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Abstract—This paper presents a method to merge Generalized to a (implicitly) given indexing. A polynomiat(z) = ¢y +
Minimum Distance decoding of Reed-Solomon codes with the ¢ o + ... 4+ ¢, ;2" ! with coefficients iNGF(q) is a valid
extended Euclidean algorithm. By merge, we mean that the s codeword if the polynomial’(x), whose coefficients’; are

taken to perform the Generalized Minimum Distance decoding h ; !
are similar to those performed by the extended Euclidean C@lculated by the discrete Fourier transform (DFT), i.e.

algorithm. The resulting algorithm has a complexity of O(n?). C. = C(aj) =0 n—1 1)
] ) — Yy ey )

. INTRODUCTION is zero at the firsk. — k = d — 1 coefficients, hence

In 1996, Ralf Kotter presented a fast algorithm for Gener- de1 _—
alized Minimum Distance (GMD) decoding of Reed-Solomon C(z) = Ca—12™ " + -+ Cpora™ ™ @

(RS) codes with a complexity aP(rn?) [1]. This algorithm is e take theC; € GF(q) to be the information symbols.
an extension of the well-known Berlekamp-Massey algorithffhe codewordc(z) corresponding to the information word

(BMA), that has been applied to decoding of RS codes up ¢9(x) is obtained through the inverse discrete Fourier transform
half the minimum distance since the late 1960s [2]. AnotheipFT):

algorithm that is often used to decode RS codes was first ) ‘ _
described by Sugiyama et. al. in 1975 [3], and is based co=n-Cla™), i=0,...,n—1 3)

on the extended Euclidean algorithm (EEA). Recently, therl% : ; .
. ) roughout this paper, capital letters denote polynomiials
have been attempts to perform GMD decoding, also with ughout This pap b poly

lexity of O(n? . | als that biai qﬁﬁe spectral domain, and small letters their corresporetenc
complexity of O(n®), using polynomials that are obtaineq - time domain.

from the extended Euclidean algorithinl [4[] [5]. Since the
BMA and EEA are known to be equivalent in the decoding
of RS codes up to half the minimum distance, it is interestiné
to try to find an extension to the EEA that is equivalent to
Kotters extension to the BMA. In this paper, we present such S(z) = R(z) mod 2% ! = E(z) mod z¢71. (4)
an extension.

The paper is organized as follows: In the next sectio
we shortly introduce RS codes as well as GMD decodin§°des: o
In Section[TIl, we first recall the EEA and how it is used = Q(z) = Az) - S(z) mod 2, ®)

for decoding RS codes up to half the minimum distancgith the error locator polynomial(z) and the error evaluator

Then we show, which of polynomials obtained are used gg|ynomialQ(z). These two polynomials satisfy the important
a basis for the GMD extension, and how to extend the EEfugree relation:

to GMD decoding. Finally, we shortly discuss how to modify
our approach so that the selection of the best solution doies n degQ(z) < degA(x) =t. (6)
decrease the complexity. The conclusion follows in Sed®bn B. GMD Decoding

[I. NOTATIONS AND DEFINITIONS First proposed by Forney in 1966 [6], the idea of GMD
A. RS Codes and Key Equation decoding is to allow soft-decision decoding of algebraycal
, _ decodable codes by performing + 1 decoding trials, each
-I(;O dgfme aréRf(n,g,ii) coc;l{e oileeriF(q)Gvgth B:j_ r{ with a different number of positions being erased. In eaiel tr
an [n'n'mltjmf |sdanc _dnj_th Jr.th’ cloc fth('Q) leno et the decoder may either output an error locator polynomial as
i\nte er:;]en IO or ten aq| g" tejth Pt‘;]""elr 0 ;s eemct;n " defined in [(b), or declare a decoding failure. Consequently,
ater, the elementa; will denote the:th element according 5, jig; of up tom + 1 candidate error locator polynomials is
This work was supported by the German Research Council 4@het obtained, an.d the decoder.should SeleCt_ One_ Of_these camdida
Forschungsgemeinschaft’ (DFG) under Grant No. Bo867/22. words, that is best according to a certain criterion.

