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Abstract—We consider the problem of communicating over a
multiple-input multiple-output (MIMO) real valued channe l for
which no mathematical model is specified, and achievable rates
are given as a function of the channel input and output se-
quences known a-posteriori. This paper extends previous results
regarding individual channels by presenting a rate function for
the MIMO individual channel, and showing its achievability in
a fixed transmission rate communication scenario.

I. I NTRODUCTION

We consider a channel, termed anindividual channel, where
no specific probabilistic or mathematical relation between
the input and the output is assumed. This channel is an
extreme case of an unknown channel. Achievable rates are
characterized using only the input and output sequences, which
capture the actual (a-posteriori) channel behavior. This point of
view is similar to the approach used in universal source coding
of individual sequences where the goal is to asymptotically
attain for each sequence the same coding rate achieved by the
best encoder from a model class, tuned to the sequence. This
framework is an evolution of those considered in Shayevitz
and Feder [1] and Eswaran et. al. [2] and is presented in more
detail in our papers [3] and [4], together with the relevant
background. We will give a brief introduction below.

The setting we consider includes a single encoder receiving
a message to transmit and emitting symbolsxi ∈ X , i =
1, 2, .., n and a decoder receiving a sequence of symbols
yi ∈ Y, i = 1, 2, .., n and attempting to reconstruct the
message. In the present paper the input and output symbols
are real-valued vectors, i.e.X = R

t and Y = R
r. The

relation betweenx = [x1, ..., xn]
T and y = [y1, ..., yn]

T

is unknown to the encoder and decoder. We consider two
communication scenarios: with feedback (possibly imperfect)
and without feedback. For the case in which there is no
feedback the communication system transmits in a constant
rate, and outage is unavoidable, i.e. one cannot guarantee a
small probability of error in all circumstances. In the case
feedback exists, the communication rate may be dynamically
adapted and outage may be prevented. In both cases we assume
common randomness exists in the encoder and the decoder.
The results in the current paper extend the previous results,
yet only for the first case, of transmission in a constant rate.

The performance is measured by a rate functionRemp :
Xn × Yn → R representing an empirical measure of the
achievable rate between the channel input and channel output,
over n channel uses. In examples here and in [3][4],Remp

can be viewed as the mutual information achieved in a certain
family of statistical models (in the current scope, all zeromean
Gaussian channels), when the model parameters match the
empirical ones. In communication without feedback we say
that a given rate functionRemp(x,y) is achievable with an
input distributionQ(x) if for large block sizen → ∞, it
is possible to communicate at any rateR and an arbitrarily
small error probability is obtained wheneverRemp(x,y) > R.
The communication system is required to emit blocks with
probability distributionQ(x), which is possible due to the
use of randomization. By placing this additional constraint we
leave aside the question of adapting the input distribution, so
that the current framework attempts at achieving the empirical
”mutual information” rather than the empirical ”capacity”.
Another reason for the fixed prior is avoiding degenerate
systems which may transmit only ”bad” sequences with low
(or zero)Remp. This constraint is further discussed in [3],
section VIII.C.

The main result of this paper is that for the multiple-
input multiple-output (MIMO) channelRt → R

r (i.e. with
t transmit andr receive antennas) the rate function defined
below is asymptotically achievable, in the fixed rate case:

Remp(X,Y) =
1

2
log





∣
∣
∣R̂XX

∣
∣
∣ ·
∣
∣
∣R̂Y Y

∣
∣
∣

∣
∣
∣R̂(XY )(XY )

∣
∣
∣



 (1)

where then × t matrix X denotes the channel input overn
symbols, and then× r matrixY denotes the output.̂RXX =
1
nX

TX, R̂Y Y = 1
nY

TY and R̂(XY )(XY ) = 1
n [XY]T [XY]

are the input, the output and the joint empirical correlation
matrices, respectively. This is a generalization of the result
of [3] where the rate functionRemp = 1

2 log
(

1
1−ρ̂(x,y)2

)

was proved to be achievable for real valued SISO channel
R → R (ρ̂ denotes empirical correlation). As in [3], the
proof is geometrically intuitive. The results easily extend to the
complexMIMO case, and to rate function using the empirical
covariance(rather than the correlation), but we focus here on
the simpler case.

