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Abstract—This paper studies a family of genie-MAC (multiple
access channel) outer bounds forK-user Gaussian interference
channels. This family is inspired by existing genie-aided bounding
mechanisms, but differs from current approaches in its opti-
mization problem formulation and application. The fundamental
idea behind these bounds is to create a group of genie receivers
that form multiple access channels that can decode a subset
of the original interference channel’s messages. The MAC sum
capacity of each of the genie receivers provides an outer bound
on the sum of rates for this subset. The genie-MAC outer
bounds are used to derive new sum-capacity results. In particular,
this paper derives sum-capacity in closed-form for the class
of K-user Gaussian degraded interference channels. The sum-
capacity achieving scheme is shown to be a successive interference
cancellation scheme. This result generalizes a known result for
two-user channels toK-user channels.

Index Terms—Interference Channels, Sum Capacity

I. I NTRODUCTION

Interest in the interference channel and its fundamental
limits stems from the wide range of applications that will
benefit from such analysis. However, large gaps exist in our
understanding of interference channels. Since the introduction
of interference channels [1], the class of two-transmittertwo-
receiver interference channels have been studied in great detail.
Indeed, a majority of exact capacity results are known only
for such two-user interference channels. The most popular
achievable strategy is the Han-Kobayashi strategy [2]. Special
cases of this strategy for Gaussian channels have been shown
to be optimal for multiple classes of channels [3], [4], [5],[6],
and to be within one bit in general [7]. Genie-aided bounds
have played a central role in the successes in this domain [8].

For interference channels with more than two users, there is
a growing body of work on new achievable rate regions using
concepts such as alignment [9], [10]. However, the literature
on outer bounds for these channels is still limited. In the
special case of determining the degrees of freedom (DoF) of
K-user interference channels, effective outer bounds have been
developed. In particular, using multiple-access type bounds
[11], the DoF has been shown to be outer bounded byK/2. A
tighter outer bound has been developed for interference chan-
nels with rational channel gains using combinatorial arguments
[12]. However, in the domain of finite signal to noise ratio
(SNR) channels, there is limited existing literature on non-
trivial outer bounds for this channel.

A majority of the outer bounds for the interference

channel can be subdivided into the following inter-related
families: The broadcast (BC) type, the MAC type, the
“Z” interference-channel type, the genie-aided type and the
additive-combinatorial type. The first four types have a lotin
common, and a good understanding of these techniques for
two-user interference channels can be gained from [8]. The
fifth and last type is distinct from the other techniques and
has been studied relatively recently [12].

In this paper, our first goal is in developing an outer bound
that incorporates elements of the MAC type and genie-aided
type outer bounds. This is because the MAC type and genie-
aided type bounds have proven to be effective in the two-user
interference channel literature. In fact, a majority of existing
capacity results in the two-user interference channel domain
have resulted from the application of these two families of
outer bounds [3], [6], [4], [5]. Thus, a next logical step
is to better understand their value in theK-user Gaussian
interference channel setting.

A MAC-type bound provides an outer bound to the original
interference channel in terms of an equivalent Gaussian MAC
channel. As demonstrated in [3], this bound can be used
to determine the capacity of two-user strong interference
channels. In addition, it provides a good outer bound on
the DoF ofK-user interference channels [11]. A genie-aided
bound provides receivers in the interference channel with one
or more “genies” (side information), thus transforming the
channel into one where the rate region can be characterized in
closed form [8], [7]. These bounds have proven to be effective
for characterizing the sum capacity of very weak interference
channels [6], [4], [5].