The transmitted codeword is corrupted by an additive error
x) of Hamming weightt, and the received word is(x) =
x) + e(z). For decoding, calculate the syndrorfiér):

H’his syndrome is used in thieey equatiorfor decoding RS
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In order to determine the set; of erased positions in In the second and third part of this section, we will present
iterationj, the decoder needs to be supplied with reliability inan algorithm that integrates GMD decoding into the EEA. At
formation regarding the decisions made. Reliability ismiedi  the end of the third part, we show how to combine the formulas
intuitively, i.e. the less reliable a decision, the moreliable given to form the algorithm.
it is that the received value is incorrect. Therefore, thasie . a1
reliable positions are erased first. It is known, cf. €.¢, fiiat A. Decoding up tOLTJ
decoding is possible if the number of errarand the number  The EEA uses input polynomialsi(z) = r®(z) and

of erasures fulfill B(z) = (=Y (x) to recursively calculate a series of quotient
U+ e<d @) polynomialsgU+1) (z) and remaindersV*1 () that fulfill:
U @) = 100 (@) = U (@) @), (8)

We choosgX,| = 0 (i.e. we start with decoding errors only),

|| =2, |X| =4, ..., |X,| = 2- [ 45], and further require with degr(+D (z) < degr) (z). The algorithm stops when

X;j C Xj;1. Before, A(z) was defined to be an error locator,.(-+1)(z) = 0. From the quotient polynomials, a series

polynomial. For our algorithm, we slightly modify this andof auxiliary polynomialsu(+1)(z) is obtained recursively,

take A(z) to be a joint error-erasure locator polynomial. Ithamely

each iteration of the GMD decoding process, we have two (G41) G-1) G41) )

additional erasures. On the other hand, accordinglto (7)ame c uw?T (@) = u T (@) — ¢V (@) - u (), 9)

correct one error less than in the iteration before, and so ‘Oé?lereu(*”(a:) = 0 andu(®(z) = 1. The degrees of these

find that the degree of our candidate error locator p°|y”bmi§uxiliary polynomials are given by

should increase by in each iteration. Due to this fact, we .
H . J

state our decoding problem as follows: degu(j)(:v) _ Z deg q(i) (). (10)

Problem 1 In each iteration of our GMD decoding, we wa !

to find an error locator polynomial\(z), that fulfills (8) and

(), of a givendegree with certain prescribed zeros. u9 (z) - A(z) = 9 (z) mod B(x), (11)

nt
Further, these polynomials fulfill the relation

This is different to the problem statement of Kotter, whitte  which has a form similar to the key equati@nh (5). This implies
polynomial of smallestdegree is to be found. It will be seenthat the EEA can be used for solving (5). Hence by setting
later that in some situations, it is not possible to fulfileth A(z) = S(z) and B(x) = z?~!, in some steps of the EEA,
requirements given in our problem statement. whenever

In “classical” GMD decoding, the iterations are indepertden degu') (x) > degr (z), (12)
of each other. In each iteration, one first determines thaueea we obtain polynomials fulfiling both[{5) and(6). If the

locator polynomial. Due to the erasures, the minimum dmannumber of errors. e the number of nonzero coefficients
of the RS code is virtually decreased, and the decoder wies { T d—1 L

find an error locator from the shorter syndrome. Because t ee(w)’ "?j)“m'md byt S(ngJ’ then it is kn(?)wn [8] that
complexity of decoding with the EEA i€ (n?), the overall t=degu'’(z), A(z) = u'(x) and§)(z) = —r')(x) where
decoding complexity of this approach@(n?). However, the J is the smallest index for whicli{(1.2) is fulfilled.

decoding complexity can be decreased if erasing of positioB. From Classical Decoding to GMD Extension

is performed incrementally, i.e. the decoding result afitien In it was shown thatU+1), the number of coefficients

j is used together with the additional erasurestin, \ X; ¢ qU+D(z) that can be determined from the syndrome, is
to yield the decoding result of iteratigh+ 1. The first such given by
h

method was presented inl [1], the complexity of his approa . . ‘
being O(n?) (actually, Kotter claims the complexity to be Y = degr) (z) — degu (z) + 1. (13)
O(nd), but since in general = O(n), this is asymptotically .

