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Abstract—We consider an extension of Massey’s construction
of secret sharing schemes using linear codes. We describe the
access structure of the scheme and show its connection to thedual
code. We use theg-fold joint weight enumerator and invariant
theory to study the access structure.

I. I NTRODUCTION

A secret sharing schemeis a process of distributing a secret
to a set of participants in such a way that only certain subsets
of them can determine the secret. The set of all subsets which
can determine the secret is called the access structure of the
scheme. Secret sharing schemes were introduced in 1979 ([1],
[11]) and since then, different schemes were constructed. For a
general introduction to secret sharing schemes, see for instance
[13]. An important class of secret sharing schemes are those
which are based on linear codes. The relation between secret
sharing schemes and linear codes was first presented in [9].
The access structure of schemes based on self-dual codes was
analyzed in [6] using some properties of the codes.

In this work, we consider an extension of the construction
method in [10]. This construction is presented in Section 2.In
Section 3, we characterize the groups that can determine the
secret. In Sections 4-6, we describe the access structure ofthe
scheme by extending the techniques used in [6].

II. CODES AND SECRETSHARING SCHEMES

Let Fq stand for the finite field of orderq, whereq is a
prime power. TheHamming weightwt(~v) of a vector~v in Fn

q

is the number of its non-zero coordinates while the support
of ~v is given by supp(~v) = {i : vi 6= 0, 1 ≤ i ≤ n}. An
[n, k, d] linear codeC is a linear subspace ofFn

q where k
is the dimension andd is the minimum Hamming weight. A
generator matrixG for a codeC is a matrix whose rows form
a basis forC. For any linear codeC, we denote byC⊥ its
dual under the usual inner product. A codeC is said to be
self-orthogonalif C ⊆ C⊥ and it isself-dualif C = C⊥.

We consider the following secret sharing scheme. LetP =
{P1, . . . , Pn} be the set of participants. Suppose we want to
share the secret~s = (s1, s2, . . . , sl) ∈ Fl

q. Let C be an[l +
n, k, d] linear code overFq with d > l. Consider a generator
matrix G = [G1, . . . , Gl, Gl+1, . . . , Gl+n] of C whereGi is
the ith column. To generate the shares, the dealer picks a

vector ~u such that~uGi = si for 1 ≤ i ≤ l. A codeword
~c = ~uG is then computed. Now the share ofPi is cl+i for
i = 1, . . . , l. Note that whenl = 1 then we have Massey’s
construction [10]. We also remark that this construction was
mentioned in [9] in the case of Reed-Solomon codes.

Let B = {Pi1 , . . . , Pim} ⊆ P . We have the following
result from [2]. The participants inB can recover the secret if
span(G1, . . . , Gl) ⊆ span(Gi1 , . . . , Gim). The participants in
B have no information on the secret if span(G1, . . . , Gl)∩
span(Gi1 , . . . , Gim) = ~0. Otherwise, the participants inB
have partial information on the secret.

Theaccess structureΓ of the scheme is the collection of all
subsets ofP that can recover the secret. An elementB ∈ Γ is
called aminimal access groupif no element ofΓ is a proper
subset ofB. For l = 1, it was shown in [10] that there is a
one-to-one correspondence between the set of minimal access
groups and the set of minimal codewords ofC⊥ with first
coordinate equal to 1.

A scheme is said to beperfect if every group in the
access structure can determine the secret and every group not
in the access structure has no information about the secret.
If a scheme is not perfect then some groups have partial
information on the secret. The scheme that we consider here
is non-perfect forl ≥ 2.

The information rateof a scheme is the ratio of the size of
the secret and maximum size of the share. For perfect schemes,
the size of each share must be at least as large as the size of
the secret. An advantage of non-perfect schemes is that the
size of each share can be smaller than the size of the secret.
The information rate of the scheme above isl.