We develop an outer bound on the capacity region ofK-
user Gaussian interference channels (ICs) by characterizing
classes of genie-MAC receivers. Even though, as a concept,
MAC-type and genie-aided outer bounds are well-understood,
their application and optimization for the case of Gaussian
ICs is far from trivial. AK-user Gaussian IC has many more
parameters than a two-user case (as studied in [8]) making this
optimization an even more involved process. In this paper, our
second goal is to demonstrate that the outer bounds developed
can prove new capacity results for an important class ofK-
user channels. We introduce new construction-based proof
techniques to evaluate the outer bounds for degraded channels,
and characterize the sum capacity of this class of channels in
closed-form. The class of degraded channels does not belong
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to previously known classes including “weak” and “strong”
classes. Our result includes the previously known result on
the sum capacity of two-user Gaussian degraded ICs [13],
[14]. The earlier proofs do not directly generalize toK-user
channels. Thus, our new result generalizes the known two-
user result toK-user Gaussian ICs using the MAC-genie outer
bounds developed in this paper.

The rest of this paper is organized as follows: The next sec-
tion presents the system model. In Section III, we characterize
an outer bound on capacity ofK-user Gaussian interference
channel. In Section IV, we derive the sum capacity of the class
of degraded channels. We conclude with Section V.

II. SYSTEM MODEL

We consider theK-user Gaussian interference channel
defined as follows: a communication system consisting ofK
transmitter-receiver pairs labeled1, 2, . . . ,K. This channel is
shown in Figure 1. Each transmitter has independent messages
intended for the corresponding receiver. At timet, t ∈ Z+, the
input-output relations that describe the system are:

Yi[t] =
∑

j

hi,jXj [t] + Zi[t]. (1)

Here,Xj [t] is the signal transmitted by thej-th transmitter,
hi,j is the constant channel gain fromj-th transmitter toi-th
receiver,Zi[t] is the additive white Gaussian noise (AWGN) at
i-th receiver, andYi[t] is the signal received at thei-th receiver.
For simplicity, we consider real valued signal/gain/noiseand
suppress the time indext henceforth. The power constraint at
the j-th transmitter isE[X2

j ] ≤ P, and the AWGN noise at all
receivers have zero mean and varianceN .

TheK-user Gaussian interference channel is characterized
by
√

P/NH, whereH is the matrix withhi,j as the entry
corresponding to thei-th row and thej-th column. We
use standard information-theoretic definitions for the capacity
region and the sum capacity of this channel. Throughout this
paper,C IC(

√

P/NH) denotes theK-dimensional capacity
region, C IC

Σ (
√

P/NH) denotes the sum capacity, andRi

denotes the rate corresponding to thei-th transmitter-receiver
pair.

A. Notation

Matrices (and some vectors) are denoted by bold letters.
A

∗ denotes the transpose of a matrixA andA
+ denotes its

upper triangular portion.A ≻ 0 denotes a symmetric positive-
definite matrix.| · | denotes the determinant of a square matrix
and the cardinality of a set or vector.I denotes the identity
matrix. E[·] denotes the expectation operator.

III. O UTER BOUND ON CAPACITY REGION OFK -USER

INTERFERENCECHANNELS

The main idea behind the outer bound is to adapt the
framework in [8] to the K-user setting. In effect, agenie-
MAC is created to decode a subset of messages in the original
interference channel. The capacity region of this genie-MAC
channel then forms an outer bound on the rate region of the
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Fig. 1. GaussianK-user interference channel

original channel. This genie-MAC technique is a two-step
process. The first step is to find a characterization for the
genie-MAC receivers, and the second step is to optimize this
characterization to obtain the tightest bound of this class.

Consider any permutation functionπ : {1, 2, . . . ,K} 7→
{1, 2, . . . ,K}, and integersk andm such that1 ≤ k ≤ K
and m ≥ 1. Define tuplesS = (π(1), . . . , π(k)) and
Sc = (π(k + 1), . . . , π(K)). We useXS to denote the vector
[XS(1) XS(2) XS(|S|)]

∗. Now, consider the multiple-antenna
MAC channel that hasXSc as side information at them-
antenna receiver and observes the signal

Y = GXS + Z, (2)

where Z is i.i.d. N (0,Σ), for some G ∈ R
m×k. Let

CMAC(
√
PG,Σ) denote the capacity region of this MAC

channel andCMAC
Σ (

√
PG,Σ) denote the sum capacity of this

MAC channel. Since the side information is independent of
bothXS andZ, it does not change the capacity region.