the same). His algorithm is an extension of the BMA. HOWI_:urther, [8) yields that
ever, it is known that decoding up t’52 | with the BMA degqV Y (z) = degrV = (z) — degr) (). (14)
and the EEA are equivalent. Therefore, we want to show that

o . . L j+1 J+1) i -
it is possible to modify the EEA, such that GMD decoding |és_’ long as deg;/(x) t 1<l ,_the quot|e_nt polyno
merged into the decoding process. mials are calculated as in the classical decoding procedure

This can be done as long as dgg*V (z) < |4L] [B]. If

I1l. THE EXTENDED EUCLIDEAN ALGORITHM degqU*+) (x) + 1 > i1, we switch to the GMD extension
escribed in the next paragraph. In order to set the initial
olynomials for the extension, we have to distinguish two
ases: IfcU+1) < 0, then no coefficient of the next quotient

Bolynomial can be determined. Hence, we use

The possibility of applying the EEA in the decoding of R
codes up to| £ | was first presented by Sugiyama et. al. i

1975 [3]. This decoding approach will be shortly reviewed i
the first part of this section, as it is the basis for the ex¢éend ‘ ‘
decoding approach. uD(z) = ALY () andul =V (z) = ACO(z).  (15)



On the other hand, iUtY > 0, then it is possible to for the analysis of the algorithm we prefer to use the formula
determine the upmosty*+1) coefficients of¢*+1 (x) - we given as they provide the easier insight regarding the cases
will call this part¢() (), because it belongs to the “quotient'when the intended updating is not possible.

polynomial determined in the first iteration of the GMD Of course,A®(z) also needs to be updated to enforce the
extension - and it would be unwise to discard this infornmatiorequired zeros, since otherwise it will not be guaranteed in
Simulations have shown, that the best performance is aethievurther iterations thatA")(z) still has zeros aall positions

if we set A9 (z) := w0 (z) and A®0(z) := uU~Y(z) — in the corresponding erasure s&t. The updating ofA(?) ()

¢ (x)ul) (). Unfortunately, we do not know yet why thisis performed by

performs better than using the definitions [n](15) and just _ _ _

taking ¢(*) () into account only in the first iteration. ACTD () = AL (2) — (a2 +b) - AP (). (21)

C. GMD Extension A9 (z) is multiplied by 1 because we want to have

In this section, we again useto index the iterations done d€g A7+ (x) = deg A7) (x). This is derived from the
in the GMD part of our algorithm. However, we count thoséct that in [9), the same auxiliary polynomial is used twice
iterations independently of the ones performed by the EEQ(}%G in the role oA") () and in the next iteration in that of
before. Because the decoding up [t&;! | is just decoding & (z). The correct zeros are obtained if
without erasuresj now corresponds to the iterations defined 1) 2) 1) 2)
in Sectior(I-B. The basic idea is the following: We starttwit ¢ — A (a)AB(az) — A (az) A (0n)

decoding up to half the minimum distance, as described befor A® (a1) A (asz)(a1 — az) ’ (22)
Once the polynomials.”) () can no longer be determined , _ A™(a2)A®(a1)ar — A (a1) AP (az)as
by the syndrome and we switch to the GMD extension, the A (1) A@ (az)(ag — az) '

decoder starts to determine the “quotient” polynomiis(z)
with the help of the reliability information given. Nametyyo
positionsa; andas are erased in each iteration, where

Updating according to these two rules will be called regular
updating. It is directly seen, that the solutions [inl(20) and
[@2) do not always exist: Regular updating &f") () is not
{al, 042} = Xi‘f‘l \ X7 (16) possible ifA(l’j) (al)A(Z,j) (042) — A(l’j)(ag)A@’j)(Oxl) =0.

