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Abstract—We consider the problem of communicating over a can be viewed as the mutual information achieved in a certain
multiple-input multiple-output (MIMO) real valued channe | for  family of statistical models (in the current scope, all zerean
which no mathematical model is specified, and achievable ras Gaussian channels), when the model parameters match the

are given as a function of the channel input and output se- - S .
quences known a-posteriori. This paper extends previous eilts empirical ones. In communication without feedback we say

regarding individual channels by presenting a rate function for  that a given rate functiomRe.,,(x,y) is ach_ievable with an
the MIMO individual channel, and showing its achievability in  input distribution Q(x) if for large block sizen — oo, it

a fixed transmission rate communication scenario. is possible to communicate at any raeand an arbitrarily
small error probability is obtained whenewRy,,,(x,y) > R.
The communication system is required to emit blocks with
We consider a channel, termediadividual channglwhere probability distributionQ(x), which is possible due to the
no specific probabilistic or mathematical relation betweamse of randomization. By placing this additional constraia
the input and the output is assumed. This channel is Bave aside the question of adapting the input distribitson
extreme case of an unknown channel. Achievable rates @nat the current framework attempts at achieving the ecwadiri
characterized using only the input and output sequencashwh’mutual information” rather than the empirical "capacity”
capture the actual (a-posteriori) channel behavior. Thistmf Another reason for the fixed prior is avoiding degenerate
view is similar to the approach used in universal sourcer@disystems which may transmit only "bad” sequences with low
of individual sequences where the goal is to asymptoticalfgr zero) R...,,. This constraint is further discussed inl [3],
attain for each sequence the same coding rate achieved bygéetion VIII.C.
best encoder from a model class, tuned to the sequence. Thishe main result of this paper is that for the multiple-
framework is an evolution of those considered in Shayeviput multiple-output (MIMO) channeR! — R” (i.e. with
and Feder[1] and Eswaran et. all [2] and is presented in mer&ansmit andr receive antennas) the rate function defined
detail in our papers[[3] and[4], together with the relevarielow is asymptotically achievable, in the fixed rate case:
background. We will give a brief introduction below.

|. INTRODUCTION

The setting we consi_der includes_, a single encoder receiving Remp(X,Y) = llog - ‘ )
a message to transmit and emitting symbeojse X,i = 2 R(xy)(xy)’
1,2,..,n and a decoder receiving a sequence of symbols
yi € y i = 1,2,..,n and attempting to reconstruct thewhere then x ¢ matrix X denotes the channel input over
message. In the present paper the input and output symb®ig1bols, and the: x » matrix Y denotes the OUtpURXX =
are real-valued vectors, i.6t = R' andY — R". The =X'X, Ryy = 2YTY andR xyxy) = L[XY]7[XY]
relation betweenx — [xl,---,wn]T andy = [yl,---,yn]T are the input, the output and the joint emplrlcal correlatio

is unknown to the encoder and decoder. We consider tWatrices, respectively. This is a generalization of thailtes
communication scenarios: with feedback (possibly imp)fe of [3] where the rate functiomRen,, = %10g51ﬁ(x7y) 2
and without feedback. For the case in which there is ngas proved to be achievable for real valued SISO channel
feedback the communication system transmits in a const@t— R (p denotes empirical correlation). As ifn][3], the
rate, and outage is unavoidable, i.e. one cannot guarantegr@of is geometrically intuitive. The results easily exdaa the
small probability of error in all circumstances. In the caseomplexMIMO case, and to rate function using the empirical
feedback exists, the communication rate may be dynamicadigvariance(rather than the correlation), but we focus here on
adapted and outage may be prevented. In both cases we asshegimpler case.
common randomness exists in the encoder and the decodeThe paper is organized as follows: in Secfidn Il we explain
The results in the current paper extend the previous resutise motivation for this rate function and its relation to the
yet only for the first case, of transmission in a constant rat@robabilistic Gaussian channel, in Sectlod Il we present i
The performance is measured by a rate functidn,, : detail the main result, which is proven in Sectfod IV. Settio
X" x Y™ — R representing an empirical measure of th¥]is devoted to comments and further research items.
achievable rate between the channel input and channeltputpuWe use lowercase boldface letters to denote vectors, and
over n channel uses. In examples here and[in[[3][&l.., uppercase boldface letters to denote matrices. We usertre sa
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notation for random variables and their sample values, had t 1) Non-negativity: Remp(X,Y) > 0. This is evident from

distinction should be clear from the context. the factRemp(X,Y) is the mutual information between

two Gaussian vectors with the respective covariances. It
Il. ORIGIN OF THE RATE FUNCTION will also be shown in passing as part of the derivation
Consider the channel from € R! to y € R” which are real in Sectior[ V. _ _ _

valued vectors. For the additive white Gaussian noise (AWGN 2) Invariance under linear transformations: Any in-