Next, we provide the conditions under which the capacity
region of this MAC channel will form an outer bound onRS

of the original interference channel.
Lemma 1: Consider anyT = [t1 t2 tk] ∈ R

m×k. Let T,
G andΣ be matrices that satisfy the following conditions:

(T∗
G)

+
= H

+
S ,

t
∗
iΣti ≤ N, ∀1 ≤ i ≤ k,

Σ ≻ 0,

whereHS is |S|× |S| matrix with entry corresponding to the
i-th row andj-th column ashS(i),S(j). Then,

RS ∈ CMAC(
√
PG,Σ),

i.e., the capacity region of any MAC channel described by (2)
satisfying the above conditions is an outer bound on the rates
RS for the interference channel described by (1).



Proof: We show the following to prove the this lemma. If
there exists an achievable strategy for the interference channel
described by (1) to achieve rates(R1, R2, · · · , RK), i.e., if
(R1, R2, · · · , RK) ∈ C IC(

√

P/NH), then there exists an
achievable strategy for the MAC channel described by (2) to
achieve ratesRS , i.e., RS ∈ CMAC(

√
PG,Σ). In particular,

we prove that the MAC channel can obtain statistically iden-
tical (or better) signal as (than)Yi for all i ∈ S.

Let D = T
∗
G. At the MAC receiver, the signal corre-

sponding toYS(l) (1 ≤ l ≤ k) is obtained sequentially.
Consider any stepl. Since the messages from transmitters
S(1), S(2), . . . , S(l− 1) have been decoded, the receiver can
generate signalsXS(1), XS(2), . . . , XS(l−1). In addition, the
MAC receiver has signalsXSc as side information. Therefore,
the MAC receiver can obtain the signal

Ỹl = t∗l Y −
l−1
∑

i=1

dl,iXS(i) +

l−1
∑

i=1

hS(l),S(i)XS(i)

+
∑

i∈Sc

hS(l),iXi,

which can be simplified as

Ỹl =

K
∑

i=1

hS(l),iXi + t∗l Z.

The last step follows from(T∗
G)

+
= H

+
S . Since,t∗l Σtl ≤ N ,

the MAC receiver can decode the message from transmitter
S(l) if the receiverS(l) in the original interference channel
can decode the message from transmitterS(l). This completes
the proof of lemma.

The sum capacity of the MAC channel is given by

CMAC
Σ (

√
PG,Σ) =

1

2
log
(

|I+ PΣ
−1

GG
∗|
)

.

Thus, the minimization problem of interest is

f∗(HS ,m) = inf
G,Σ,T

1

2
log
(

|I+ PΣ
−1

GG
∗|
)

(3)

such that (T∗
G)

+
= H

+
S ,

t
∗
iΣti ≤ N, ∀1 ≤ i ≤ k,

Σ ≻ 0.

For m = |S|, it is clear that the feasible set is non-empty as
G = HS , Σ = NI andT = I satisfies all the constraints. We
denote this optimization problem withm = |S| by f∗(HS).
In the remaining part of this paper, we assume thatm = |S|.

From the above analysis, we obtain the following theorem
that provides an outer bound on the capacity region of the
K-user Gaussian interference channel.

Theorem 2: Consider the interference channelH described
by (1). Then,

C IC(
√

P/NH) ⊆
{

(R1, . . . , RK) :
∑

i∈S

Ri ≤ f∗(HS), ∀S
}

.

The above theorem requires the evaluation of the optimiza-
tion problem given by (3). Next, we derive results that simplify

this optimization problem. In particular, we show that, any
one of the three parameters can be fixed to identity without
affecting the optimal value. The next two lemmas prove these
results.