The paper is organized as follows: in Section II we explain
the motivation for this rate function and its relation to the
probabilistic Gaussian channel, in Section III we present in
detail the main result, which is proven in Section IV. Section
V is devoted to comments and further research items.

We use lowercase boldface letters to denote vectors, and
uppercase boldface letters to denote matrices. We use the same
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notation for random variables and their sample values, and the
distinction should be clear from the context.

II. ORIGIN OF THE RATE FUNCTION

Consider the channel fromx ∈ R
t to y ∈ R

r which are real
valued vectors. For the additive white Gaussian noise (AWGN)
MIMO channely = Hx + v with v ∼ N (0, σ2I), andx ∼
N (0, I) it is well known that the mutual information is

I(x;y) =
1

2
log

∣
∣
∣
∣
I+

1

σ2
HTH

∣
∣
∣
∣

(2)

see for example [5][6]. This reflects the maximum achievable
rate with the fixed covariance matrixExxT = I, and is some-
times termed theopen-loop MIMO capacity, since equal power
is a reasonable choice when the transmitter does not know the
channel. A more general form of the mutual information is
obtained by assumingx,y are any jointly Gaussian random
vectors and writing:

h(x) =
1

2
log |2πe · cov(x)| (3)

h(y) =
1

2
log |2πe · cov(y)| (4)

h(x,y) =
1

2
log

∣
∣
∣
∣
2πe · cov

([
x

y

])∣
∣
∣
∣

(5)

Therefore:

I(x;y) = h(x)+h(y)−h(x,y) =
1

2
log

[
|cov(x)| · |cov(y)|

|cov([xy])|

]

(6)
where the factors2πe cancel out since the dimension of
the covariance matrix in the denominator is the sum of the
dimensions in the nominator. The expression (6) is more
general than (2) since it does not assume the noise is white,
and is suitable for our purpose since it expresses the mutual
information through properties of the input and output vectors
without using an explicit channel structure. For the case ofthe
AWGN MIMO channel it yields the same value as (2). For the
particular scalar case wherex, y are scalars with variances
σ2
X , σ2

Y and correlation factorρ, Equation (6) evaluates to

I(x;y) = 1
2 log

(
1

1−ρ2

)

, as previously obtained for the SISO
case.

The empirical rate function we defined in (1) is an empirical
version of the mutual information expression in (6), exceptthat
the covariance matrices are replaced by empiricalcorrelation
(rather than covariance) matrices, i.e. we do not cancel the
mean. When|R̂XX | = 0 or |R̂Y Y | = 0 (which leads also
to |R̂(XY )(XY )| = 0) , the rate function will be defined by
removing the columns ofX or Y (respectively), which are lin-
early dependant on the others, until these determinants become
positive. It is not important which columns are removed to
break the linear dependence, due to this function’s invariance
to linear transformation (Property 2 below). For the case of
Y = 0 or X = 0 we defineRemp = 0.

The rate function has the following properties which are ex-
pected from an empirical metric of the “mutual information”:

1) Non-negativity: Remp(X,Y) ≥ 0. This is evident from
the factRemp(X,Y) is the mutual information between
two Gaussian vectors with the respective covariances. It
will also be shown in passing as part of the derivation
in Section IV.