III. A CCESSSTRUCTURE

We now describe the access structure of a scheme based on
a linear codeC. In [4], it was shown that any group of size at
mostd⊥ − l− 1 has no information about the secret and any
group of size at leastn+ l−d+1 can recover the secret. Here
we show that no group of size at mostd⊥l − l − 1 is in the
access structure, whered⊥l is the lth generalized Hamming
weight of C (cf. Corollary 2). Sinced⊥l is not so easy to
determine forl ≥ 2, we also show that the size of an access
group is at least32 (d

⊥ − l), whered⊥ is the minimum weight
of C⊥ (cf. Corollary 3). This bound is weaker than the one
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given byd⊥l , but easier to calculate. We are going to use the
following proposition which is an extension of the approach
in [10].

Proposition 1: Let B = {Pi1 , . . . , Pim} ⊆ P . Then the
participants inB can determine~s if and only if there exist
codewords~vj ∈ C⊥, 1 ≤ j ≤ l, satisfying the following
conditions:

i. The subvector of~vj consisting of its firstl coordinates is
equal to thejth unit vector~ej in Fl

q.
ii. supp(~vj) ⊆ {j, i1, . . . , im}.

Proof: Suppose there exist codewords~vj ∈ C⊥, 1 ≤ j ≤
l, satisfying conditions (i) and (ii). Forj = 1, . . . , l, we have

~s · ~vj = cj +

m
∑

r=1

αjrcir = 0

for some constantsαjr , 1 ≤ r ≤ m, which are not all zero.
Hence, the secret~s can be determined as a linear combination
of the shares of participants inB.

Suppose the participants inB can determine the secret. Then
for eachj = 1, . . . , l, we have an equation of the form

cj =

m
∑

r=1

βjrcir

for some constantsβjr, 1 ≤ r ≤ m, which are not all zero.
The equation can be rewritten as

(c1, c2, . . . , cl, cl+1, . . . , cl+n)·

(~ej , 0, . . . ,−βj1, . . . ,−βjm, 0, . . . , 0) = 0.

Now the codewords(~ej , 0, . . . ,−βj1, . . . ,−βjm, 0, . . . , 0) are
in C⊥ and satisfy conditions (i) and (ii).

Example 1:Let C1 be the[8, 3, 4] linear code overF3 with
generator matrix

G =





1 0 0 0 2 2 1 1
0 1 0 1 2 1 2 1
0 0 1 2 0 1 0 2



 .

We consider the scheme based on the dual ofC1 with l = 2
(so we have 6 participants). Applying the proposition, we can
verify that the access structure consists of 4 groups of size5
and 1 group of size 6.

Example 2:Consider the scheme based on the[8, 4, 4]
extended binary Hamming code withl = 3. In this case, we
have a total of 5 participants. There are 4 groups of size 4 and
1 group of size 5 in the access structure.

Corollary 2: Any group ofd⊥l − l − 1 or less participants
is not in the access structure whered⊥l is the lth generalized
Hamming weight ofC⊥.

Proof: The lth generalized Hamming weight of a linear
code is the minimum support of its subcodes of dimension
l. A minimal access groupB = {Pi1 , . . . , Pim} corresponds
to an [l + n, l] subcodeD of C⊥ such that supp(D) =
{1, . . . , l, i1, . . . , im}. Hence,m ≥ d⊥l − l.

Corollary 3: If l ≥ 2 then any group of32 (d
⊥ − l) − 1 or

less participants is not in the access structure.

Proof: As in the proof of Corollary 2, a minimal access
group of sizem corresponds to an[l+n, l] subcodeD of C⊥

whose support has sizel +m. Moreover, deleting the firstl
coordinates ofD as well as those coordinates which are not in
its support yields a binary[m, l] code of minimum weight at
leastd⊥−l. Recall thatA(N, δ) is the maximum size of a (not
necessarily linear) code of lengthN and minimum weight at
leastδ. The above yieldsA(m, d⊥− l) ≥ 2l > 2. On the other
hand, it is well-known thatA(N, δ) ≤ 2 wheneverN ≤ 3

2δ−1.
This yieldsm ≥ 3

2 (d
⊥ − l).

Proposition 4: When all participants come together and at-
tempt to determine the secret,

⌊

d−l
2

⌋

cheaters can be detected.
Proof: Deleting the firstl coordinates ofC results in a

code with minimum distanced− l.

