
ar
X

iv
:1

00
6.

28
60

v1
 [

cs
.IT

]
14

 J
un

 2
01

0

The Euclidean Algorithm for Generalized Minimum
Distance Decoding of Reed-Solomon Codes

Sabine Kampf and Martin Bossert
Institute of Telecommunications and Applied Information Theory

University of Ulm, Germany
{sabine.kampf | martin.bossert}@uni-ulm.de

Abstract—This paper presents a method to merge Generalized
Minimum Distance decoding of Reed-Solomon codes with the
extended Euclidean algorithm. By merge, we mean that the steps
taken to perform the Generalized Minimum Distance decoding
are similar to those performed by the extended Euclidean
algorithm. The resulting algorithm has a complexity of O(n2).

I. I NTRODUCTION

In 1996, Ralf Kötter presented a fast algorithm for Gener-
alized Minimum Distance (GMD) decoding of Reed-Solomon
(RS) codes with a complexity ofO(n2) [1]. This algorithm is
an extension of the well-known Berlekamp-Massey algorithm
(BMA), that has been applied to decoding of RS codes up to
half the minimum distance since the late 1960s [2]. Another
algorithm that is often used to decode RS codes was first
described by Sugiyama et. al. in 1975 [3], and is based
on the extended Euclidean algorithm (EEA). Recently, there
have been attempts to perform GMD decoding, also with a
complexity of O(n2), using polynomials that are obtained
from the extended Euclidean algorithm [4], [5]. Since the
BMA and EEA are known to be equivalent in the decoding
of RS codes up to half the minimum distance, it is interesting
to try to find an extension to the EEA that is equivalent to
Kötters extension to the BMA. In this paper, we present such
an extension.

The paper is organized as follows: In the next section,
we shortly introduce RS codes as well as GMD decoding.
In Section III, we first recall the EEA and how it is used
for decoding RS codes up to half the minimum distance.
Then we show, which of polynomials obtained are used as
a basis for the GMD extension, and how to extend the EEA
to GMD decoding. Finally, we shortly discuss how to modify
our approach so that the selection of the best solution does not
decrease the complexity. The conclusion follows in SectionV.

II. N OTATIONS AND DEFINITIONS

A. RS Codes and Key Equation

To define anRS(n, k, d) code overGF (q) with R = k
n

and minimum distanced = n− k + 1, let α ∈ GF (q) denote
an element of ordern, andαj the jth power of this element.
Later, the elementsαi will denote theith element according

This work was supported by the German Research Council ”Deutsche
Forschungsgemeinschaft” (DFG) under Grant No. Bo867/22.

to a (implicitly) given indexing. A polynomialc(x) = c0 +
c1x + · · · + cn−1x

n−1 with coefficients inGF (q) is a valid
codeword if the polynomialC(x), whose coefficientsCj are
calculated by the discrete Fourier transform (DFT), i.e.

Cj = c(αj), j = 0, . . . , n− 1, (1)

is zero at the firstn− k = d− 1 coefficients, hence

C(x) = Cd−1x
d−1 + · · ·+ Cn−1x

n−1. (2)

We take theCi ∈ GF (q) to be the information symbols.
The codewordc(x) corresponding to the information word
C(x) is obtained through the inverse discrete Fourier transform
(IDFT):

ci = n−1 · C(α−i), i = 0, . . . , n− 1. (3)

Throughout this paper, capital letters denote polynomialsin
the spectral domain, and small letters their correspondences
in the time domain.

The transmitted codeword is corrupted by an additive error
e(x) of Hamming weightt, and the received word isr(x) =
c(x) + e(x). For decoding, calculate the syndromeS(x):

S(x) = R(x) mod xd−1 = E(x) mod xd−1. (4)

This syndrome is used in thekey equationfor decoding RS
codes:

− Ω(x) ≡ Λ(x) · S(x) mod xd−1, (5)

with the error locator polynomialΛ(x) and the error evaluator
polynomialΩ(x). These two polynomials satisfy the important
degree relation:

degΩ(x) < degΛ(x) = t. (6)