Lemma 3: Consider the following optimization problem
that results by choosingΣ = I:

minG,T

1

2
log (|I+ PGG

∗|) (4)

such that (T∗
G)

+
= H

+
S ,

t
∗
i ti ≤ N, ∀1 ≤ i ≤ k.

Then, the optimal value of this problem isf∗(HS).
Proof: Consider a feasible set of parametersG, Σ =

AA
∗ andT for the optimization problem given by (3). Let

Ĝ = A
−1

G andT̂ = A
∗
T. Now, we have the following:

T̂
∗
Ĝ = T

∗
AA

−1
G = T

∗
G,

T̂
∗
T̂ = T

∗
AA

∗
T = T

∗
ΣT.

Therefore,Ĝ and T̂ form a feasible set for the optimization
problem given by (4). Furthermore, the objective value remains
the same due to the following:

|I+ P ĜĜ
∗| = |I+ PA

−1
GG

∗
A

−1∗|
= |I+ PA

−1∗
A

−1
GG

∗|
= |I+ PΣ

−1
GG

∗|.
This completes the proof.

Lemma 4: Consider the optimization problem given by (3).
Now, consider the two sub-problems resulting from choosing
eitherT = I or G = I. Then, each of these sub-problems has
optimal valuef∗(HS).

Proof: Case-I (T = I): Consider a feasible set of
parameterŝG and T̂ for the optimization problem given by
(4). Let ǫ be an arbitrary real number such that0 < ǫ < 1.
Let G = T̂

∗
Ĝ and Σ = ǫNI + (1 − ǫ)T̂∗

T̂. It is fairly
straightforward to check that these parameters are feasible for
the sub-problem. Further, the objective value approaches that
of the original problem withǫ → 0.

Case-II (G = I): Consider a feasible set of parametersĜ

andT̂ for the optimization problem given by (4). Letǫ be an
arbitrary real number such that0 < ǫ < 1. Let T = Ĝ

∗
T̂

andΣ = (ǫI+ Ĝ
∗
Ĝ)−1. Again, it is fairly straightforward to

check that these parameters are feasible for the sub-problem,
and the objective value approaches that of the original problem
with ǫ → 0.

Next, we compare this outer bound expression with other
techniques in literature. It is fairly simple to see that this
bound incorporates receiver cooperation as a special case.In
particular, by choosing the matrixG to be the same as the
channel gains in the original interference channel, the receiver
cooperative bound can be obtained. A multiple-access type
outer bound as studied in [3], [11] is also a special case of
this bound. A conventional MAC-type bound corresponds to
the case whenS is a set of the form{i, j} and G equals
the received signal at Receiveri in the original channel. It
is perhaps not as straightforward to see that this is, in fact,



a genie-aided outer bound. If we were to choose a subset
of the rows of the matrixG to match those in the original
interference channel definition, then the remaining rows ofG

along withXSc represent a “vector genie” provided to enable
all messages to be decoded in the system. This bound does
not capture all genie-aided bounds in the two-user setting.

Although it captures many existing bounding techniques
for the interference channel, the optimization problem in (4)
does not necessarily lend itself to a straightforward solution.
Furthermore, to evaluate the bound on the sum of a set of
rates, we need to consider all possible orderings of tuples
S resulting from this set. In the next section, we show that
this bound can be evaluated for the class ofK-user degraded
interference channels in closed-form.

IV. SUM CAPACITY OF K -USERDEGRADED

INTERFERENCECHANNELS

We study the class of K-user Gaussian degraded interference
channels, where degraded is formally defined as the existence
of an ordering of the receivers such that the received signals
are stochastically degraded in that order. For the Gaussian
interference channels, degraded implies unit rank channel
matrices. Therefore, all degraded channels can be expressed as
H = ab

∗, wherea = [a1a2 . . . aK ]∗ andb = [b1 b2 . . . bK ]∗.
Without loss of generality, we assumea21 ≤ a22 ≤ . . . ≤ a2K ,
andP = N = 1.

