays like a human, but we can create a controller
that can play as well as its opponent, in the same level. This
would mean that the NPC player can adapt its behaviour
to play like the human it is playing against and adapt its
behaviour when the human improve his/her player skills to
remain competitive.

For our goals we have selected a realistic enough game
where a human plays versus one or more NPC and let us
compare the results with other researchers. The game is
TORCS (The Open Racing Car Simulator 1, see Figure 1),
an open car racing simulator that is being used in several
competitions of AI. This video game avoids the problem of
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complex behaviours like planning, we focus our research in
behaviours that take place in a short period of time.

Fig. 1. Screenshot of TORCS

We have used three different controllers in our experi-
ments, whose behavior has been learned. The first controller
is a human player that drives the car through the middle of
the road, the second one is a controller created by machine
learning which won a TORCS competition in 2008, and the
third one is a controller programmed by hand that performs
a complete lap in all the tracks of TORCS. In all the
experiments the controller created is a feed-forward ANN
[2] (Artificial Neural Networks) that was trained with data
generated by the controllers. The learning algorithm for the
ANN was backpropagation.

In the next sections we will see first some related work
of competitive AI in video games, specifically in racing
games as TORCS, adaptive AI in video games, and behavior
cloning. Next we will describe the domain we have selected
to achieve our objectives, the competition of TORCS. Then,
we will talk about the controllers used in the domain that
tried to imitate. In the next section we will describe the
process we have employed to create a controller that imitates
other and the experiments done. Then, we will show the
results of the experiments and finally we will conclude with
some remarks and the future lines of research.

II. RELATED WORK

Creating NPC players could be a hard task. As the
complexity and realism of the games grew, to program a NPC
is harder, and it means more time and more money to develop
the game. So the trend is to create video games where you
can play versus other human players through Internet, or use
AI techniques to create automatically NPC players.
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One wide area of researching is to create computational
intelligence in games is related to the ANN or neuroevolution
[3]. One example of this is NEAT (NeuroEvolution of
Augmenting Topologies) [4], an effective method to create
an ANN from scratch. NEAT starts with a small population
of random ANN with a very simple topology, i.e. a fully
connected network with only the input and the output layers,
that evolves increasing its complexity and adaptation to
the problem. Some games where NEAT has been applied
successfully are NERO [5] and more recently TORCS [6].
Indeed, we have used one controller created with NEAT in
our experiments that we will explain below.

One problem of NEAT is that the ANN created only take
into account one objective, the fitness value, and in some
cases this could be not enough. So some authors have added
multi-objective to the neuroevolution [7] creating a method
that can generate more than one NPC. All the NPCs created
with this method have diverse behaviors that are adapted to
the different objectives, this adds the possibility of showing
multiple behaviors while playing. Even swap the behavior of
the NPC when required.

Neuro evolution is not the only technique used to create
the AI in video games. For example, reinforcement learning
was used to create a multi-purpose bot for a FPS (first
person shooter) video game [8]. A cognitive architecture,
ICARUS, was also applied to create believable bots for FPS
[9]. More related to racing games an ant colony optimization
algorithm was used to improve a controller [10], genetic
programming was used to evolve a controller [11] and genetic
programming with multobjective evolution was used to create
diverse opponents [7].

As we have said before, creating an intelligent NPC should
not be the only goal of the AI. It is also needed to create
opponents that suppose a challenge for the human player,
this means that the AI of the games should be able to
change its behavior to adapt it to the player. In [12] the
authors use an approach called ’rapidly adaptive game AI’
to adapt the AI of the game to the player, specifically the
method applies continuously small adaptations to the AI
based on the observations and evaluation of the user actions.
Another example of adaptation is the Dynamic Scripting
[13], this technique is based on a set of rules that are used
for the game, whose weights to select one or another rule
are modified through a machine learning algorithm. Dynamic
Scripting was successfully applied to a commercial game
called Neverwinter Nights.

Some researchers focus their research in creating interest-
ing opponents instead of intelligent or adaptive ones. In [14]
the author evolved neural-controller opponents that made the
game more fun, that is, the evolutionary mechanism evolved
the opponents while were playing against the player to make
the game more fun instead of create optimal opponents that
always win.