MIMO channely = Hx + v with v ~ N(0,0°T), andx ~ vertible linear matrix operation on the input or output

N(0,T) it is well known that the mutual information is (for example, multiplying any of the input or output
signals by a factor, adding signals, etc) does not change

I %HTH‘ @) Rennp(X.Y), i.€. Reanp(XGry, YGy) = Rennp(X,Y).
g Proof: Suppose we multiplyX and Y by arbitrary

see for example [S][6]. This reflects the maximum achievable ~ MatricesGy ix; and Gy .« respectively. DefineX’ =

rate with the fixed covariance matrizxx? = I, and is some- XG, then ‘R’XX‘ = [1XTX/| = ‘GwRXXGw

times termed thepen-loop MIMO capacitysince equal power ’ A ‘ . 2 o : ;N

is a reasonable choice when the transmitter does not know the Rxx| |Gal". And likewise forY. Since[X', Y] =

channel. A more general form of the mutual information is  [x vy] . { G, 0 then from the same consider-

1
I(x;y) = 5 log

obtained by assuming,y are any jointly Gaussian random 0 Gy X X
vectors and writing: ations we V\;i” have R’(Xy)(xy)‘ = R(Xy)(xy)‘ .
hx) = %10g|27re-cov(x)| @) < C_(fy = [Revyoom 1G22 2, therefore
hMy) = %log |2e - cov(y)| 4 3) g];rrf]?:]:gt)rr;:Cf??j:(l}c;?tﬁ?)dienge(nil(’;g(): o (35X
h(x,y) = %10%; 27T€'COV([ ; D‘ (5) [1l. T HE MAIN RESULT
Therefore: Theorem 1 (Non-adaptive, continuous MIMO channel)

) V()| - [cov(y)| Given the channeR? — R", define the input overn symbols
cov(x)| - [cov(y i ;
I(x;y) = h(x)+h(y)—h(x,y) = = 1o [ e as ann xt ma}rleX, and the ?utgut as am x r matrix
2 |COV([Y])| Y. LetRXX = ZX X, Ryy = ;Y Y and R(XY)(XY) =
) ) _(6 LIXY]T[XY] be the input, the output and the joint empirical
where the factor2we cancel out since the dimension of”?

. . X ) correlation matrices, respectively. Define the rate fuortti
the covariance matrix in the denominator is the sum of the

dimensions in thg nominator. The expressi@h (5) i; more 1 fixx‘~ RYY‘
general than[{2) since it does not assume the noise is white, RempX,Y) = -log | ———— @)
and is suitable for our purpose since it expresses the mutual 2 R(xy)(xy)‘

information through properties of the input and output vest - o )

without using an explicit channel structure. For the casthef 1hen for every’. > 0, a positive definit¢ x ¢ matrix A, and
AWGN MIMO channel it yields the same value & (2). For thg = ¢ + r there exists random encoder-decoder pair of rate
particular scalar case whese y are scalars with variances/t Over block sizen, such that the distribution (t)f ”_119 input
0%, o2 and correlation factop, Equation [(B) evaluates to S€quence i ~ N™(0,A;) and for anyy < 1 — Z5= the

o) 1 1 : : robability of error for any message given an input sequence
é;};’e‘y) =zlog (1#’2)’ as previously obtained for the SISO?( and output sequenc¥ is not greater thanP, if:

The empirical rate function we defined [d (1) is an empiric log(P,) log(n)  log(CL)
version of the mutual information expressionlih (6), exdapt a)% <7 Remp(X, Y) + n tr/2] n
the covariance matrices are replaced by empioatelation (8)
(rather than covariance) matrices, i.e. we do not cancel tH8€re
mean. WhenRx x| = 0 or [Ryy| = 0 (which leads also 1 9 2\t
to |R(Xy)(xy)| = 0) , the rate functlon will be _defmed_by CL= Tt (i) ot[r/2] ((1 o —t—r+1 + ;) 9)
removing the columns &X or Y (respectively), which are lin- 2
early dependant on the others, until these determinantstec Specifically, for every > 0 and~ < 1 there existsn large
positive. It is not important which columns are removed tgnough so that the probability of error is not greater th&n
break the linear dependence, due to this function’s inuaga if:
to linear transformation (Properky 2 below). For the case of R<7v: Remp(X,Y)—0 (20)