A. Achievability

We consider the successive interference cancellation (SIC)
scheme for achievability. Each transmitter uses Gaussian code-
words to encode its message. Thei-th receiver decodes the
messages from transmitters1, 2, . . . , i in this order. Sincei-
th receiver has a (statistically) better received signal than
receivers1, 2, . . . , i − 1, the message ati-th transmitter can
be encoded at rate

Ri =
1

2
log



1 +
a2i b

2
i

a2i

(

∑K

j=i+1 b
2
j

)

+ 1



 (5)

such that all receiversi, i + 1, . . . ,K can decode it with
decaying probability of error. Since this is a well-known
technique, we do not provide further details. From (5), the
achievable sum rate using this SIC scheme can be expressed
as

K
∑

i=1

Ri =
1

2

K
∑

i=1

log





a2i

(

∑K

j=i b
2
j

)

+ 1

a2i

(

∑K

j=i+1 b
2
j

)

+ 1



 ,

=
1

2
log





∏K

i=1

(

a2i

(

∑K

j=i b
2
j

)

+ 1
)

∏K

i=1

(

a2i−1

(

∑K

j=i b
2
j

)

+ 1
)



 ,

=
1

2

K
∑

i=1

log



1 +
(a2i − a2i−1)

(

∑K

j=i b
2
j

)

a2i−1

(

∑K

j=i b
2
j

)

+ 1



 , (6)

wherea0 = 0 is introduced for notational convenience.

B. Outer Bound

The main step is to obtain a matching outer bound on sum
rate. We apply the general technique developed in Section III
to obtain the outer bound. As discussed before, it is very hard
to evaluate these bounds in general, but the degraded structure
can be exploited as shown next.

Consider the optimization problem given by (4) for the tuple
S = (1, 2, . . . ,K). Solving this is equivalent to showing the
existence of feasibleG andT that evaluates to the right hand
side (RHS) of (6). Now, consider the following construction
for G andT. Given anyi such that1 ≤ i ≤ K, let

ci =
√

a2i − a2i−1, (7)

and c = [c1 c2 . . . cK ]∗. We use the following iterative
construction to obtain a upper-triangular matrixT (lower-
triangularT∗):

ti =
ai−1

ai
ti−1 +

ci
ai
ei, ∀i, (8)

wheret0 = 0 andei is the unit-vector alongi-th dimension.
The entry corresponding to thei-th row andj-th column of
G is chosen as

gi,j = cibjdi,j , ∀i, j, (9)

wheredi,j parameters are introduced here for the first time.
We fix di,j = 1 for any i ≤ j. The choice of remaining
parameters (di,j for i > j) are discussed later. Irrespective
of these remaining parameters, the above construction has the
following property.

Lemma 5: Consider anyG and T given above. Then, it
belongs to the feasible set corresponding to the optimization
problem given by (4).

Proof: First, for alli, we show thatt∗i ti = 1 by induction.
Sincet1 = e1, we havet∗1t1 = 1. By construction, we have
t
∗
i−1ei = 0. Suppose thatt∗i−1ti−1 = 1 for somei. Then,

from (8) and (7), we have

t
∗
i ti =

a2i−1

a2i
t
∗
i−1ti−1 +

c2i
a2i

,

=
a2i−1

a2i
+

a2i − a2i−1

a2i
,

= 1. (10)

Next, for all i, we show thatt∗i c = ai by induction. Since
t1 = e1, we havet∗1c = a1. Suppose thatt∗i−1c = ai−1 for
somei. Then, from (8) and (7), we have

t
∗
i c =

ai−1

ai
t
∗
i−1c+

ci
ai
ci,

=
a2i−1

ai
+

a2i − a2i−1

ai
,

= ai. (11)