Another way to create NPC is by means of the imitation
human behaviors [15]. The NPC player created in this way
would show the same intelligence that the human it is

imitating. A research field where imitation has been applied
is the RoboCup, a simulated league of soccer. In [16] the
authors clone the behavior of a RoboCup player using case
base reasoning. Another example is [17] and [18] where
the authors program robosoccer agents by modelling human
behaviors with successful results. A sort of games where the
imitation has also been applied are the FPS [19], in [20] the
NPC learnt to imitate a human in the combat mode, that
is the weapon that must be handling or how to shot in a
realistic way. There is also some research in imitating more
high-level human behavior from observation, FAMTILE [21]
is an architecture used in a strategic game that tries to learn
the context of the game and how it changes and then execute
the appropriate actions for that context.

III. TORCS COMPETITION

The TORCS game has some features that make it perfect
for researching. First, the game is a very realistic simulator
that has a sophisticated physic engine that takes into account
many aspects of the racing such as fuel consumption, colli-
sions or traction. TORCS also provides a lot of tracks, cars
with different features and several controllers for the cars.
The last important feature is that TORCS is open software
and that allows the researchers to make modifications to the
game and adapt it to their requirements.

The advantage of using a competition as a benchmarking
of our experiments is that we can compare our results with
other researchers. So we have selected the Simulated Car
Racing Competition [22] that takes place in some congress
as IEEE Congress on Evolutionary computation (CEC),
Computational Intelligence and Games Symposium (CIG) or
IEEE World Congress on computation Intelligence (WCCI).

In the competition the TORCS game has been modified to
allow external programs run as controllers. A client controller
connects with a server bot in the TORCS game, the server
sends to the client information about the status of the car
and the client sends to the server the actions that must be
executed. With this client-server architecture each program-
mer can program a controller in his/her preferred language
and then connect it with the game. Another advantage of the
architecture is that all the clients use the same information to
create the controller because the sensors information sent to
the clients is the same for all and no one can use information
relative to the track or other internal information that TORCS
manage.

The information provided by the server is related with
the lap (current lap time, best lap time, distance raced, race
position), the status of the car (damage, fuel, actual gear,
speed, lateral speed and R.P.M.), the distance between the
car and the track edges, the distance between the car and the
opponents and the spin of the wheels. The actions that can
be sent to the server to control the car are the acceleration
level, brake level, the gear and the steering of the wheel. For
more detailed information about the sensors and the effectors
see [22].
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IV. CONTROLLERS

In our experiments we use the data obtained from three
different controllers: a human player, the winner of the
WCCI 2008 competition and a hand coded controller. These
controllers will be described below.

A. Human player

Due to the information that the human perceives from
the game watching the monitor is much richer, much more
than the other controllers manage, instead of the human was
driving the car in a competitive way, he drove the car ignoring
some information like how is the next curve if it is to the left
or to the right, or how close is it. Thus, the human player
drove the car trying to go through the middle of the road,
with soft accelerations and brakes, braking much before the
next curve started and performing the curves with a moderate
speed without fast and sharp turns. The human tried to drive
the car as a programmed controller would do, but with the
mistakes that human makes.

B. NEAT controller

The second controller used is one created by Matt Sim-
merson by means of NEAT (a detailed description can be
found in [22]). This controller was the winner of the WCCI
2008 Simulated Car Racing Competition.

As inputs of the ANN created by NEAT the author selected
the current speed, the angle to track axis, the track position
with respect to left and right edges, the current gear selection,
the four wheels spin sensors, the current R.P.M and the 19
track sensors. All these inputs were scaled to the range [0,1].
The outputs of the ANN were the power (accelerate and
brake), the gear change and the steering. The two first are in
range [0,1] and the last one is in range [-1,1].

The fitness function used to evaluate the ANN in NEAT
took into account the distance raced, the R.P.M, the maxi-
mum speed reached and a value to measure of how much
the car stayed on the track.

Due to some restrictions of TORCS the controller only was
trained in one track. The track selected contained different
type of curves, to left and right, and also straights of varying
lengths.