Comparing [(IF) to[{9), we set the equation to be solved l;l';ns happens if

the GMD extension to be AL (o) = AL (o) = 0 (23)

ALTHD () = ARI) () — ¢ () ATD) (). (17) or

Consequentlyg?) (z) is determined in such a way that AR (ay) = AR (ay) =0, (24)

A(l"jﬂ)(o‘l) = A(l’jﬂ)(o‘?) =0. (18) and rarely also in other cases when the terms in the de-

Now, the polynomialsA(V)(z) take the role ofu(z) in the nominator of [ZD) are all not zero, b.ut the denominator is.
classical decoding up t%51|, i.e. they form the list of FOf these cases, we aIIovlv .thle algorithm to lupdm@(x)
candidate error locator polynomials from which the decgdidn Such a way that degh "7+ )(ff) # deg A (z) + 1.
result is chosen. Note that the erased positions in ondiiiara However, we keep track of this process, and perform a
are always named; and o, there is no separate indicationcOmpensation step in some later iteratipn- jo such that
of the iteration. It should always be clear from the contéxt, W€ 96t degAt7#0)(z) = deg A () + jo. We try to
which pair of positions the two variables refer. choosej, as .smaII as possible, and in most S|t.uat|on.s it is
As mentioned above, we want the degree of the polynomftually possible to havg = 2, hence we do not intensively
AW () to increase by one in each iteration. In order to ensufE-dy the case when compensation is notimmediately pessibl

this degree, we forca; andas to be zeros of the polynomial Additionally, if A®(ay) =0 or _A(Q) (a2) = 0, the updating
_ _ _ of A®(z) has to be performed in a different way. Yet a closer
AT () = aA@D (z) — (x +b) - AMD(2).  (19) look at the polynomials shows, that in this case it is sufficie
(2,j+1) = _ (2,4) i (2) =
Thus, we have a system of two linear equations and tvE/% seta .(x) . (@ al).A () if A (az) =0 and
unknowns, so we can give the general solution vice versa. This might resul_t ina polynomlal of smaller d=gr
' than the intended one, but it is more important that the degre

- AT () AT () (0 — o) of the polynomial is not too large.
“= AL (o) AR () — ALD) (o) AR ()’ Before we study the updating procedures in the special cases
A(1,j)(al)A(2,j)(a2)al _ A(1,j)(a2)A(2,j) (o1 indicated above_, it should be noted that no_further casas tha
= AT (AR (a9) — AT () ACH (ay) the ones described be_fore need to be dls_tlngwshgd. Because
(20) the auxiliary polynomialsuU—Y (z) and «9) (z) fulfill the
relation [3]

Because we do not require the polynomials to be monic, we ‘ ‘ . ‘
can avoid the division in the actual implementation. Howeve uD (2)v Y (z) — UV ()0 (z) = £1,  (25)



where thev)(z) can also be calculated recursively in thdirst is multiplied by a polynomial of degre and the latter
EEA, but are not needed for decoding RS codes. The grelay-a polynomial of degreé. We therefore set

est common divisor (gcd) of two polynomials calculated in (1 j12), | (2,541) (1,j+1)
consecutive iterations of the EEA is and so this is true for A b o (2) = (z +a)A (@) ngAl (@),
A0 (z) and A9 (z). Of course, in the further iterations, ART) () = (z — an)(z — az) APTT (2),
the ged of A7) (z) and A9 () will at least have roots which in combination with[{29) gives the desired degrees for
at all positions inA;. Indeed, close examination shows thagyo updating stepsA (172 () has the desired zeros if

the gcd contains exactly these roots and no further common

(30)

factor. o — AW (1) AP (ag)ar = AW () AP (ay) ey
To illustrate this with an example, we will explicitly caleu AW (1) AP (a2) — AN (az2) AP () (31)
late the gcd for regular updating in the first GMD iteration. AP (a)) AP (ag) (a1 — )