2) Invariance under linear transformations: Any in-
vertible linear matrix operation on the input or output
(for example, multiplying any of the input or output
signals by a factor, adding signals, etc) does not change
Remp(X,Y), i.e. Remp(XGx,YGy) = Remp(X,Y).
Proof: Suppose we multiplyX and Y by arbitrary
matricesGx,t×t andGy,r×r respectively. DefineX′ =

XGx then
∣
∣
∣R̂′

XX

∣
∣
∣ =

∣
∣ 1
nX

′TX′
∣
∣ =

∣
∣
∣GxR̂XXGx

∣
∣
∣ =

∣
∣
∣R̂XX

∣
∣
∣ · |Gx|

2. And likewise forY. Since[X′,Y′] =

[X,Y] ·

[
Gx 0
0 Gy

]

then from the same consider-

ations we will have
∣
∣
∣R̂′

(XY )(XY )

∣
∣
∣ =

∣
∣
∣R̂(XY )(XY )

∣
∣
∣ ·

∣
∣
∣
∣

Gx 0
0 Gy

∣
∣
∣
∣

2

=
∣
∣
∣R̂(XY )(XY )

∣
∣
∣ · |Gx|

2 · |Gy|
2, therefore

the factors cancel out andRemp(X
′,Y′) = Remp(X,Y)

3) Symmetry: Remp(X,Y) = Remp(Y,X)

III. T HE MAIN RESULT

Theorem 1 (Non-adaptive, continuous MIMO channel).
Given the channelRt → R

r, define the input overn symbols
as ann × t matrix X, and the output as ann × r matrix
Y. Let R̂XX = 1

nX
TX, R̂Y Y = 1

nY
TY and R̂(XY )(XY ) =

1
n [XY]T [XY] be the input, the output and the joint empirical
correlation matrices, respectively. Define the rate function

Remp(X,Y) =
1

2
log





∣
∣
∣R̂XX

∣
∣
∣ ·
∣
∣
∣R̂Y Y

∣
∣
∣

∣
∣
∣R̂(XY )(XY )

∣
∣
∣



 (7)

Then for everyPe > 0, a positive definitet× t matrixΛx and
n ≥ t + r there exists random encoder-decoder pair of rate
R over block sizen, such that the distribution of the input
sequence isX ∼ Nn(0,Λx) and for anyγ < 1 − t+r−1

n the
probability of error for any message given an input sequence
X and output sequenceY is not greater thanPe if:

R ≤ γ · Remp(X,Y) +
log(Pe)

n
− t⌈r/2⌉

log(n)

n
−

log(CL)

n
(8)

where

CL =
1

Γt
(
r
2

)
2t⌈r/2⌉

·

(
2

(1 − γ)n− t− r + 1
+

2

r

)t

(9)

Specifically, for everyδ > 0 and γ < 1 there existsn large
enough so that the probability of error is not greater thanPe

if:
R ≤ γ · Remp(X,Y) − δ (10)

The theorem almost directly follows from the next lemma
which we will prove subsequently:



Lemma 1. For any n × r matrix Y, the probability of
Remp(X,Y) ≥ T where X is randomly drawnX ∼
Nn(0,Λx) is bounded by:

Pr{Remp(X,Y) ≥ T } ≤ CL · nt⌈r/2⌉ exp(−γ · n · T ) (11)

For anyγ in the range0 ≤ γ < 1− t+r−1
n , and whereCL is

defined in (9).

Note that the bound does not depend onΛx. To prove
Theorem 1, the codebook{Xm}

exp(nR)
m=1 is randomly gener-

ated by i.i.d. selection of each codeword from the Gaussian
matrix distributionNn(0,Λx). The common randomness is
the codebook itself. The encoder sends thew-th codeword,
and the decoder uses maximum empirical rate decoder i.e.
chooses:

ŵ = argmax
m

{Remp(Xm;Y)} (12)

where ties are broken arbitrarily. By using Lemma 1 and the
union bound, the probability of error givenXw,Y is bounded
by:

P (w)
e (Xw ,Y) ≤

≤ Pr







⋃

m 6=w

(Remp(Xm;Y) ≥ Remp(Xw;Y))

∣
∣
∣
∣
∣
Xw






≤

≤ exp(nR) · CL · nt⌈r/2⌉ exp(−γ · n · Remp(Xw;Y)) =

= CL · nt⌈r/2⌉ exp[n(R− γ · Remp(Xw ;Y))] (13)