C. Hand coded controller

The idea of creating another controller was due to the
human controller sometimes makes mistakes and the Sim-
merson’s controller does not perform one complete lap
in all the tracks and sometimes gets out from the track.
Thus, a hand coded controller was created with these two
requirements:

• to have the same outputs for the same inputs (does not
make mistakes, tries to be deterministic)

• to perform a lap without getting out of the track,
although the speed was not too high

To calculate the values for the acceleration and the brake
level, this controller calculate the speed that the car should
have, we called it the estimated speed. This is made by means

of the information obtained from the three front sensors,
which give the distance between the car and the edge of
the track. If the distance is large then the speed should be
high and if the distance is small the speed should be small
too (See Equation (1), where sum sensors is the sum of
the three sensors and α and β are predefined parameters).
With this value we calculated the difference (See Equation
(2)) between the actual speed and the estimated speed. If
the value is greater than 0 then the car should accelerate
and if the value is lesser than 0 then the car must brake.
The acceleration and brake values are proportional to the
absolute value of the difference of the actual speed and the
estimated speed (See Equations (3) and (4), where γ and δ
are adjustment parameters).

estimated speed = α · sum sensors + β (1)

difference = estimated speed − actual speed (2)

accelerate =
difference

estimated speed
· γ + 0.4 (3)

brake =
difference

estimated speed
· δ (4)

The steering value is slightly more complicated to cal-
culate than the brake and accelerate values. First, we have
to take into account whether the car is in a straight or in
a curve. We suppose that the car is in a straight when any
of the three front sensors has the maximum value, and in
a curve otherwise. In this case, the steering is calculated
as the difference of two of the three front sensors plus the
angle with the axis (See Equation (5), where dif sens is the
difference between the two front sensors, axis is the angle
between the car and the track and ζ and η are adjustment
parameters). If the car is in a curve then the steering is
calculated in a similar way but more track sensors are taken
into account (See Equation (6)), where sum dif sens is the
summation of the difference of the track sensors, θ is an
adjustment parameter, difference is the difference between
the actual speed and the estimated speed and the other values
are as in Equation (5))).

steering = ζ · dif sens + η · axis (5)

steering = θ · sum dif sens · difference + η · axis (6)

Finally the gear is calculated rounding the result of the
Equation (7), where λ is an adjustment parameter and speed
is the current speed of the car. For the gear the controller does
not allow to change the gear twice in less than a second.

gear = λ · speed (7)

V. CONTROLLER LEARNING BY IMITATION

For our goal of learning the behavior of the controller
we have used an ANN. The first step is to obtain the data
from the controller we want to imitate, then the ANN is
trained with the backpropagation algorithm and finally the
new controller is tested in the tracks.
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Instead of using all the data that the server of TORCS
provides us as the inputs of the ANN, we have selected only
some of them. So the inputs of the ANN are 28 and all are
scaled into the range [0,1]:

• current speed of the car
• angle of the car with the axis
• the current gear
• the lateral speed of the car
• the R.P.M.
• the four spins of the wheels
• 19 sensor values with the distance between the car and

the edges of the track

For the outputs, the data that must be sent to the server
from the client to control the car, we have used three, all in
the range [0,1]:

• the accelerate/brake value
• the gear
• the steering

The first output, the accelerate/brake value, is used for the
acceleration and the braking. When this value is higher than
0.5 that means the car must accelerate, so the brake value
is set to 0 and the accelerate/brake value is scaled from the
range [0.5,1] to the range [0,1] to set the acceleration. When
the value is lesser than 0.5 then the car must brake, so the
acceleration value is set to 0 and the accelerate/brake value
is scaled from the range [0,0.5] to the range [0,1] to set the
brake.

For all the experiments the ANN has 3 hidden layers of
28 neurons each one, were trained during 1000 cycles and
the learning rate was variable starting in 0.9 and finishing
in 0.0001. We use the data of 17 road tracks (See Figure
2), but only if the controller complete almost 3 laps. More
parameters were proved to train a controller for some tracks,
we chose these experimental setup because we get good
results with a good convergence in the error of the ANN.

Table I shows the number of patterns that have been
obtained per each controller.