For the further iterations as well as the other cases destrib = AD (a7)A®) (ag) — A(l)(ag)A@)(al);
later on, this claim can be verified in a similar manner. First
we take a look at the proof fof (P5) as given fin [3]. There, th¥
calculation of the auxiliary polynomials is written in miatr
form as

e abbreviated\()) = A(L7+D) and A2 = AR7+1),
If A0 (a1) A (a) — AL (an) AR (ar) = 0 with-
out any of the involved terms being zero, we perform the up-
G) - G=1) W 1 @ @ 1 date of A (z) as in [29). However, the updating &) (z)
(“( N u(.l)) = (q ) : (q ) (q ) (26) stillis done according td(21), since (of courge/) (z) does
v oY 1.0 10 10 not yet have the required zeros. After the compensation step
and taking the determinant on both sides immediately givés? (z) will then have the same degree A§") (z). However,

the relation[[Zb). To extend this to our approach, we also ukgsursive substitution, in order to g&t™(z) in dependence
the matrix representation, namely of A9 (z) and A(%9) (z) shows that these polynomials are

. ) o1 ’
ALD)  AGS) A1) A1) 1 multiplied by the intended degree m( )(:c)_, so this fact does
) ) = 3) @ . i | not cause major problems, and simulations have shown that
P (x) p (@) p(x) P (z) a q correct decoding is actually achieved with this setup.

with polynomialsp(®)(z) that are not used in our al (gﬁt?m The last special case that needs to be taken into account
boly p\F 9 is AL () = A9 (ay) = 0. Here, there is no need to

o i te2) b 18 Uyt ).t forg the 2t (1) 1 o
P 9p ’ possible with the formula given if_(R1): The solution [n](22)

taking the determinant we obtain is valid, but the fact thatt — b — 0 implies thatA27) ()
w9 (2)p® (2) — uU D (2)pM (2) = ¢V (2) - ¢V (2) —a,  is discarded, hence all further solutions would be multijé
(28) A1) (z), which is not wanted. Therefore, we use the updating
the right hand side possibly multiplied byl. Since we know rules
that the gcd includes the factofs — a1) and (z — az), the AT (1) = ALI) (1),

ged cannot have degree less tHanOn the other hand, the » : (32)
right hand side of[{28) is a polynomial of degreeand it is ARTD (2) = (2 = o) (@ — a2) AP (2).
a multiple of the gcd. Hence the gcd has degree at Rosb The compensation step then is given as
:ct is |mme_d|ate_ly clea_r that the gcd consists of exactly the t AW (2) = (2 — a))(z — an) AL (),
actors given, in particular no root at any valug that is to , , } (33)
be erased in a later iteration, is contained in the gcd. ABIT) () = aAPTHD () — (2 + ) AT (),

Now we will turn to the special cases, where the updatinghere
rule (I9) cannot be used. First, we study the case given 1 1
in 24). Due to the fact than(Y) (z) and A®)(z) are co- a= Al )(Ogl)A( )(QQ)(lal _ OQ)Q
prime, we haveA™7) (a;) # 0, A7) (ay) # 0. In such a AD (a)A® (a1) — AD () AP (az) (34)
case, (z + b)A19)(z) can only have a root at one of the , _ AP (a1)A®(ag)ar — Al (az) A®) (a1)as
required zeros, and adding a multiple Af?7)(z) cannot AW () A@ (o) — AD () AR (o)

bring either position to zero. Therefore,_we choose to Spbrforming the compensation steps, both that[id (30) and
degA(leﬂ)(a:) = deg A7) (z) +2. Then it is easy to find i, @3) isn't always possible either. The situations in whic
the updating rules compensation fails are actually the same as those where
AT (1) = (2 — 1) (z — az) AL (2), regular updating fail§. C;onsgquently, the same speciaiuir!rgj
ACI (3) = AR () (29) rules are used again in this cases. If the same rule is used
- : twice, two compensation steps are required later on. On the
In the next iteration, the decoder should try to compengate bther hand,[(29) and (B2) serve as compensation steps for
this decision. The thought leading to the result is the foilg: each other. Further, compensation is possible but shouldeno
If we check how the polynomiah(*7+2) () is composed of performed in[(3D) ifA7+1) (a;) or A2+ (ay) is zero: In
A9 (z) and A(29) () for regular updating, we find that thethis case, by performing the compensation step, one discard