IV. g-FOLD JOINT WEIGHT ENUMERATOR

We describe the connection between theg-fold joint weight
enumerator and the access structure. Theg-fold joint weight
enumerator is a generalization of the joint weight enumerator
(see [5]).

Definition 1: Let A1, A2, . . . , Ag be codes of lengthn over
Fq. The g-fold joint weight enumerator ofA1, A2, . . . , Ag is
defined as follows:

JA1,A2,...,Ag
(xa; a ∈ F

g
2)

=
∑

~c1∈A1,...,~cg∈Ag

∏

a∈F
g
2

xna(~c1,...,~cg)
a ,

where ~cj = (cj1, . . . , cjn), na(~c1, . . . ,~cg) = |{i|a =
(c1i, . . . , cgi)}|, andcji = 1 if cji 6= 0 andcji = 0 if cji = 0.
Here (xa; a ∈ F

g
2) is a 2g-tuple of variables withFg

2, that is,
(x00...0, x00...1, . . . , x11...1).

First we consider the casel = 2, i.e. the secret~s = (s1, s2).
For simplicity, we use the corresponding decimal representa-
tion of the subscripts of the variables in theg-fold joint weight
enumerator. LetT1 = {1} andT2 = {2} with indicator vectors
1T1

and1T2
respectively. Consider the 4-fold joint weight enu-

meratorJ1T1
,1T2

,C⊥,C⊥(xa) wherea ∈ F
4
2. We are interested

in the coefficientx10x5. The coefficient is a polynomial in
x0x1x2x3 and it gives information on the number and supports
of pairs of codewords~u,~v ∈ C⊥ whose first two coordinates
are(u1, 0) and(0, v2) respectively, whereu1 andv2 are both
non-zero. In general, for secrets of lengthl we use the2l-
fold joint weight enumeratorJ1T1

,...,1Tl
,C⊥,...,C⊥(xa; a ∈ F2l

2 )

wherea ∈ F
2l
2 . The following theorem generalizes a result in

[6] where Jacobi polynomials were used.
Theorem 5:Let X1 be the subset ofF2l

2 consisting of
all vectors whose firstl coordinates are zero and let
X2 := {(~ej, ~ej) | j ∈ {1, . . . , l}}, where ~ej ∈ Fl

2 is
the jth unit vector. Then the coefficient of

∏

a∈X2
xa in

J1T1
,...,1Tl

,C⊥,...,C⊥(xa; a ∈ F2l
2 ) is a polynomialp(xa; a ∈

X1). Identify X1 with {0, . . . , 2l − 1} via the binary number
representation and write

p =
∑

µ∈N2l

0

cµ
∏

a∈X1

xµa

a .
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Then the numberMC(m) of groups of sizem in the access
structure of the scheme based onC satisfies

MC(m) ≤
∑

µ

cµ,

where the sum is over allµ with
∑2l−1

i=1 µi = m Moreover, if
m < 3

2d
⊥ − 1 then equality holds.

Proof: The sum of the coefficientscµ, where
∑2l−1

i=1 µi =
m, equals the number of tuples(~v1, . . . , ~vl) of elements ofC⊥

such that the projection of~vj onto the firstl coordinates is the
jth unit vector inFl

2, and

| ∪l
j=1 supp(~vj) ∩ {l+ 1, . . . , l + n}| = m.

Hence due to Proposition 1, every such tuple determines a
group in the access structure of the scheme based onC, and
every minimal access group occurs as a union of supports
of such a tuple. However, in general there may be different
tuples of codewords that correspond to the same access group.
In this situation, there exists a tuple(~v1, . . . , ~vl) as above and
an element~c ∈ C⊥ such that

supp(~c) ⊆ ∪l
j=1 supp(~vj) ∩ {l+ 1, . . . , l+ n}.