TABLE I

NUMBER OF PATTERNS

controller number of patterns
human 257908

Simmerson 232251
hand coded 363853

VI. RESULTS

This section shows the results of all the controllers. For
the controllers learning by imitation we used the data of all
tracks to train the ANN of the controller and then test it
in each track. Although we test the controllers in the same
tracks where we get the data to train the ANN, we have to
bear in mind that the neural network does not learn perfectly
the patterns and with the same input the ANN gets a different
output. This means that the simulation will be different, so

(a) Track 1 (b) Track 2 (c) Track 3

(d) Track 4 (e) Track 5 (f) Track 6

(g) Track 7 (h) Track 8 (i) Track 9

(j) Track 10 (k) Track 11 (l) Track 12

(m) Track 13 (n) Track 14 (o) Track 15

(p) Track 16 (q) Track 17

Fig. 2. Tracks used: 2(a) CG Speedway number 1, 2(b) CG Track 2, 2(c)
CG Track 3, 2(d) Olethros, 2(e) Ruudskogen, 2(f) Street 1, 2(g) Wheel 1,
2(h) Wheel 2, 2(i) Aalborg, 2(j) Alpine 1, 2(k) Alpine 2, 2(l) E Track 1,
2(m) E Track 2, 2(n) E Track 3, 2(o) E Track 6, 2(p) E road, 2(q) Forza
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the learned controller will not have the same inputs as the
others controllers.

Table II, Table III and Table IV show the times obtanined
by the controllers described before in each track: the human
controller, the Simmeron’s controller and the hand coded
controller. Table V, Table VI and Table VII show the results
of the learnt controllers for the human, Simmerson’s and
hand coded controllers. Table VIII shows the results of a
controller created with the data of Simmeron’s controller and
human controller, Table IX shows the results of a controller
created with the human and hand coded controllers and
finally Table X shows the results of a controller created with
the Simmeron’s controller and the hand coded controller.
First column of the tables (track) is the number of the track
(See Figure 2). Second column (total time) is the total time
needed to complete the number of laps (third column). The
format of the time is 〈minutes〉 : 〈seconds〉.〈tenths〉 .
Fourth column (top speed) is the top speed reached by the
controller in a lap. And the last column, damages, are the
damages suffered by the car when it goes out of the track
or changes the gear with high R.P.M. Some controllers do
not complete a lap, in those cases the data of the column is
shown in italic font, between brackets and the data shown is
different: the total time column shows the time that the car
stayed in the track, the lap column shows a decimal number
with the proportion of the track that has been completed,
the best lap column shows an estimation of the time the car
would need to complete a lap and the last two columns show
nothing.

For all the experiments where a controller has been tried
to be imitated we realized that the gear value was not learned
properly. Thus, the gear change was made by coded and the
ANN output for the gear was not take into account. The
Tables V, VI, VII, VIII, IX and X show the data with this
modification in the controllers.

We can see that the Simmerson’s controller is the only one
of the three controllers that does not complete a lap in some
tracks. The human and the hand coded control perform the
3 laps in all the tracks.

If we compare the human controller (Table II) and the im-
itated human controller (Table V) we can see that the human
complete all tracks while the human imitated controller only
performs more than a half of a lap in one track, but never a
complete lap. The estimated best laps times for the imitated
human controller are greater than the best lap times of the
human except for the track which it is completed more than
a half of a lap.

For the Simmeron’s controller (Table III) and the imitated
Simmerson’s controller (Table VI) the results are more
similar. The imitated controller here does not complete all
the tracks that the Simmerson’s controller does, but the best
lap time is very similar in both controllers. We have to remark
here that the top speed of the imitated controller is greater
than the Simmerson’s controller and that could be the reason
that makes the cars go out of the track and not complete a
lap.