the polynomialA™*+1)(z), and all error locator polynomials O(d) candidate error locators, with a complexity 6fn?)
obtained further are multiples oA(>7+1) (z) which is not each. Hence, in this straightforward approach the overall
wanted. Therefore, it is better to perform regular updating complexity isO(n?) and determined by the evaluation step.
this situation and try compensation in the next iteratione T The method suggested by Kottér [1] is to use evaluation
same holds if the compensation [n}33) is to be performed aneictors instead of polynomials during the algorithm. |aste
AT () = 0 or ABIHD (ay) = 0. of using the polynomials, evaluation vectors are calcdlate
The situation in these special cases is a little diffethe initialization to the GMD extension. In these vectorgrg
ent if ¢((z) exists. As mentioned before, the updatingomponent corresponds to the evaluation of the polynornial a
can be written to avoid the division in the calculation oé certain field value, i.e. we substitute
the coefficients - such a case is equivalent to multiplying, (1,0) [A(l 0) (1,0) (1,0)/,n—1 }
, , ’ PN(1), A VAN . (35
both A7) (z) and A7) (z) by a constant. As a result, (z) & (1), (@), (™). (39)
AT () = ¢A®3+D () with constantc would be ob- and so on. Consequently, polynomial multiplications are re
tained, and in the next iteration, forcing more zeros woullaced by elementwise vector multiplications, e.g.
resultinA(17+2) () = 0. This is still true for the changed def- 2 ¢ 2 —1, n-1
. < [p(1), , ooyl " . (36
inition of A9 (z), and so updating is best done as presenteg p() [p( ) ap(a), a”pla’) " pla )] (36)
before. However, because we used the téth(z)u() (z) in  The evaluation of a polynomial is now simply the extraction
the definition ofA(2%)(z), in these cases another solution ma@f one component from a vector. It can be verified that the
be obtained: As long as the constant multiplied\@-/) (z) is complexity of the main step, namely finding all candidatelerr
not zero, the result includes a term- zA(19) () with i > 1. locators, can still be performed with a complexity @fn?).
Therefore, in such cases an additional solution - of the forrther, the selection of the best solution is now also jesi
AL () = aA@D) (z) + bALI) () - is a valid solution With complexity O(n?): Using a weighted hamming metric,
and therefore it is stored, increasing the maximum list sizeit is only important which positions are in error, while the
the decoder output. actual error value is not important. Since these positiars ¢
We conclude this section by sketching how the formuld easily extracted from the evaluation vectors of the ciatdi
given for the GMD extension interact as an algorithm. Weolynomials - the positions where the evaluation vectoes ar
setA == AW () A (ag) — AW () AP (ay) to obtain a Z€ro - the complexity of calculating the weighted Hamming
shorter notation. The variabté! introduced in the algorithm Weight of a single candidate is therefore or@y(n), and so

is used to keep track of the special updatings performed. finding the best solution amon@(d) candidates can be done
with complexity O(n?).

Algorithm 1: GMD extension

Input: PolynomialsA (19 (z), A0 (z), V. SUMMARY AND CONCLUSION
erasure sets; We presented a method that is capable of performing
Output: List £ of candidate error locators Generalized Minimum Distance decoding of RS codes with
Initialization: j = 0, dd = 0, £ = {A10(2)} an overall complexity of0(n?). A method that exhibits the
while deg A(t9) () < d — 2 do same performance had already been introduced by Kbtter in
calculateA from X, \ X; 1996 [1]. This is not surprising, since Kotters algorithm e
if dd =0 andA # 0 then tends the Berlekamp-Massey algorithm, and ours the extende
| update according td_(19) and {21) Euclidean algorithm, and these two algorithms are known to
else ifA=0 then _ _ be equivalent for decoding up to half the minimum distance.
perform special updating and adjust: However, having a different problem formulation and ergsin
@9) = dd=dd+1 strategy, we do not always have the same intermediate sesult
@B2)= dd=dd—1
else ifdd > 0 (and A # 0) then REFERENCES
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