Y =0 or X =0 we defineRemp = 0. )

The rate function has the following properties which are ex- 1he theorem almost directly follows from the next lemma

pected from an empirical metric of the “mutual information”Which we will prove subsequently:




Lemma 1. For any n x r matrix Y, the probability of
Renp(X,Y) > T where X is randomly drawnX ~
N™(0,A,) is bounded by:

Pr{Remp(X,Y)>T} < CpL- ntlr/2] exp(—y-n-T) (11)

For any~ in the range0 < v < 1 — =1 and whereC}, is
defined in[(®).

Note that the bound does not depend &p. To prove
xp(n) is randomly gener-
matrix distribution A (0, A,)
the codebook itself. The encoder sends thwh codeword,
and the decoder uses maximum empirical rate decoder
chooses:

W = argmax{ Remp(Xom; Y)} (12)

reminder, QR decomposition of a mati, «, = Q. xxRixk
(with QTQ = I and R upper triangular) is performed by
Gram-Schmidt process. We start from the left columacdind
work our way to the last one. At each time we take a column of
A and split it to the part which can be represented by a linear
combination of the columns to the left of it (equivalently, t
the columns ofQ already generated), and the "innovation”,
i.e. the part which is orthogonal to the subspace generated b
the previous columns. The vector representing the innowati
is normalized, and becomes the respective colum@ oéand

ft8 power becomes the diagonal elemenRinThe coefficients

. The common randomness ISrepresenting the part of the vector which is in the subspace

of previous columns become the elementsRofabove the
Hfagonal. Another important property of QR decomposit®n i
that the determinant cA” A can be written in terms of the
diagonal elements iR: [ATA| = |[RTQTQR| = [R"R| =

where ties are broken arbitrarily. By using Lemfa 1 and tHR/|> = Hle RZ.

union bound, the probability of error givéd,,, Y is bounded
by:

Pi(Xo, Y) <

< Pr

U (Remp(Xim; Y) = Romp(Xu; Y))

m#w
<exp(nR)-Cy, - ntlr/21 exp(—7 - 1+ Remp(Xw;Y))
= Cr - n' Tl expn(R = 7 - Remp(Xw; X)) (13)

|Xw

Therefore if [8) is satisfied, theR{"” (X,,, Y) < P., which

Now define the diagonal of the upper triangular matrix in the
QR decomposition of the matricé§, Y andZ respectively to
be the vectora, b and[c,d]. l.e.if X = Q,R,, Y = Q,R,
andZ = Q.R, thena = diag(R.), b = diag(R,), and
[c,d] = diag(R.). The lengths of the vectore,d are r,t
respectively, so that they overlap with the columnsYofand
X in the matrixZ. We have:

Rocx|-[Ryv| [1x7x| [2YTY] [T, @?TTL, 8
A(XY)(XY)‘ |%ZTZ‘ [[io ¢ led?
(16)

proves the first part of the theorem. The second part followte that thel factors cancel out because the matrix dimen-

directly from the first part. For any < 1 ando > 0 there
is n large enough so that the condition< 1 — % is

sions are andr in the nominator and+r in the denominator.
Since the Gram-Schmidt process operates sequentially from

satisfied, and then could be increased till the redundancy irthe first column to the last, and the firstcolumns ofZ and

@), % - t(r/ﬂw - % would be smaller thaid

(note thatC'y, is decreasing im), thereforePe(w)(Xw,Y) <

P, will be satisfied if [ID) is satisfied. O
IV. PROOF OFLEMMA 1
To prove Lemmdll we use the Chernoff bound:
Pr{Remp(X,Y) > T} =
= Pr{exp(nyRemp(X,Y)) > exp(nyT)} <
E Remp(X,Y
< exP(ny Fomp( ) = Lexp(—nnT) (14)
exp(nyT)
To prove the lemma we need to calculate
Yon
‘RXX‘ : RYY‘ ’
L = Eexp(nyRemp(X,Y)) = F -
R(XY)(XY)‘
(15)

where the expected value is taken with respectXto The
remainder of this section is devoted to upper boundinyVe
will first assume that\,, = I;, i.e. X ~ N™(0,1), and then
extend to generah,.