B. GMD Decoding

First proposed by Forney in 1966 [6], the idea of GMD
decoding is to allow soft-decision decoding of algebraically
decodable codes by performingm + 1 decoding trials, each
with a different number of positions being erased. In each trial,
the decoder may either output an error locator polynomial as
defined in (5), or declare a decoding failure. Consequently,
a list of up tom + 1 candidate error locator polynomials is
obtained, and the decoder should select one of these candidate
words, that is best according to a certain criterion.

http://arxiv.org/abs/1006.2860v1

In order to determine the setXj of erased positions in
iterationj, the decoder needs to be supplied with reliability in-
formation regarding the decisions made. Reliability is defined
intuitively, i.e. the less reliable a decision, the more probable
it is that the received value is incorrect. Therefore, the least
reliable positions are erased first. It is known, cf. e.g. [1], that
decoding is possible if the number of errorst and the number
of erasuresǫ fulfill

2t+ ǫ < d. (7)

We choose|X0| = 0 (i.e. we start with decoding errors only),
|X1| = 2, |X2| = 4, . . . , |Xm| = 2 ·

⌊

d−1
2

⌋

, and further require
Xj ⊂ Xj+1. Before,Λ(x) was defined to be an error locator
polynomial. For our algorithm, we slightly modify this and
take Λ(x) to be a joint error-erasure locator polynomial. In
each iteration of the GMD decoding process, we have two
additional erasures. On the other hand, according to (7) we can
correct one error less than in the iteration before, and so we
find that the degree of our candidate error locator polynomial
should increase by1 in each iteration. Due to this fact, we
state our decoding problem as follows:

Problem 1 In each iteration of our GMD decoding, we want
to find an error locator polynomialΛ(x), that fulfills (5) and
(6), of a given degree with certain prescribed zeros.

This is different to the problem statement of Kötter, wherethe
polynomial of smallestdegree is to be found. It will be seen
later that in some situations, it is not possible to fulfill the
requirements given in our problem statement.

In “classical” GMD decoding, the iterations are independent
of each other. In each iteration, one first determines the erasure
locator polynomial. Due to the erasures, the minimum distance
of the RS code is virtually decreased, and the decoder tries to
find an error locator from the shorter syndrome. Because the
complexity of decoding with the EEA isO(n2), the overall
decoding complexity of this approach isO(n3). However, the
decoding complexity can be decreased if erasing of positions
is performed incrementally, i.e. the decoding result of iteration
j is used together with the additional erasures inXj+1 \ Xj

to yield the decoding result of iterationj + 1. The first such
method was presented in [1], the complexity of his approach
being O(n2) (actually, Kötter claims the complexity to be
O(nd), but since in generald = O(n), this is asymptotically
the same). His algorithm is an extension of the BMA. How-
ever, it is known that decoding up to

⌊

d−1
2

⌋

with the BMA
and the EEA are equivalent. Therefore, we want to show that
it is possible to modify the EEA, such that GMD decoding is
merged into the decoding process.

III. T HE EXTENDED EUCLIDEAN ALGORITHM

The possibility of applying the EEA in the decoding of RS
codes up to

⌊

d−1
2

⌋

was first presented by Sugiyama et. al. in
1975 [3]. This decoding approach will be shortly reviewed in
the first part of this section, as it is the basis for the extended
decoding approach.

In the second and third part of this section, we will present
an algorithm that integrates GMD decoding into the EEA. At
the end of the third part, we show how to combine the formulas
given to form the algorithm.

A. Decoding up to
⌊

d−1
2

⌋

The EEA uses input polynomialsA(x) = r(0)(x) and
B(x) = r(−1)(x) to recursively calculate a series of quotient
polynomialsq(j+1)(x) and remaindersr(j+1)(x) that fulfill:

r(j+1)(x) = r(j−1)(x) − q(j+1)(x) · r(j)(x), (8)

with degr(j+1)(x) < degr(j)(x). The algorithm stops when
r(j+1)(x) = 0. From the quotient polynomials, a series
of auxiliary polynomialsu(j+1)(x) is obtained recursively,
namely

u(j+1)(x) = u(j−1)(x) − q(j+1)(x) · u(j)(x), (9)

whereu(−1)(x) = 0 and u(0)(x) = 1. The degrees of these
auxiliary polynomials are given by

degu(j)(x) =

j
∑

i=1

degq(i)(x). (10)