TABLE II

HUMAN CONTROLLER RESULTS

Track Total time Laps Best lap Top speed Damages
1 02:15.34 3 00:42.69 234 0
2 03:08.56 3 00:59.58 263 0
3 03:50.98 3 01:15.07 223 239
4 06:55.40 3 02:12.05 291 2961
5 03:35.74 3 01:16.38 242 0
6 04:39.00 3 01:29.23 270 0
7 04:42.22 3 01:31.48 262 0
8 07:04.71 3 02:16.92 261 1
9 04:23.71 3 01:25.25 229 0

10 07:59.63 3 02:36.17 246 592
11 05:35.28 3 01:49.26 232 14
12 03:52.13 3 01:16.34 252 5
13 04:48.03 3 01:33.30 222 0
14 05:03.90 3 01:38.40 274 0
15 05:04.61 3 01:40.58 254 4
16 03:52.74 3 01:14.73 257 0
17 04:59.64 3 01:37.66 289 0

TABLE III

SIMMERSON CONTROLLER RESULTS

Track Total time Laps Best lap Top speed Damages
1 02:27.08 3 00:47.68 178 0
2 03:37.63 3 01:10.97 181 0
3 03:56.37 3 01:17.66 173 29
4 08:24.52 3 02:43.25 161 623
5 04:15.91 3 01:23.74 164 0
6 06:07.52 3 01:54.30 177 353
7 05:09.56 3 01:40.86 187 0
8 [01:00.00] [0.37] [02:41.87]
9 04:59.90 3 01:36.21 160 6353

10 08:35.19 3 02:50.21 182 273
11 07:00.64 3 02:13.18 160 2362
12 [00:32.00] [0.37] [01:26.48]
13 [02:20.00] [1.45] [01:36.62]
14 05:37.83 3 01:50.94 197 0
15 [01:12.00] [0.63] [01:53.91]
16 04:24.12 3 01:26.56 186 0
17 06:50.26 3 02:14.94 165 0

TABLE IV

HAND CODED CONTROLLER RESULTS

Track Total time Laps Best lap Top speed Damages
1 02:41.91 3 00:52.63 215 0
2 03:57.27 3 01:17.26 238 0
3 06:32.10 3 02:09.52 203 0
4 12:14.99 3 04:02.83 244 0
5 06:06.60 3 02:00.54 196 0
6 05:43.85 3 01:52.88 258 0
7 05:59.36 3 01:54.35 253 107
8 09:41.70 3 03:11.52 253 0
9 06:20.38 3 02:05.16 193 0

10 12:17.65 3 04:04.20 232 0
11 08:39.68 3 02:51.37 221 0
12 04:44.75 3 01:33.11 239 0
13 06:34.75 3 02:10.08 210 0
14 05:23.85 3 01:45.79 267 0
15 06:45.80 3 02:13.25 241 0
16 05:39.67 3 01:51.31 233 0
17 07:19.79 3 02:24.10 283 0
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TABLE V

HUMAN IMITATED CONTROLLER RESULTS

Track Total time Laps Best lap Top speed Damages
1 [00:23.00] [0.35] [01:06.35]
2 [00:17.00] [0.24] [01:09.86]
3 [00:10.50] [0.11] [01:39.51]
4 [00:14.00] [0.09] [02:34.29]
5 [00:10.40] [0.11] [01:37.28]
6 [01:10.00] [0.41] [02:49.37]
7 [00:17.00] [0.18] [01:32.78]
8 [00:17.00] [0.09] [03:08.37]
9 [00:09.00] [0.08] [01:48.29]
10 [01:50.00] [0.31] [05:51.28]
11 [01:39.00] [0.94] [01:45.52]
12 [00:11.00] [0.11] [01:41.92]
13 [00:09.50] [0.1 ] [01:39.66]
14 [00:12.00] [0.09] [02:13.93]
15 [00:13.50] [0.11] [01:57.56]
16 [00:13.00] [0.15] [01:28.29]
17 [00:22.00] [0.21] [01:46.93]