Last, for all i ≤ j, using lower-triangular property ofT∗

and (11), we show that the(i, j)-th entry ofT∗
G is equal to



hi,j :

(T∗
G)i,j = t

∗
i bj [d1,jc1 d2,jc2 . . . dK,jcK ]∗,

= t
∗
i [c1 c2 . . . cK ]∗bj, ∀i ≤ j,

= aibj , ∀i ≤ j. (12)

With (10) and (12), the proof is complete.
Next, we show that parametersdi,j (for i > j) exist such

that (4) evaluates to RHS of (6). For this, we consider a
lower-triangular matrixV with unit diagonal entries. Let(i, j)-
th entry of V be denoted byvi,j . Define F = I + GG

∗.
Therefore, from (9), the(i, j)-th entry ofVF is

(VF)i,j =

i
∑

m=1

(

vi,m

(

δm,j +

K
∑

n=1

gm,ngj,n

))

,

=
i
∑

m=1

vi,mδm,j +

cj

K
∑

n=1

(

b2ndj,n

(

i
∑

m=1

vi,mcmdm,n

))

.(13)

Now, suppose that, for alli ≥ 2 and n ≤ i − 1, the
parameters are such that

i
∑

m=1

vi,mcmdm,n = 0, ∀i ≥ 2, n ≤ i− 1. (14)

Then, for all i and j ≤ i, substituting (14) anddi,j = 1 for
any i ≤ j in (13) , we obtain

(VF)i,j = vi,j + cj

K
∑

n=i

(

b2n

(

i
∑

m=1

vi,mcm

))

, ∀i, j ≤ i. (15)

For the set of values given by

vi,j =
−cicj

∑K

n=i b
2
n

(

∑i−1
m=1 c

2
m

)(

∑K

n=i b
2
n

)

+ 1
, ∀j < i, (16)

from (15), we have(VF)i,j = 0 for all j < i (i.e., VF is
upper-triangular) and

(VF)i,i = 1 + ci

K
∑

n=i

(

b2n

(

i−1
∑

m=1

vi,mcm + ci

))

,

= 1 +
c2i

(

∑K

n=i b
2
n

)

(

∑i−1
m=1 c

2
m

)(

∑K

n=i b
2
n

)

+ 1
,

= 1 +
(a2i − a2i−1)

(

∑K

j=i b
2
j

)

a2i−1

(

∑K

j=i b
2
j

)

+ 1
, ∀i. (17)

Substituting (16) in (14), we obtain

ci





−∑i−1
m=1

(

c2mdm,n

)
∑K

j=i b
2
j

(

∑i−1
m=1 c

2
m

)(

∑K

j=i b
2
j

)

+ 1
+ di,n



 = 0, (18)

for all i ≥ 2 andn ≤ i − 1. For any givenn, it is clear that
we can choosedi,n for all i > n, such that (18) is satisfied for

all i > n. This directly follows form the fact these are linear
equations indi,n with same number of variables as equations.
Therefore, we have a construction that satisfies the assumption
in (14).

Now, for the above construction,VF is upper-triangular and
|V| = 1. Therefore, from (17), we have

1

2
log |F| =

1

2
log |VF| = 1

2
log

K
∏

i=1

(VF)i,i,

=
1

2

K
∑

i=1

log



1 +
(a2i − a2i−1)

(

∑K

j=i b
2
j

)

a2i−1

(

∑K

j=i b
2
j

)

+ 1



 ,

which exactly matches the achievable sum-rate in (6).

C. Sum Capacity

The above analysis establishes the sum capacity of the
class ofK-user Gaussian degraded interference channels. We
summarize this result in the following theorem.

Theorem 6: Consider anyK-user Gaussian degraded inter-
ference channel withH = ab

∗, wherea = [a1 a2 . . . aK ]∗

andb = [b1 b2 . . . bK ]∗. Let a21 ≤ a22 ≤ . . . ≤ a2K anda0 = 0.
Then, the sum capacity of this channel is

C IC
Σ (
√

P/NH) =
1

2

K
∑

i=1

log



1 +
(a2i − a2i−1)

(

∑K

j=i b
2
j

)

P

a2i−1

(

∑K

j=i b
2
j

)

P +N



 .