Further, these polynomials fulfill the relation

u(j)(x) ·A(x) = r(j)(x) mod B(x), (11)

which has a form similar to the key equation (5). This implies
that the EEA can be used for solving (5). Hence by setting
A(x) = S(x) andB(x) = xd−1, in some steps of the EEA,
whenever

degu(j)(x) > degr(j)(x), (12)

we obtain polynomials fulfilling both (5) and (6). If the
number of errorst, i.e. the number of nonzero coefficients
in e(x), is limited by t ≤

⌊

d−1
2

⌋

, then it is known [3] that
t = degu(j)(x), Λ(x) = u(j)(x) andΩ(x) = −r(j)(x) where
j is the smallest index for which (12) is fulfilled.

B. From Classical Decoding to GMD Extension

In [5] it was shown thatc(j+1), the number of coefficients
of q(j+1)(x) that can be determined from the syndrome, is
given by

c(j+1) = degr(j)(x)− degu(j)(x) + 1. (13)

Further, (8) yields that

degq(j+1)(x) = degr(j−1)(x)− degr(j)(x). (14)

As long as degq(j+1)(x) + 1 ≤ c(j+1), the quotient polyno-
mials are calculated as in the classical decoding procedure.
This can be done as long as degq(j+1)(x) ≤

⌊

d−1
2

⌋

[5]. If
degq(j+1)(x) + 1 > c(j+1), we switch to the GMD extension
described in the next paragraph. In order to set the initial
polynomials for the extension, we have to distinguish two
cases: Ifc(j+1) ≤ 0, then no coefficient of the next quotient
polynomial can be determined. Hence, we use

u(j)(x) =: ∆(1,0)(x) andu(j−1)(x) =: ∆(2,0)(x). (15)

On the other hand, ifc(j+1) > 0, then it is possible to
determine the upmostc(j+1) coefficients ofq(j+1)(x) - we
will call this part q̂(1)(x), because it belongs to the “quotient”
polynomial determined in the first iteration of the GMD
extension - and it would be unwise to discard this information.
Simulations have shown, that the best performance is achieved
if we set∆(1,0)(x) := u(j)(x) and∆(2,0)(x) := u(j−1)(x) −
q̂(1)(x)u(j)(x). Unfortunately, we do not know yet why this
performs better than using the definitions in (15) and just
taking q̂(1)(x) into account only in the first iteration.

C. GMD Extension

In this section, we again usej to index the iterations done
in the GMD part of our algorithm. However, we count those
iterations independently of the ones performed by the EEA
before. Because the decoding up to

⌊

d−1
2

⌋

is just decoding
without erasures,j now corresponds to the iterations defined
in Section II-B. The basic idea is the following: We start with
decoding up to half the minimum distance, as described before.
Once the polynomialsu(j)(x) can no longer be determined
by the syndrome and we switch to the GMD extension, the
decoder starts to determine the “quotient” polynomialsq(j)(x)
with the help of the reliability information given. Namely,two
positionsα1 andα2 are erased in each iteration, where

{α1, α2} = Xj+1 \ Xj . (16)

Comparing (15) to (9), we set the equation to be solved by
the GMD extension to be

∆(1,j+1)(x) = ∆(2,j)(x) − q(j)(x)∆(1,j)(x). (17)

Consequently,q(j)(x) is determined in such a way that

∆(1,j+1)(α1) = ∆(1,j+1)(α2) = 0. (18)

Now, the polynomials∆(1)(x) take the role ofu(x) in the
classical decoding up to

⌊

d−1
2

⌋

, i.e. they form the list of
candidate error locator polynomials from which the decoding
result is chosen. Note that the erased positions in one iteration
are always namedα1 andα2, there is no separate indication
of the iteration. It should always be clear from the context,to
which pair of positions the two variables refer.