Y are equal, we will havé = c. Therefore we can write:

(

Note thata; andd; both relate to the same vector, th¢h
column ofX. The ratio is the ratio between the innovation
of the i-th column of X with respect to the subspace spanned
by previous columns aX alone (nominator) or these columns
together with the columns oY (denominator). Obviously
from this reasord;| < |a;| (and thereforeRe,,,(X,Y) > 0
- Property[1).

The key observation in this derivation is as follows: coesid
a sequential drawing of the columns Xf and calculation of
the factorsg—:. Since thei-th column ofX is chosen isotrop-
ically and independently of the previous columns, the value
of previous columns does not affect the distribution of the
innovationsd;, a; (only the number of dimensions in previous
columns does). Using this observation which we will prove
subsequently, we would be able to brefakepresented as the
expected value of a produdi{17) into a product of expected

t

=11

R(xy)(xy) ‘ i=1

] ]

a;

i)

T

(17)

Define Z = [Y,X]. We perform a QR decomposition ofvalues (equation$§ (19)-(P0)), and the proof is completea by

X,Y andZ in order to obtain more friendly expressions. As

gtedious) calculation of these expected values.



To show the independence af,d; in previously drawn Therefore by induction:
values, denote bX! a matrix including the columns: to o
i of X, and byx; the i-th column. Define a a unitary x n R R ‘ L e\ @3 o
matrix Q whose firsti — 1 columns span the subspace spannelf = £ | —————F = EH (d—z) = H D
by the firsti — 1 columns ofX, its nextr columns extend this R(XY)(XY)‘ =1 " i=1
subspace to cover also the columns subspac¥ ,0énd the (20)
nextn — (i — 1) — r columns complete it to an orthonormal Now we boundD; (using the previously defined Gaussian
basis. This matrix does not depend X4 and specifically on vectorz):
the columni. We assume that the columns Wt are linearly

independent (we will relax this assumption later). Also, in a? /2 H ”||
probability one, assuming > t + r, the columns ofX} ™! D; = (ﬁ) |2 || =
are linearly independent of each other and of the columns of ’ _ o )
Y. To see this, it is easy to show that the projection of each Z”T ! 23 /
column in any direction orthogonal to the subspace already =E|1+ ﬁ =
spanned by previous ones (includifig), is also Gaussian =Ty ,
therefore has probability to be0, as long as there exists such (a) (1 I E)W/ _
an orthogonal vector, i.e. the number of previously gererat hNXEz(T) s
vectors is smaller than. smox2(n—i—r+1)
R T

-ds-dh =

Now definez = Q7x;. Sincex; ~ N(0,I,.,) also T R lem
z ~ N(0,1,x,). The firsti — 1 elements ofz represent the // (1 + S> or/2[ (1) =T (n—i—r+l)
projections ofx; to the subspace spanned by previous columns 2 2
of X, and the next elements represent the projections to the
subspace spanned by columns¥of Soa? collects the energy

1
T 9(n—i+1)/2T (%) T (nfi;rJrl) ’

of all elements except the first- 1, andd? collects the energy c1
of all elements except the first- 1 + . To see this formally, P ol lmunnimrot e
in the Gram-Schmidt process the coefficients of the prajacti (s +h) s 7 e 7 dsedh=

of x; on the subspace spanned &y ' are Q"' x;, and

1 (I—y)n—i—r—1
L . i 1T . . an v 2
the projection itself iQ}'Q:~'" x;, therefore the innovation U // w w
) i—1 '_1T . ’—lT 0 U+1 1}—|—1
is v = x — Q7 Q) x4 SinceQ] " v; = 0 and w o .
Q?Tvi = Q?TXZ' we have a? = ||V1H2 = HQTVi"Q = . efw/Qm -dw - dv = ¢ / w2 efw/de .
i—1T 2 0 2 ) w=0
1 vil| = = ||z"||” and similarly, Cu
QT | ‘ { Qr"x; } I=1 g - a=mpsin
2 i—14r yi—14rT_ || 2 . ! ’ Y (21)
2 = Hxi— 1 1 xl‘L = |z.||". Therefore o\t v v
a;,d; are independent oY and the previous columns &,

Cy

and can be given by norms over parts of a Gaussian i.i.d.
vector of lengthn. Defining where in (a) we used independent Chi-Squared distributed

and in (b) we changed variables framh to w = s + h,v =

s/h, with inverse transformation = 5w, h = +1w and
a; n i1 a; yn 18 ) 1 ) ) ) ( +1)
D; = i X)) =F((= o1 dww eth
<(dz) 1 > (<dz> > (18)  JacobianJ ! = Dsh ‘ 1/h  —s/h? S = e