TABLE VI

SIMMERSON IMITATED CONTROLLER RESULTS

Track Total time Laps Best lap Top speed Damages
1 02:26.43 3 00:47.45 178 0
2 03:36.34 3 01:10.56 182 0
3 03:54.25 3 01:16.60 174 190
4 08:12.44 3 02:39.97 161 722
5 [00:54.00] [0.59] [01:31.13]
6 [01:17.00] [0.75] [01:43.29]
7 05:03.98 3 01:39.58 192 0
8 [00:58.00] [0.37] [02:37.85]
9 [02:06.00] [0.86] [02:25.97]
10 08:46.89 3 02:48.47 186 460
11 06:47.36 3 02:07.30 164 2738
12 [00:33.00] [0.39] [01:24.94]
13 [00:45.00] [0.47] [01:36.34]
14 05:32.12 3 01:48.83 208 23
15 [01:12.00] [0.63] [01:55.02]
16 04:23.94 2 01:26.55 186 0
17 [01:07.00] [0.48] [02:19.90]

TABLE VII

HAND CODED IMITATED CONTROLLER RESULTS

Track Total time Laps Best lap Top speed Damages
1 02:42.26 3 00:52.16 219 0
2 03:59.88 3 01:18.01 224 0
3 06:31.10 3 02:08.67 199 0
4 [00:56.00] [0.22] [04:14.55]
5 06:03.19 3 01:59.18 201 0
6 05:46.23 3 01:53.50 227 0
7 07:53.25 3 02:07.88 227 620
8 09:44.15 3 03:14.32 227 0
9 06:14.62 3 02:02.88 201 0
10 12:17.18 3 04:04.05 223 0
11 08:35.30 3 02:50.16 213 0
12 05:01.56 3 01:38.29 223 668
13 06:21.47 3 02:05.52 221 0
14 05:45.10 3 01:49.87 256 240
15 06:48.46 3 02:14.27 217 0
16 05:43.09 3 01:52.96 231 0
17 08:05.94 3 02:38.60 215 0

TABLE VIII

SIMMERSON-HUMAN IMITATED CONTROLLER RESULTS

Track Total time Laps Best lap Top speed Damages
1 [00:23.50] [0.47] [00:49.58]
2 [01:21.50] [1.23] [01:06.39]
3 [42:00.00] [0.46] [30:27.55]
4 [00:17.50] [0.11] [02:41.67]
5 [00:11.50] [0.09] [02:01.45]
6 [01:10.50] [0.75] [01:34.24]
7 [00:44.00] [0.41] [01:48.27]
8 [00:29.00] [0.15] [03:07.44]
9 [00:11.00] [0.09] [02:04.81]

10 [01:35.00] [0.45] [03:29.26]
11 [00:24.00] [0.16] [02:33.48]
12 [00:50.00] [0.37] [02:14.01]
13 [00:46.00] [0.45] [01:41.52]
14 [01:06.00] [0.6 ] [01:49.98]
15 [00:40.00] [0.37] [01:48.65]
16 [00:54.00] [0.53] [01:41.17]
17 [00:50.00] [0.36] [02:19.04]

TABLE IX

HAND CODED-HUMAN IMITATED CONTROLLER RESULTS

Track Total time Laps Best lap Top speed Damages
1 [00:14.00] [0.23] [01:00.00]
2 [00:23.00] [0.28] [01:22.68]
3 [00:12.00] [0.11] [01:53.72]
4 [01:20.00] [0.44] [03:02.09]
5 [00:16.00] [0.11] [02:29.67]
6 [00:30.00] [0.25] [01:59.47]
7 [00:19.00] [0.19] [01:39.49]
8 [00:12.00] [0.06] [03:26.83]
9 [00:14.00] [0.09] [02:40.97]

10 [00:20.00] [0.07] [04:30.43]
11 [00:50.00] [0.45] [01:51.63]
12 [00:30.00] [0.28] [01:48.10]
13 [00:10.50] [0.08] [02:07.09]
14 [00:50.00] [0.31] [02:42.68]
15 [00:19.50] [0.12] [02:37.45]
16 [00:27.50] [0.2 ] [02:15.83]
17 [00:41.00] [0.23] [02:58.30]

TABLE X

SIMMERSON-HAND CODED IMITATED CONTROLLER RESULTS

Track Total time Laps Best lap Top speed Damages
1 02:27.62 3 00:47.45 178 0
2 03:37.59 3 01:10.70 182 0
3 [03:24.00] [1.72] [01:58.80]
4 [04:30.00] [1.59] [02:50.02]
5 [01:00.00] [0.61] [01:38.71]
6 [01:29.00] [0.75] [01:58.14]
7 05:08.45 3 01:40.89 192 0
8 [01:04.00] [0.38] [02:50.44]
9 05:47.86 3 01:45.93 161 7585