As mentioned above, we want the degree of the polynomial
∆(1)(x) to increase by one in each iteration. In order to ensure
this degree, we forceα1 andα2 to be zeros of the polynomial

∆(1,j+1)(x) = a∆(2,j)(x)− (x + b) ·∆(1,j)(x). (19)

Thus, we have a system of two linear equations and two
unknowns, so we can give the general solution

a =
∆(1,j)(α1)∆

(1,j)(α2)(α1 − α2)

∆(1,j)(α1)∆(2,j)(α2)−∆(1,j)(α2)∆(2,j)(α1)
,

b =
∆(1,j)(α1)∆

(2,j)(α2)α1 −∆(1,j)(α2)∆
(2,j)(α1)α2

∆(1,j)(α1)∆(2,j)(α2)−∆(1,j)(α2)∆(2,j)(α1)
.

(20)

Because we do not require the polynomials to be monic, we
can avoid the division in the actual implementation. However,

for the analysis of the algorithm we prefer to use the formulas
given as they provide the easier insight regarding the cases
when the intended updating is not possible.

Of course,∆(2)(x) also needs to be updated to enforce the
required zeros, since otherwise it will not be guaranteed in
further iterations that∆(1)(x) still has zeros atall positions
in the corresponding erasure setXj . The updating of∆(2)(x)
is performed by

∆(2,j+1)(x) = ∆(1,j)(x)− (a · x+ b) ·∆(2,j)(x). (21)

∆(1,j)(x) is multiplied by 1 because we want to have
deg ∆(2,j+1)(x) = deg ∆(1,j)(x). This is derived from the
fact that in (9), the same auxiliary polynomial is used twice,
once in the role of∆(1)(x) and in the next iteration in that of
∆(2)(x). The correct zeros are obtained if

a =
∆(1)(α1)∆

(2)(α2)−∆(1)(α2)∆
(2)(α1)

∆(2)(α1)∆(2)(α2)(α1 − α2)
,

b =
∆(1)(α2)∆

(2)(α1)α1 −∆(1)(α1)∆
(2)(α2)α2

∆(2)(α1)∆(2)(α2)(α1 − α2)
.

(22)

Updating according to these two rules will be called regular
updating. It is directly seen, that the solutions in (20) and
(22) do not always exist: Regular updating of∆(1)(x) is not
possible if∆(1,j)(α1)∆

(2,j)(α2)−∆(1,j)(α2)∆
(2,j)(α1) = 0.

This happens if

∆(1,j)(α1) = ∆(1,j)(α2) = 0 (23)

or

∆(2,j)(α1) = ∆(2,j)(α2) = 0, (24)

and rarely also in other cases when the terms in the de-
nominator of (20) are all not zero, but the denominator is.
For these cases, we allow the algorithm to update∆(1)(x)
in such a way that deg∆(1,j+1)(x) 6= deg ∆(1,j)(x) + 1.
However, we keep track of this process, and perform a
compensation step in some later iterationj + j0 such that
we get deg∆(1,j+j0)(x) = deg ∆(1,j)(x) + j0. We try to
choosej0 as small as possible, and in most situations it is
actually possible to havej0 = 2, hence we do not intensively
study the case when compensation is not immediately possible.
Additionally, if ∆(2)(α1) = 0 or ∆(2)(α2) = 0, the updating
of ∆(2)(x) has to be performed in a different way. Yet a closer
look at the polynomials shows, that in this case it is sufficient
to set∆(2,j+1)(x) = (x − α1)∆

(2,j)(x) if ∆(2)(α2) = 0 and
vice versa. This might result in a polynomial of smaller degree
than the intended one, but it is more important that the degree
of the polynomial is not too large.

Before we study the updating procedures in the special cases
indicated above, it should be noted that no further cases than
the ones described before need to be distinguished. Because
the auxiliary polynomialsu(j−1)(x) and u(j)(x) fulfill the
relation [3]

u(j)(x)v(j−1)(x) − u(j−1)(x)v(j)(x) = ±1, (25)

where thev(j)(x) can also be calculated recursively in the
EEA, but are not needed for decoding RS codes. The great-
est common divisor (gcd) of two polynomials calculated in
consecutive iterations of the EEA is1, and so this is true for
∆(1,0)(x) and∆(2,0)(x). Of course, in the further iterations,
the gcd of∆(1,j)(x) and ∆(2,j)(x) will at least have roots
at all positions inXj . Indeed, close examination shows that
the gcd contains exactly these roots and no further common
factor.