Therefore if (8) is satisfied, thenP (w)
e (Xw,Y) ≤ Pe, which

proves the first part of the theorem. The second part follows
directly from the first part. For anyγ < 1 and δ > 0 there
is n large enough so that the conditionγ < 1 − t+r−1

n is
satisfied, and thenn could be increased till the redundancy in
(8), log(Pe)

n − t⌈r/2⌉ log(n)
n − log(CL)

n would be smaller thanδ

(note thatCL is decreasing inn), thereforeP (w)
e (Xw ,Y) ≤

Pe will be satisfied if (10) is satisfied. �

IV. PROOF OFLEMMA 1

To prove Lemma 1 we use the Chernoff bound:

Pr{Remp(X,Y) ≥ T } =

= Pr{exp(nγRemp(X,Y)) ≥ exp(nγT )} ≤

≤
E exp(nγRemp(X,Y))

exp(nγT )
≡ L exp(−nγT ) (14)

To prove the lemma we need to calculate

L = E exp(nγRemp(X,Y)) = E





∣
∣
∣R̂XX

∣
∣
∣ ·
∣
∣
∣R̂Y Y

∣
∣
∣

∣
∣
∣R̂(XY )(XY )

∣
∣
∣





γ·n
2

(15)
where the expected value is taken with respect toX. The
remainder of this section is devoted to upper boundingL. We
will first assume thatΛx = It×t, i.e.X ∼ Nn(0, I), and then
extend to generalΛx.

Define Z = [Y,X]. We perform a QR decomposition of
X,Y andZ in order to obtain more friendly expressions. As a

reminder, QR decomposition of a matrixAn×k = Qn×kRk×k

(with QTQ = I and R upper triangular) is performed by
Gram-Schmidt process. We start from the left column ofA and
work our way to the last one. At each time we take a column of
A and split it to the part which can be represented by a linear
combination of the columns to the left of it (equivalently, to
the columns ofQ already generated), and the ”innovation”,
i.e. the part which is orthogonal to the subspace generated by
the previous columns. The vector representing the innovation
is normalized, and becomes the respective column ofQ, and
its power becomes the diagonal element inR. The coefficients
representing the part of the vector which is in the subspace
of previous columns become the elements ofR above the
diagonal. Another important property of QR decomposition is
that the determinant ofATA can be written in terms of the
diagonal elements inR:

∣
∣ATA

∣
∣ =

∣
∣RTQTQR

∣
∣ =

∣
∣RTR

∣
∣ =

|R|2 =
∏k

i=1 R
2
ii.

Now define the diagonal of the upper triangular matrix in the
QR decomposition of the matricesX, Y andZ respectively to
be the vectorsa, b and[c,d]. I.e. if X = QxRx, Y = QyRy

and Z = QzRz then a = diag(Rx), b = diag(Ry), and
[c,d] = diag(Rz). The lengths of the vectorsc,d are r, t
respectively, so that they overlap with the columns ofY and
X in the matrixZ. We have:
∣
∣
∣R̂XX

∣
∣
∣ ·
∣
∣
∣R̂Y Y

∣
∣
∣

∣
∣
∣R̂(XY )(XY )

∣
∣
∣

=

∣
∣ 1
nX

TX
∣
∣ ·
∣
∣ 1
nY

TY
∣
∣

∣
∣ 1
nZ

TZ
∣
∣

=

∏t
i=1 a

2
i

∏r
i=1 b

2
i

∏r
i=1 c

2
i

∏t
i=1 d

2
i

(16)
Note that the1

n factors cancel out because the matrix dimen-
sions aret andr in the nominator andt+r in the denominator.
Since the Gram-Schmidt process operates sequentially from
the first column to the last, and the firstr columns ofZ and
Y are equal, we will haveb = c. Therefore we can write:

∣
∣
∣R̂XX

∣
∣
∣ ·
∣
∣
∣R̂Y Y

∣
∣
∣

∣
∣
∣R̂(XY )(XY )

∣
∣
∣

=

t∏

i=1

(
ai
di

)2

(17)

Note thatai anddi both relate to the same vector, thei-th
column ofX. The ratioai

di
is the ratio between the innovation

of the i-th column ofX with respect to the subspace spanned
by previous columns ofX alone (nominator) or these columns
together with the columns ofY (denominator). Obviously
from this reason|di| ≤ |ai| (and thereforeRemp(X,Y) ≥ 0
- Property 1).