Then for anyj ∈ {1, . . . , l}, | supp(~c) ∩ supp(~vj) ∩ {l +
1, . . . , l + n}| ≥ wt(~c) + wt(~vj)− 1−m and hence

d⊥ ≤ wt(~c+ ~vj)

≤ 1 +m− (wt(~c) + wt(~vj)− 1−m)

≤ 2m+ 2− 2d⊥,

which yieldsm ≥ 3
2d

⊥ − 1. Hence if m < 3
2d

⊥ − 1 then

the sum of the coefficientscµ with
∑2l−1

i=1 µi = m equals the
number of access groups of sizem.

If C is self-orthogonal then there exists a weaker condition
than the one in Theorem 5 under which the number of access
groups of sizem can be read off from the2l-fold joint weight
enumerator. To state this condition, we need the notion of the
code extension enumeratorbelow.

Definition 2: Let D be a linear self-orthogonal[N, k, d]
code. Thecode extension enumeratoris the complex poly-
nomial

PD(t) =
∑

c

td(〈c,D〉),

where the sum is over a system of representatives ofD⊥/D.
Clearly deg(PD) ≤ d, and a summandtd

′

in PD(t) gives
rise to a linear self-orthogonal[N, k + 1, d′] code.

Now consider a secret sharing scheme based on a binary
self-orthogonal linear codeC and let(~v1, . . . , ~vl) be a tuple of
elements ofC⊥ giving rise to an access group of sizem, as in
Proposition 1. LetD be the linear code generated by the~vj ,
where the columns where all the~vj are zero are deleted. Then
D is a self-orthogonal[l+m, l] code of minimum distance at
leastd⊥.

Assume that there exists another tuple of elements ofC⊥

leading to the same access group, i.e. in Theorem 5, we

have strict inequality forMC(m). Then there exists a nonzero
element~c ∈ C⊥ with supp(~c) ⊆ ∪l

j=1 supp(~vj) ∩ {l +
1, . . . , l+n}. Let (~c)′ ∈ F

l+m
2 be obtained from~c by deleting

the coordinates where all the~vi are zero. Then〈(~c)′,D〉 has
minimum weight at leastd⊥, hence gives rise to a summand
td(〈(~c)

′,D〉) in PD(t), whered(〈(~c)′,D〉) ≥ d⊥. This yields
Corollary 6: Consider a secret sharing scheme based on

a self-orthogonal linear codeC and let T be the set of all
tuples inC⊥ that give rise to an access group of sizem (cf.
Proposition 1). For a tuple(~v1, . . . , ~vl) ∈ T , let D(~v1, . . . , ~vl)
be the code generated by the~vj , in which the columns
where all the~vj are zero are deleted. If for all such tuples,
all monomials inPD(~v1,...,~vl)(t) (except for the monomial
corresponding to0 ∈ D⊥/D) have degree less thand⊥ then
equality holds in Theorem 5, i.e. the number of groups of size
m in the access structure of the scheme based onC can be
read off fromJ1T1

,...,1Tl
,C⊥,...,C⊥ .

V. B INARY SELF-DUAL CODES

In this section, we focus on schemes based on binary self-
dual codes and the casel = 2. Based on the previous section,
we useJ1T1

,1T2
,C,C(x0, . . . , x15) and determine the coefficient

of x10x5. Let us denote this coefficient byZ. Under some
conditions, we can determineZ using the biweight enumerator
of C.

Proposition 7: Let C be an[n, k, d] binary self-dual code.
If C has a 2-transitive automorphism group then

Z =
1

n(n− 1)

∂2

∂x2∂x3
JC,C(x0, x1, x2, x3)

=
1

n(n− 1)

∂2

∂x3∂x2
JC,C(x0, x1, x2, x3).

Proof: The first part of the proof is taken from [7]. We
can write the biweight enumerator as

JC,C(x0, x1, x2, x3) =
∑

Ai,j,k,lx
i
0x

j
1x

k
2x

l
3

whereAi,j,k,l is the number of pairs of codewords withn00 =
i, n01 = j, n10 = k, n11 = l. For a given coefficientAi,j,k,l

and coordinate positionh, let Nh(i, j, k, l) be the set of all
pairs of codewords inC which contribute toAi,j,k,l and with

01 pattern ath. It follows that
n
∑

h=1

|Nh(i, j, k, l)| = jAi,j,k,l

since any pair inNh has j positions with the 01 pattern.
Since the automorphism group is transitive then|Nh(i, j, k, l)|
is independent ofh. Thus, |Nh(i, j, k, l)| = j

n
Ai,j,k,l and in

particular,|N2(i, j, k, l)| = j
n
Ai,j,k,l.