To illustrate this with an example, we will explicitly calcu-
late the gcd for regular updating in the first GMD iteration.
For the further iterations as well as the other cases described
later on, this claim can be verified in a similar manner. First,
we take a look at the proof for (25) as given in [3]. There, the
calculation of the auxiliary polynomials is written in matrix
form as

(

u(j) u(j−1)

v(j) v(j−1)

)

=

(

q(1) 1
1 0

)

·

(

q(2) 1
1 0

)

. . .

(

q(j) 1
1 0

)

(26)

and taking the determinant on both sides immediately gives
the relation (25). To extend this to our approach, we also use
the matrix representation, namely
(

∆(1,j) ∆(2,j)

p(1)(x) p(2)(x)

)

=

(

∆(1,j−1) ∆(2,j−1)

p(3)(x) p(4)(x)

)

·

(

q(j) 1
a q̄(j)

)

,

(27)
with polynomialsp(i)(x) that are not used in our algorithm.
For the first iteration, i.e.j = 1, we substitute (26) for the
last step of the classical decoding procedure into (27), andby
taking the determinant we obtain

u(j)(x)p(2)(x) − u(j−1)(x)p(1)(x) = q(1)(x) · q̄(1)(x)− a,

(28)
the right hand side possibly multiplied by−1. Since we know
that the gcd includes the factors(x − α1) and (x − α2), the
gcd cannot have degree less than2. On the other hand, the
right hand side of (28) is a polynomial of degree2, and it is
a multiple of the gcd. Hence the gcd has degree at most2, so
it is immediately clear that the gcd consists of exactly the two
factors given, in particular no root at any valueαi that is to
be erased in a later iteration, is contained in the gcd.

Now we will turn to the special cases, where the updating
rule (19) cannot be used. First, we study the case given
in (24). Due to the fact that∆(1)(x) and ∆(2)(x) are co-
prime, we have∆(1,j)(α1) 6= 0,∆(1,j)(α2) 6= 0. In such a
case,(x + b)∆(1,j)(x) can only have a root at one of the
required zeros, and adding a multiple of∆(2,j)(x) cannot
bring either position to zero. Therefore, we choose to set
deg∆(1,j+1)(x) = deg∆(1,j)(x) + 2. Then it is easy to find
the updating rules

∆(1,j+1)(x) = (x− α1)(x− α2)∆
(1,j)(x),

∆(2,j+1)(x) = ∆(2,j)(x).
(29)

In the next iteration, the decoder should try to compensate for
this decision. The thought leading to the result is the following:
If we check how the polynomial∆(1,j+2)(x) is composed of
∆(1,j)(x) and∆(2,j)(x) for regular updating, we find that the

first is multiplied by a polynomial of degree2 and the latter
by a polynomial of degree1. We therefore set

∆(1,j+2)(x) = (x+ a)∆(2,j+1)(x) + b∆(1,j+1)(x),

∆(2,j+2)(x) = (x− α1)(x − α2)∆
(2,j+1)(x),

(30)

which in combination with (29) gives the desired degrees for
two updating steps.∆(1,j+2)(x) has the desired zeros if

a =
∆(1)(α1)∆

(2)(α2)α1 −∆(1)(α2)∆
(2)(α1)α2

∆(1)(α1)∆(2)(α2)−∆(1)(α2)∆(2)(α1)
,

b =
∆(2)(α1)∆

(2)(α2)(α1 − α2)

∆(1)(α1)∆(2)(α2)−∆(1)(α2)∆(2)(α1)
;

(31)

we abbreviated∆(1) = ∆(1,j+1) and∆(2) = ∆(2,j+1).
If ∆(1,j)(α1)∆

(2,j)(α2) −∆(1,j)(α2)∆
(2,j)(α1) = 0 with-

out any of the involved terms being zero, we perform the up-
date of∆(1)(x) as in (29). However, the updating of∆(2)(x)
still is done according to (21), since (of course)∆(2,j)(x) does
not yet have the required zeros. After the compensation step,
∆(2)(x) will then have the same degree as∆(1)(x). However,
recursive substitution, in order to get∆(1)(x) in dependence
of ∆(1,0)(x) and∆(2,0)(x) shows that these polynomials are
multiplied by the intended degree in∆(1)(x), so this fact does
not cause major problems, and simulations have shown that
correct decoding is actually achieved with this setup.