The key observation in this derivation is as follows: consider
a sequential drawing of the columns ofX and calculation of
the factorsai

di
. Since thei-th column ofX is chosen isotrop-

ically and independently of the previous columns, the value
of previous columns does not affect the distribution of the
innovationsdi, ai (only the number of dimensions in previous
columns does). Using this observation which we will prove
subsequently, we would be able to breakL represented as the
expected value of a product (17) into a product of expected
values (equations (19)-(20)), and the proof is completed bya
(tedious) calculation of these expected values.



To show the independence ofai, di in previously drawn
values, denote byXi

m a matrix including the columnsm to
i of X, and byxi the i-th column. Define a a unitaryn× n
matrixQ whose firsti−1 columns span the subspace spanned
by the firsti−1 columns ofX, its nextr columns extend this
subspace to cover also the columns subspace ofY, and the
next n − (i − 1) − r columns complete it to an orthonormal
basis. This matrix does not depend onXt

i and specifically on
the columni. We assume that the columns ofY are linearly
independent (we will relax this assumption later). Also, in
probability one, assumingn ≥ t + r, the columns ofXi−1

1

are linearly independent of each other and of the columns of
Y. To see this, it is easy to show that the projection of each
column in any direction orthogonal to the subspace already
spanned by previous ones (includingY), is also Gaussian
therefore has probability0 to be0, as long as there exists such
an orthogonal vector, i.e. the number of previously generated
vectors is smaller thann.

Now define z = QTxi. Since xi ∼ N (0, In×n) also
z ∼ N (0, In×n). The first i − 1 elements ofz represent the
projections ofxi to the subspace spanned by previous columns
of X, and the nextr elements represent the projections to the
subspace spanned by columns ofY. Soa2i collects the energy
of all elements except the firsti−1, andd2i collects the energy
of all elements except the firsti− 1+ r. To see this formally,
in the Gram-Schmidt process the coefficients of the projection
of xi on the subspace spanned byXi−1

1 are Qi−1
1

T
xi, and

the projection itself isQi−1
1 Qi−1

1

T
xi, therefore the innovation

is vi = xi − Qi−1
1 Qi−1

1

T
xi. Since Qi−1

1

T
vi = 0 and

Qn
i
Tvi = Qn

i
Txi we havea2i = ‖vi‖

2
=
∥
∥QTvi

∥
∥
2

=
∥
∥
∥
∥
∥

[

Qi−1
1

T

Qn
i
T

]

vi

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
0

Qn
i
Txi

]∥
∥
∥
∥

2

= ‖zni ‖
2 and similarly,

d2i =
∥
∥
∥xi −Qi−1+r

1 Qi−1+r
1

T
xi

∥
∥
∥

2

=
∥
∥zni+r

∥
∥
2
. Therefore

ai, di are independent ofY and the previous columns ofX,
and can be given by norms over parts of a Gaussian i.i.d.
vector of lengthn. Defining

Di ≡ E

((
ai
di

)γn∣
∣
∣
∣
Xi−1

1

)

= E

((
ai
di

)γn)

(18)

Where the equality is due to the independence shown above,
we have for anyk = 1, 2, ..., t:

E

k∏

i=1

(
ai
di

)γn

= E

[

E

(
k∏

i=1

(
ai
di

)γn
∣
∣
∣
∣
∣
Xk−1

1

)]

=

= E

[
k−1∏

i=1

(
ai
di

)γn

· E

((
ak
dk

)γn∣
∣
∣
∣
Xk−1

1

)]

=

= E

[
k−1∏

i=1

(
ai
di

)γn

·Dk

]

= E

(
k−1∏

i=1

(
ai
di

)γn
)

·Dk (19)

Therefore by induction:

L = E





∣
∣
∣R̂XX

∣
∣
∣ ·
∣
∣
∣R̂Y Y

∣
∣
∣

∣
∣
∣R̂(XY )(XY )

∣
∣
∣





γ·n
2

= E

t∏

i=1

(
ai
di

)γn
(19)
=

t∏

i=1

Di

(20)
Now we boundDi (using the previously defined Gaussian

vectorz):

Di = E

(
a2i
d2i

)γn/2

= E

(

‖zni ‖
2

∥
∥zni+r

∥
∥
2

)γn/2

=

= E

(

1 +

∑i+r−1
j=i z2j

∑n
j=i+r z

2
j

)γn/2

=

(a)
= E

h∼χ2(r)

s∼χ2(n−i−r+1)

(

1 +
h

s

)γn/2

=

=

∫∫ ∞

0

(

1 +
h

s

) γn
2 h

r
2−1e−

h
2

2r/2Γ
(
r
2

) ·
s

n−i−r+1
2 −1e−

s
2

2
n−i−r+1

2 Γ
(
n−i−r+1

2

) ·ds·dh =

=
1

2(n−i+1)/2Γ
(
r
2

)
Γ
(
n−i−r+1

2

)

︸ ︷︷ ︸

c1

·

·

∫∫ ∞

0

(s+ h)
γn
2 h

r
2−1s

(1−γ)n−i−r−1
2 e−

s+h
2 · ds · dh =

(b)
= c1

∫∫ ∞

0

w
γn
2

(
1

v + 1
w

) r
2−1(

v

v + 1
w

) (1−γ)n−i−r−1
2

·

· e−w/2 w

(v + 1)2
· dw · dv = c1

∫ ∞

w=0

w
n−i−1

2 e−w/2dw

︸ ︷︷ ︸

cw

·

·

∫ ∞

v=0

(
1

v + 1

) (1−γ)n−i+1
2

v
(1−γ)n−i−r−1

2 · dv

︸ ︷︷ ︸

cv

(21)

where in (a) we used independent Chi-Squared distributedh, s,
and in (b) we changed variables froms, h to w = s+ h, v =
s/h, with inverse transformations = v

v+1w, h = 1
v+1w and

JacobianJ−1 = ∂w,v
∂s,h =

∣
∣
∣
∣

1 1
1/h −s/h2

∣
∣
∣
∣
= s+h

h2 = (v+1)2

w .

The first integral in the expression above evaluates to:

cw = 2
n−i+1

2 Γ

(
n− i+ 1

2

)

(22)

By definition of Γ(·). The second integral
behaves like v

(1−γ)n−i−r−1
2 near v = 0 and like

v
(1−γ)n−i−r−1

2 −
(1−γ)n−i+1

2 = v
−r−2

2 at v → ∞. Therefore
it will exist (converge) iff the power ofv near 0 is larger
than−1 and at∞ is smaller than−1. The first condition is
(1−γ)n−i−r−1

2 > −1 ⇒ (1−γ)n > i+r−1⇒ γ < 1− i+r−1
n .

The other condition always holds sincer > 0. Note that since
the power of 1

v+1 is larger by more than 1 than the power of
v it is positive (when the first condition holds). Therefore we
can bound:



cv <

∫ ∞

v=0

(
1

max(v, 1)

) (1−γ)n−i+1
2

v
(1−γ)n−i−r−1

2 · dv =

=
2

(1− γ)n− i− r + 1
+

2

r
≤

2

(1− γ)n− t− r + 1
+

2

r
(23)

Combining (21), (22) and (23) we obtain:

Di <
Γ
(
n−i+1

2

)

Γ
(
r
2

)
Γ
(
n−i−r+1

2

) ·

(
2

(1 − γ)n− t− r + 1
+

2

r

)

(24)
SinceL results in a rate loss of1n logL, andΓ

(
n−i+1

2

)

is superexponential inn, we would like to express more
explicitly the dependence onn. UsingΓ(t+ 1) = tΓ(t) with
t = n−t+1−2i