Let N ′
h(i, j, k, l) be the set of all pairs of codewords in

N2(i, j, k, l) with 10 pattern at positionh. Using the arguments
above and since the automorphism group is 2-transitive, then
|N ′

h(i, j, k, l)| is independent ofh and

|N ′
h(i, j, k, l)| =

k

n− 1
|N2(i, j, k, l)|

=
kj

n(n− 1)
Ai,j,k,l.
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The proposition now follows.
Since the following examples deal with self-dual codes, we

shall remark the following.
Proposition 8: For a secret sharing scheme withl = 2

based on a self-dual binary codeC, the size of every minimal
group in the access structure is even.

Proof: A minimal access group of sizem in the access
structure corresponds to a pair(~v1, ~v2) of words in C⊥ = C
such that~v1 = (1 0 . . . ) and ~v2 = (0 1 . . . ) and m =
|(supp(~v1) ∪ supp(~v2))− {1, 2}|. The latter equalswt(~v1)−
1+wt(~v2)− 1− | supp(~v1)∩ supp(~v2)|. SinceC is self-dual,
the weight of every word inC is even. Moreover, the parity
of | supp(~v1)∩ supp(~v2)| equals the inner product of~v1 with
~v2, hence is zero as well. Hencem is even.

Example 3:The automorphism group of the[8, 4, 4] ex-
tended Hamming code is 2-transitive and its biweight enu-
merator is

JC,C(x0, x1, x2, x3) = x8
3 + 14x4

2x
4
3 + x8

2+

14x4
3x

4
1 + 14x4

2x
4
1 + x8

1 + 168x2
0x

2
1x

2
2x

2
3 + 14x4

3x
4
0+

14x4
2x

4
0 + 14x4

1x
4
0 + x8

0.

We obtainZ = 4x3
1x

3
2 + 12x2

0x1x2x
2
3. When l = 2, the total

number of participants is 6. Since32d
⊥ − 1 = 5, we can read

off the number of access groups of size 4 as 12. The only
other access group is the one formed by all participants.

Example 4:The biweight enumerator of the[24, 12, 8] Go-
lay codeg24 was computed in [8] and it is known that the
automorphism group of this code is 5-transitive. Applying the
proposition above, we obtain

Z = 6160x12
0 x3

1x
3
2x

4
3 + 22176x10

0 x5
1x

5
2x

2
3+

7392x10
0 x5

1x2x
6
3 + 7392x10

0 x1x
5
2x

6
3+

2640x8
0x

7
1x

7
2 + 73920x8

0x
7
1x

3
2x

4
3+

73920x8
0x

3
1x

7
2x

4
3 + 36960x8

0x
3
1x

3
2x

8
3+

36960x6
0x

9
1x

5
2x

2
3 + 12320x6

0x
9
1x2x

6
3+

36960x6
0x

5
1x

9
2x

2
3 + 266112x6

0x
5
1x

5
2x

6
3+

7392x6
0x

5
1x2x

10
3 + 12320x6

0x1x
9
2x

6
3+

7392x6
0x1x

5
2x

10
3 + 18480x4

0x
11
1 x3

2x
4
3+

147840x4
0x

7
1x

7
2x

4
3 + 73920x4

0x
7
1x

3
2x

8
3+

18480x4
0x

3
1x

11
2 x4

3 + 73920x4
0x

3
1x

7
2x

8
3+

6160x4
0x

3
1x

3
2x

12
3 + 36960x2

0x
9
1x

5
2x

6
3+

36960x2
0x

5
1x

9
2x

6
3 + 22176x2

0x
5
1x

5
2x

10
3 + 176x15

1 x7
2+

672x11
1 x11

2 + 176x7
1x

15
2 + 2640x7

1x
7
2x

8
3.