The first integral in the expression above evaluates to:

Where the equality is due to the independence shown above, B M i+1 22)
we have for anyt = 1,2, ..., ¢ v 2

By definition of T(). The second integral
behaves _like vw# near v = 0 and like
Xf1>‘| v

Yn—i—r— —y)n—itl —r—2

2 2 = v~z atv — oo. Therefore
it will exist (converge) iff the power ofv near0 is larger
than —1 and atoo is smaller than—1. The first condition is

X’fl)] = AoniorZl 5 1= (1=y)n > itr—1=y < 1-i=l

eI (%) -

n

The other condition always holds since> 0. Note that since
(k— a:\ 7" the power ofv—}rl is larger by more than 1 than the power of
(i) ) >
i=1

(19) w it is positive (when the first condition holds). Therefore we
can bound:




Comparison with MIMO capacity: The scheme above

()it achieves the mutual information of a Gaussian MIMO channel
o < /OO < 1 > R but not its capacity. Achieving the capacity requires aaltin
Y v—o \max(v, 1) of the input distribution, which for the known AWGN channel
2 2 2 2 y = Hx + v is performed by SVD and water pouring] [5].

1—y)n—i—r+1 + r = 1—y)n—t—r+1 + r The strength of the scheme is in the lack of any assumptions
(23) about the probability distribution, which make it appliéafor

Combinin , andT23) we obtain: exampl_e for non Gaussian noise or one that depends on the
¢ KZD [(22) and.(23) transmitted signal.
p._ T (2= . 2 L2 Exploiting temporal correlation: In the current results, as
T (5) T (=it l—ymn—-t—r+1 r in previous ones[|3], the rate function depends on the zero

(24) order empirical probability, and lacks the ability to explo
Since L results in a rate loss of log L, andT (“=*1) temporal correlation. However the results can be used to
is superexponential im, we would like to express moreexploit such correlation in the SISO or MIMO channel, in
explicitly the dependence om. UsingI'(t + 1) = tI'(¢) with a crude way, by applying the scheme on blocks:athannel
t=n=1=2 i = 1,2, .[r/2] we can obtain the bound uses. The rate function over blocks is always superior to the
single letter case, and the penalty is an increase in the fixed

n—t+1 s
Fgfilﬂ)‘ < (ﬁ)( /2] (25) redundancy.
r (f) 2 Using empirical covariance instead of correlation:When
therefore the matricesR in (@) are replaced with the empirical correla-
N tion C (whereCx = n~1(X —n '17X)7(X — n~'17X)),
D; < (%) ) ( 2 + 2) (26) the derivation is similar, except projection on an addion
r (%) (I—yn—t—r+1 r dimension (the all-ones vector) precedes the other piojext
and The results are the same with a loss of one dimension:
, +fr/2] vy < 1-— HTT andn > t + r are required, and there is a
L=T]D: < (%) ( 2 N g)t ~ small variation inCy. _
1l ¢ It (%) I—n—t—r+1 7 The complex MIMO channel: The results easily extend to

+r/2] thecomplexvalued MIMO channel, using the same technique.
=Cr-n (27)  The main difference is a double number of degrees of freedom

Substituting the above int@ (114) proves Lemima 1 figr= in the derivation ofD;, which doubles the rate compared to
I. The two assumptions on the parameters of the problem Fguatiortl. o
have made in order fof. to be bounded are (a) > ¢+  Adaptivity: In [3][4] we presented a communication
which was needed in order that each new columXafould Scheme using a low rate feedback, which dynamically adapts

not be spanned by the previous columns and the columnst# transmission rate and achieves the rate functions utitho
Y in probability 1, and (byi < ¢ : v < 1 — &=L — ~ - outage. Such schemes are of higher practical interest. It is
) p— . n

1 — =1 is needed for the existence D;}!_,. possible to show that the adaptive scheme 6f [3][4] achieves

Suppose now thaX ~ A™(0, A,). Using the Cholesky de- Remp Of (@) up asymptotically vanishing redundancy, and up
composition we can define a coloring matik, W7W = A, 0 a set ofx sequences having vanishing probability.
so thatX = W - X, andX,, ~ N"™(0,1). Since by Property
the rate function is invariant to a linear transformatidn o
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