Remark 1: This class of channels have degree of freedom
equal to1. The degree of freedom can be obtained in a straight-
forward manner as theK-th receiver can decode messages
from all transmitters. However, this approach does not give
the required tight outer bound on sum rate.

V. CONCLUSION

In this paper, we develop a family of outer bounds for the
K-user Gaussian interference channel based on constructing
multiple-antenna genie-MAC receivers. This formulation re-
sults in an optimization problem that may not be easy to solve
in the general case. We subsequently show that this family of
outer bounds determine the exact sum capacity of the class
of degraded interference channels, and provide closed-form
expression for the sum capacity ofK-user Gaussian degraded
interference channels.

REFERENCES

[1] R. Ahlswede, “Multi-way communication channels,” inProc. 2nd Int.
Symp. Information Theory, 1971, pp. 103–135.

[2] T. Han and K. Kobayashi, “A new achievable rate region forthe
interference channel,”IEEE Trans. Inform. Theory, vol. 27, no. 1, pp.
49–60, 1981.

[3] H. Sato, “The capacity of the Gaussian interference channel under strong
interference (corresp.),”IEEE Trans. Inform. Theory, vol. 27, pp. 786–
788, 1981.

[4] X. Shang, G. Kramer, and B. Chen, “A new outer bound and thenoisy-
interference sum-rate capacity for Gaussian interferencechannels,”IEEE
Trans. Inform. Theory, 2007.

[5] A. Motahari and A. Khandani, “Capacity bounds for the Gaussian
interference channel,”IEEE Trans. Inform. Theory, vol. 55, no. 2, pp.
620 –643, feb. 2009.



[6] V. Annapureddy and V. Veeravalli, “Gaussian interference networks:
Sum capacity in the low interference regime,” inIEEE Trans. Inform.
Theory, 6-11 2008, pp. 255 –259.

[7] R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel capacity
to within one bit: the general case,”Proc. IEEE International Symposium
on Information Theory, 2007.

[8] G. Kramer, “Outer bounds on the capacity of Gaussian interference
channels,”IEEE Trans. Inform. Theory, vol. 50, pp. 581–586, Mar. 2004.

[9] V. R. Cadambe and S. A. Jafar, “Interference alignment and the degrees
of freedom for the K-user interference channel,”IEEE Transactions on
Information Theory, vol. 54, no. 8, pp. 3425–3441, Aug 2008.

[10] A. Jafarian, J. Jose, and S. Vishwanath, “Algebraic lattice alignment
for K-user interference channels,” inProc. Allerton Conference on
Commun., Control and Computing, Oct. 2009, pp. 88 –93.

[11] V. R. Cadambe and S. A. Jafar, “Multiple access outerbounds and the
inseparability of parallel Gaussian interference channels,” Proc. IEEE
Globecom, 2008.

[12] R. Etkin and E. Ordentlich, “On the degrees-of-freedomof the K-user
Gaussian interference channel,”IEEE Trans. Inform. Theory, 2009.

[13] H. Sato, “On degraded gaussian two-user channels (corresp.),” IEEE
Trans. Inform. Theory, vol. 24, no. 5, pp. 637 – 640, sep 1978.

[14] I. Sason, “On achievable rate regions for the gaussian interference
channel,”IEEE Trans. Inform. Theory, vol. 50, no. 6, pp. 1345 – 1356,
june 2004.


	I Introduction
	II System Model
	II-A Notation

	III Outer Bound on Capacity Region of K-user Interference Channels
	IV Sum Capacity of K-user Degraded Interference Channels
	IV-A Achievability
	IV-B Outer Bound
	IV-C Sum Capacity

	V Conclusion
	References