10 [01:40.00] [0.51] [03:17.36]
11 06:05.49 3 01:59.56 163 3136
12 [00:34.00] [0.38] [01:28.56]
13 05:33.20 3 01:35.55 173 4276
14 [00:39.00] [0.29] [02:14.45]
15 [03:28.00] [1.65] [02:06.19]
16 04:27.26 3 01:27.25 186 0
17 [01:20.00] [0.49] [02:43.74]
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The hand coded controller (Table IV) and the imitated
hand coded controller (Table VII) are the controllers that
perform more complete laps in all tracks, but they are also the
slowest controllers. The only track that is not completed by
the imitated hand coded controller is because the car jumps
with a bump and losses the control crashing against the wall
without recovering itself. In this case, the imitated controller
has the same best time lap than the hand coded controller,
but with more damage in some tracks. The speed in these
two controllers is different too, the imitated controller has
more top speed in some tracks and less in others.

The controller created with data from the human and the
Simmeron’s controller (Table VIII) does not complete a lap
like the imitated human controller. But the percentage of
completed laps in this controller is higher than in the others.
Something similar happens with the controller created from
the human and Simmeron’s controller data, the car does
not complete a lap and the percentage of completed laps
is higher than the imitated human controller. The last of the
three mixed controllers, the car that has been created with
the hand coded and Simmerson’s data (Table X), complete
a lap in more than the half of the tracks. The results of this
last controller are a mix between the hand coded controller
and the Simmeron’s controller, although more similar to the
imitated Simmeron’s controller. It is also remarkable that
there are some tracks that the Simmeron’s controller does
not perform and this last controller does.

A controller created with the data of the human, Simmer-
sons and handcoded controllers was not created due to we
did not get good results with mixed configurations, as we
show in Table VIII, IX and X.

VII. CONCLUSIONS

The first conclusion that we can remark from the results we
got is that it is very complicated to learn the human behavior
in a video game. This is due to several causes: neither the
human makes the same action in the same circumstances, nor
performs all actions in the proper way. The human makes a
lot of mistakes that have to resolve. This sort of data makes
completely impossible that an ANN could learn something
useful. Another problem is that humans use more information
than we provided to the ANN network.

We have probed that it is possible to learn a behavior from
non-human controllers. The data obtained from this sort of
controllers do not have the same problems as the human
data, so an ANN can learn its behaviour. But there is also
one problem related to this controller and it is that the gear
change has not been learned, despite of being probably the
easiest output to learn. Maybe it is due to the high amount
of data and due to the gear is also an input of the ANN.

In the experiments where we have used mixed data from
two types of controllers the results show that those controllers
do not work. The controller learned has mixed features of
both the controllers that have been used, but no one of these
features is learned properly, so the car goes out of the track
easily and the simulation ends.

VIII. FUTURE WORKS

There are some research lines that must be done in the
future to improve the results of the controllers. First step
should be performed is a pre-process of the data before use
it to train the neural network. Two ideas must be borne in
mind:

• the amount of data must be decreased removing dupli-
cated or very similar data

• the data patterns with the same input but different output
must be removed to avoid a wrong learning process

Another idea is to train the controllers with some data of
one controller. For example, the data of the straights of one
controller that performs the straights good and the data of
the curves of another controller that make well the turns.

One step to perform if we want to be able to imitate the
human behavior is increase the information used to train the
ANN. That is, there is a lack of information in the data to
create a controller that imitates a human because the human
player senses more information from the domain than the
other controllers and the human also can remember and
improve his/her behavior in each lap. Another problem with
the data obtained from the human player is that he is not
perfect and does not perform the same action under same
circumstances.

The ANN is another point that must be improved. With the
current ANN there is not context information, the controller
does not remember its past actions and can not take a
decission with that information. Thus, it could be a good idea
to use recurrent neural networks and test them with different
learning algorithms like backpropagation through time [23]
or RTRL (Real Time Recurrent Learning) [24].
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