For the secret sharing scheme based ong24 with secret lenght
l = 2, the number of groups in the access structure of size
m = 10 can be read off fromZ as 6160 due to Theorem 5,
since 10 < 3

2d
⊥ − 1 = 11. For every tuple(~v1, ~v2) giving

rise to an access group of sizem = 12, we can compute
PD(~v1,~v2)(t) explicitly, using the information on the pairs of
codewords that is given byZ. It turns out that in all the cases,
all monomials have degree less than 8, hence due to Corollary
6, the number of access groups of size12 equals36960.

VI. I NVARIANT THEORY

SupposeC is an [n, k, d] binary self-dual code. We shall
apply invariant theory in describing the access structure,
similar to what was done in [6]. We consider the casel = 2.
Thus, we shall look at the 4-fold joint weight enumerator
J1T1

,1T2
,C,C(xa) wherea ∈ F4

2.
If all the codewords ofC have weights divisible by 4 then

we have a Type II code. Otherwise, we have a Type I code. In
[8], it was shown that the biweight enumerator of a Type I code
is invariant under the groupG1 generated by all permutation
matrices, all 16 matrices diag(±1,±1,±1,±1), and

T1 =
1√
2









1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1









.

The biweight enumerator of a Type II code is invariant under
the groupG2 generated byG1 andT2 = diag(1, i, 1, i) [7].

Let G stand forG1 or G2 depending on the type of code
we are dealing with. Following the arguments in [7] and [8,
Section III], and using the MacWilliams theorem in [5], we can
verify thatJ1T1

,1T2
,C,C(xa) is left invariant by every element

of G acting simultaneously on the following sets of variables:

V1 = {x0, x1, x2, x3}
V2 = {x4, x5, x6, x7}
V3 = {x8, x9, x10, x11}
V4 = {x12, x13, x14, x15}.

Hence,J1T1
,1T2

,C,C(xa) is a simultaneous invariant for the
diagonal action ofG. As a consequence, we can extend
the results in [6] regarding the Molien series. Note that the
exponents of the variables inV4 are always zero, hence we
can just consider the remaining three sets. The vector space
of invariants that we are going to use isC[xa]

G
i,j,k where

xa ∈ F4
2\V4 andi, j, k are the total degrees of the variables in

V1, V2, V3 respectively. The corresponding generalized Molien
series [12] is given by

ΦG(r, s, t) =
∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

dim(C[xa]
G
i,j,k)

=
1

|G|
∑

g∈G

1

det(I − rg)det(I − sg)det(I − tg)
.

Based on the previous section, we are interested in
dim(C[xa]

G
r,1,1). Its generating function in the variabler is

given by

FG(r) =
∂

∂s∂t
ΦG(r, s, t)

∣

∣

∣

∣

(s,t)=(0,0)

.

Using MAGMA [3], we obtain the following for Type I:

FG(r) = (r20 + r16 − 2r14 + 2r12 + r10 + r8 − r6 + 1)

/(r32 − 2r30 + 2r28 − 4r26 + 5r24 − 4r22 + 6r20

− 6r18 + 4r16 − 6r14 + 6r12 − 4r10 + 5r8 − 4r6

+ 2r4 − 2r2 + 1).
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For Type II we have

FG(r) = (4r62 + 4r54 + 5r46 + 6r38 + 7r30

+ 3r22 + 2r14 + r6)

/(r96 − r88 − 2r72 + 2r64 − r56 + 2r48

− r40 + 2r32 − 2r24 − r8 + 1).

VII. C ONCLUSION

We discuss an extension of Massey secret sharing scheme
and analyze the access structure using the dual code and the
g-fold joint weight enumerator. It would be worthwhile to
replace symmetry properties (group transitivity) by regularity
properties (combinatorial designs) in Prop. 7. Note that for
the scheme based on the extended Golay code, we were only
able to give a partial description of the access structure. For
future work, we consider the complete description of the
access structure. Another interesting problem is to determine
the access structure of schemes based on other families of
codes.
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