2 , i = 1, 2, ..⌈r/2⌉ we can obtain the bound

Γ
(
n−t+1

2

)

Γ
(
n−t+1−r

2

) ≤
(n

2

)⌈r/2⌉

(25)

therefore

Di <

(
n
2

)⌈r/2⌉

Γ
(
r
2

) ·

(
2

(1− γ)n− t− r + 1
+

2

r

)

(26)

and

L =

t∏

i=1

Di <

(
n
2

)t⌈r/2⌉

Γt
(
r
2

) ·

(
2

(1− γ)n− t− r + 1
+

2

r

)t

=

= CL · nt⌈r/2⌉ (27)

Substituting the above into (14) proves Lemma 1 forΛx =
I. The two assumptions on the parameters of the problem we
have made in order forL to be bounded are (a)n ≥ t + r
which was needed in order that each new column ofX would
not be spanned by the previous columns and the columns of
Y in probability 1, and (b)∀i ≤ t : γ < 1 − i+r−1

n ⇒ γ <
1− t+r−1

n , is needed for the existence of{Di}ti=1.
Suppose now thatX ∼ Nn(0,Λx). Using the Cholesky de-

composition we can define a coloring matrixW, WTW = Λx

so thatX = W ·Xw andXw ∼ Nn(0, I). Since by Property
2 the rate function is invariant to a linear transformation of
X we would haveRemp(Xw,Y) = Remp(X,Y), therefore if
Lemma 1 holds with respect to the white signalXw it also
holds with respect toX. With regard to the assumption that the
columns ofY are linearly independent: if they are not, then the
rate function is defined with respect to a smaller matrixY′

n×r′

containing only the independent columns. Comparing with a
full rank Y, the random variablesdi increase (i.e.d′i ≥ di)
due to the smaller dimension ofY′, thereforeL′ ≤ L and the
lemma still holds. �

V. COMMENTS AND EXTENSIONS

Comparison with the SISO case:Comparing Lemma 1
with Lemma 4 of [3] for the SISO caser = t = 1, which
is proven by a direct calculation, the bound here is slightly
worse due to the limitationγ < 1− t+r−1

n = (n−1)/n which
stems from the use of the Chernoff bound.

Comparison with MIMO capacity: The scheme above
achieves the mutual information of a Gaussian MIMO channel
but not its capacity. Achieving the capacity requires adaptation
of the input distribution, which for the known AWGN channel
y = Hx + v is performed by SVD and water pouring [5].
The strength of the scheme is in the lack of any assumptions
about the probability distribution, which make it applicable for
example for non Gaussian noise or one that depends on the
transmitted signal.

Exploiting temporal correlation: In the current results, as
in previous ones [3], the rate function depends on the zero
order empirical probability, and lacks the ability to exploit
temporal correlation. However the results can be used to
exploit such correlation in the SISO or MIMO channel, in
a crude way, by applying the scheme on blocks ofk channel
uses. The rate function over blocks is always superior to the
single letter case, and the penalty is an increase in the fixed
redundancy.

Using empirical covariance instead of correlation:When
the matricesR̂ in (1) are replaced with the empirical correla-
tion Ĉ (whereĈX ≡ n−1(X− n−11TX)T (X− n−11TX)),
the derivation is similar, except projection on an additional
dimension (the all-ones vector) precedes the other projections.
The results are the same with a loss of one dimension:
γ < 1 − t+r

n and n > t + r are required, and there is a
small variation inCL.

The complex MIMO channel: The results easily extend to
thecomplex-valued MIMO channel, using the same technique.
The main difference is a double number of degrees of freedom
in the derivation ofDi, which doubles the rate compared to
Equation 1.

Adaptivity: In [3][4] we presented a communication
scheme using a low rate feedback, which dynamically adapts
the transmission rate and achieves the rate functions without
outage. Such schemes are of higher practical interest. It is
possible to show that the adaptive scheme of [3][4] achieves
Remp of (1) up asymptotically vanishing redundancy, and up
to a set ofx sequences having vanishing probability.
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