The last special case that needs to be taken into account
is ∆(1,j)(α1) = ∆(1,j)(α2) = 0. Here, there is no need to
update∆(1)(x), but forcing the zeros in∆(2,j+1)(x) is not
possible with the formula given in (21): The solution in (22)
is valid, but the fact thata = b = 0 implies that∆(2,j)(x)
is discarded, hence all further solutions would be multiples of
∆(1,j)(x), which is not wanted. Therefore, we use the updating
rules

∆(1,j+1)(x) = ∆(1,j)(x),

∆(2,j+1)(x) = (x− α1)(x − α2)∆
(2,j)(x).

(32)

The compensation step then is given as

∆(1,j+2)(x) = (x− α1)(x − α2)∆
(1,j+1)(x),

∆(2,j+2)(x) = a∆(2,j+1)(x)− (x+ b)∆(1,j+1)(x),
(33)

where

a =
∆(1)(α1)∆

(1)(α2)(α1 − α2)

∆(1)(α2)∆(2)(α1)−∆(1)(α1)∆(2)(α2)

b =
∆(1)(α1)∆

(2)(α2)α1 −∆(1)(α2)∆
(2)(α1)α2

∆(1)(α2)∆(2)(α1)−∆(1)(α1)∆(2)(α2)
.

(34)

Performing the compensation steps, both that in (30) and
in (33) isn’t always possible either. The situations in which
compensation fails are actually the same as those where
regular updating fails. Consequently, the same special updating
rules are used again in this cases. If the same rule is used
twice, two compensation steps are required later on. On the
other hand, (29) and (32) serve as compensation steps for
each other. Further, compensation is possible but should not be
performed in (30) if∆(2,j+1)(α1) or ∆(2,j+1)(α2) is zero: In
this case, by performing the compensation step, one discards

the polynomial∆(1,j+1)(x), and all error locator polynomials
obtained further are multiples of∆(2,j+1)(x) which is not
wanted. Therefore, it is better to perform regular updatingin
this situation and try compensation in the next iteration. The
same holds if the compensation in (33) is to be performed and
∆(1,j+1)(α1) = 0 or ∆(1,j+1)(α2) = 0.

The situation in these special cases is a little differ-
ent if q̂(1)(x) exists. As mentioned before, the updating
can be written to avoid the division in the calculation of
the coefficients - such a case is equivalent to multiplying
both ∆(1,j)(x) and ∆(2,j)(x) by a constant. As a result,
∆(1,j+1)(x) = c∆(2,j+1)(x) with constantc would be ob-
tained, and in the next iteration, forcing more zeros would
result in∆(1,j+2)(x) = 0. This is still true for the changed def-
inition of ∆(2,0)(x), and so updating is best done as presented
before. However, because we used the termq̂(1)(x)u(j)(x) in
the definition of∆(2,0)(x), in these cases another solution may
be obtained: As long as the constant multiplied to∆(2,j)(x) is
not zero, the result includes a terma1 ·xi∆(1,j)(x) with i > 1.
Therefore, in such cases an additional solution - of the form
∆(1,j+1)(x) = a∆(2,j)(x) + b∆(1,j)(x) - is a valid solution
and therefore it is stored, increasing the maximum list sizeat
the decoder output.

We conclude this section by sketching how the formulas
given for the GMD extension interact as an algorithm. We
set ∆̄ := ∆(1)(α1)∆

(2)(α2) −∆(1)(α2)∆
(2)(α1) to obtain a

shorter notation. The variabledd introduced in the algorithm
is used to keep track of the special updatings performed.

Algorithm 1 : GMD extension

Input : Polynomials∆(1,0)(x), ∆(2,0)(x),
erasure setsXj

Output : List L of candidate error locators
Initialization: j = 0, dd = 0, L = {∆(1,0)(x)}
while deg∆(1,j)(x) < d− 2 do

calculate∆̄ from Xj+1 \ Xj

if dd = 0 and ∆̄ 6= 0 then
update according to (19) and (21)

else if ∆̄ = 0 then
perform special updating and adjustdd:
(29) ⇒ dd = dd+ 1
(32) ⇒ dd = dd− 1

else if dd > 0 (and ∆̄ 6= 0) then
perform compensation step (30),dd = dd− 1

else if dd < 0 (and ∆̄ 6= 0) then
perform compensation step (33),dd = dd+ 1

end
store∆(1,j+1)(x) in L
j = j + 1

end

IV. SELECTION OF THEBEST SOLUTION

In this section, we shortly discuss how to select the best
solution from the list of candidate error locators. Although
the distance criteria used in most cases are trivial, the straight-
forward approach requires to perform error evaluation for all

O(d) candidate error locators, with a complexity ofO(n2)
each. Hence, in this straightforward approach the overall
complexity isO(n3) and determined by the evaluation step.

The method suggested by Kötter [1] is to use evaluation
vectors instead of polynomials during the algorithm. Instead
of using the polynomials, evaluation vectors are calculated in
the initialization to the GMD extension. In these vectors, every
component corresponds to the evaluation of the polynomial at
a certain field value, i.e. we substitute

∆(1,0)(x) ↔
[

∆(1,0)(1),∆(1,0)(α), . . .∆(1,0)(αn−1)
]

. (35)

and so on. Consequently, polynomial multiplications are re-
placed by elementwise vector multiplications, e.g.

x · p(x) ↔
[

p(1), αp(α), α2p(α2), . . . , αn−1p(αn−1)
]

. (36)

The evaluation of a polynomial is now simply the extraction
of one component from a vector. It can be verified that the
complexity of the main step, namely finding all candidate error
locators, can still be performed with a complexity ofO(n2).
Further, the selection of the best solution is now also possible
with complexityO(n2): Using a weighted hamming metric,
it is only important which positions are in error, while the
actual error value is not important. Since these positions can
be easily extracted from the evaluation vectors of the candidate
polynomials - the positions where the evaluation vectors are
zero - the complexity of calculating the weighted Hamming
weight of a single candidate is therefore onlyO(n), and so
finding the best solution amongO(d) candidates can be done
with complexityO(n2).

V. SUMMARY AND CONCLUSION

We presented a method that is capable of performing
Generalized Minimum Distance decoding of RS codes with
an overall complexity ofO(n2). A method that exhibits the
same performance had already been introduced by Kötter in
1996 [1]. This is not surprising, since Kötters algorithm ex-
tends the Berlekamp-Massey algorithm, and ours the extended
Euclidean algorithm, and these two algorithms are known to
be equivalent for decoding up to half the minimum distance.
However, having a different problem formulation and erasing
strategy, we do not always have the same intermediate results.

REFERENCES

[1] R. Kötter, “Fast Generalized Minimum Distance Decoding of Algebraic-
Geometry and Reed-Solomon Codes,”IEEE Transactions on Information
Theory, vol. 42, pp. 721–737, May 1996.

[2] F. J. MacWilliams and N. J. A. Sloane,The theory of error correcting
codes, 1977.

[3] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A Method
for Solving Key Equation for Decoding Goppa Codes,”Information and
Control, vol. 27, no. 1, pp. 87–99, 1975.

[4] S. Kampf, A. Wachter, and M. Bossert, “A Method for Soft-Decision
Decoding of Reed-Solomon Codes Based on the Extended Euclidean
Algorithm,” in 8th International ITG Conference on Source and Channel
Coding, Siegen, Germany, January 2010.

[5] S. Kampf and M. Bossert, “A Fast Generalized Minimum Distance
Decoder for Reed-Solomon Codes Based on the Extended Euclidean
Algorithm,” in IEEE International Symposium on Information Theory,
June 2010.

[6] G. D. Forney, “Generalized Minimum Distance Decoding,”IEEE Trans-
actions on Information Theory, vol. 12, pp. 125–131, April 1966.

	I Introduction
	II Notations and Definitions
	II-A RS Codes and Key Equation
	II-B GMD Decoding

	III The Extended Euclidean Algorithm
	III-A Decoding up to "4262304 d-12 "5263305
	III-B From Classical Decoding to GMD Extension
	III-C GMD Extension

	IV Selection of the Best Solution
	V Summary and Conclusion
	References

