arXiv:1004.2795v2 [cs.IT] 12 Jul 2010

An extension of Massey scheme for secret sharing

Romar dela CruZ, Annika Meyef, and Patrick Sofé
*Division of Mathematical Sciences, SPMS, Nanyang Techgiold University, Singapore
Email: roma0001@ntu.edu.sg
TEDSTIC, Universite de Nice-Sophia Antipolis, Les Algdrites, Euclide B 06903 Sophia Antipolis, France
fLehrstuhl D fiir Mathematik, RWTH Aachen University, Teraggraben 64, 52062 Aachen, Germany
Email: annika.meyer@math.rwth-aachen.de
SCNRS, Telecom-ParisTech, Dept Comelec, 46 rue Barraull3%@aris, France
Email: sole@enst.fr

Abstract—We consider an extension of Massey's construction vector ¢ such thatiG; = s; for 1 < ¢ < [. A codeword
of secret sharing schemes using linear codes. We describeeth # — 4G is then computed. Now the share B is ¢;; for
access structure of the sgh.eme apd show its connection to tQaaI i = 1,...,1. Note that wherl = 1 then we have Massey’s
code. We use theg-fold joint weight enumerator and invariant . . .
theory to study the access structure. const.ructlor.l [10].. We also remark that this constructiors wa
mentioned in[[9] in the case of Reed-Solomon codes.
Let B = {P,,...,P,,} € P. We have the following
[. INTRODUCTION result from [2]. The participants i can recover the secret if
A secret sharing schenig a process of distributing a secrespaniGi, ..., Gi) C spanGi,,...,G;,, ). The participants in
to a set of participants in such a way that only certain ssbsdt have no information on the secret if spéh, ..., Gi)n
of them can determine the secret. The set of all subsets whi@Gi,, ..., Gi,) = 0. Otherwise, the participants i3
can determine the secret is called the access structureeof iave partial information on the secret.
scheme. Secret sharing schemes were introduced in 1979 ([1]Theaccess structur& of the scheme is the collection of all
[11]) and since then, different schemes were constructada F subsets ofP that can recover the secret. An eleméht T is
general introduction to secret sharing schemes, see fianices  called aminimal access grouff no element ofl" is a proper
[13]. An important class of secret sharing schemes are th@s#set ofB. Forl = 1, it was shown in[[10] that there is a
which are based on linear codes. The relation between seé@g-to-one correspondence between the set of minimal acces
sharing schemes and linear codes was first presentéd in fFpUPs and the set of minimal codewords @f with first
The access structure of schemes based on self-dual codes&@@sdinate equal to 1.
analyzed in[[B] using some properties of the codes. A scheme is said to beerfect if every group in the
In this work, we consider an extension of the constructic®cCess structure can determine the secret and every group no
method in [[10]. This construction is presented in Sectiom?2. in the access structure has no information about the secret.

Section 3, we characterize the groups that can determine th& scheme is not perfect then some groups have partial
secret. In Sections 4-6, we describe the access structthe ofinformation on the secret. The scheme that we consider here

scheme by extending the techniques used_in [6]. is non-perfect for > 2.
The information rateof a scheme is the ratio of the size of
Il. CODES AND SECRETSHARING SCHEMES the secret and maximum size of the share. For perfect schemes

Let F, stand for the finite field of ordey, whereq is a the size of each share must be at least as large as the size of
prime power. TheHamming weightvt(v) of a vectors in Fy  the secret. An advantage of non-perfect schemes is that the
is the number of its non-zero coordinates while the suppaitze of each share can be smaller than the size of the secret.
of ¥ is given by suppv) = {i : v; # 0,1 < ¢ < n}. An  The information rate of the scheme abovd.is
[n,k,d] linear codeC is a linear subspace dfj where k
is the dimension and is the minimum Hamming weight. A
generator matrixG for a codeC is a matrix whose rows form  We now describe the access structure of a scheme based on
a basis forC. For any linear code’, we denote byCt its a linear codeC. In [4], it was shown that any group of size at
dual under the usual inner product. A co@es said to be mostd* — [ — 1 has no information about the secret and any

IIl. ACCESSSTRUCTURE

self-orthogonalf C C C* and it isself-dualif C = C*. group of size at least+[—d+ 1 can recover the secret. Here
We consider the following secret sharing scheme.et we show that no group of size at magt — [ — 1 is in the
{Py,...,P,} be the set of participants. Suppose we want t@ccess structure, wherg- is the ith generalized Hamming
share the secret = (s1, s2,...,8) € ]qu Let C be an[l + weight of C (cf. Corollary[2). Sinced;- is not so easy to
n, k,d] linear code oveif, with d > I. Consider a generatordetermine forl > 2, we also show that the size of an access
matrix G = [G1,...,G,Gi41, . ..,Gi4n] Of C whereG; is group is at Ieastz-(dL —1), whered™ is the minimum weight

the ith column. To generate the shares, the dealer picksohCt (cf. Corollary[3). This bound is weaker than the one
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given byd;-, but easier to calculate. We are going to use the Proof: As in the proof of Corollary 2, a minimal access

following proposition which is an extension of the approacroup of sizem corresponds to afi + n, (] subcodeD of C+

in [10]. whose support has siZzet+ m. Moreover, deleting the first
Proposition 1: Let B = {P,,,...,P,,} € P. Then the coordinates oD as well as those coordinates which are not in

participants inB can determines if and only if there exist its support yields a binarjm, {] code of minimum weight at

codewordsy; € Ct, 1 < j < I, satisfying the following leastd' —1I. Recall thatA(N, d) is the maximum size of a (not

conditions: necessarily linear) code of lengfii and minimum weight at
i. The subvector ofi; consisting of its first coordinates is leastd. The above yieldsi(m,d" —1) > 2' > 2. On the other
equa| to thejth unit Vectoré‘j in Ffl hand, it is well-known thaH(N, 6) <2 wheneveV < %5—1
ii. SUpp(T;) C {J, i1, -, im}. This yieldsm > 5(d* —1). m
Proof: Suppose there exist codewordse C*, 1 < j < Proposition 4:_When all part|£:l|pants come together and at-
1, satisfying conditions (i) and (ii). Fof = 1,...,I, we have tempt to determine the secrét—! | cheaters can be detected.
’ e Proof: Deleting the firstl coordinates ofC results in a

S o code with minimum distancé — [. [ |
5.0 =¢j +Zajrcir =0

r=1 IV. g-FOLD JOINT WEIGHT ENUMERATOR
for some constants;,,1 < r < m, which are not all zero.
Hence, the secratcan be determined as a linear combinatiog
of the shares of participants iA.

We describe the connection between ghiold joint weight
numerator and the access structure. gHeld joint weight
enumerator is a generalization of the joint weight enunocerat

Suppose the participants i can determine the secret. Theree [5])
for eachj = 1,...,l, we have an equation of the form Definition 1: Let Ay, A», ..., A, be codes of length over
m F,. The g-fold joint weight enumerator ofi;, A,,..., A, is
¢j = Z Birci, defined as follows:
r=1
. . g9
for some constantg;,,1 < r < m, which are not all zero. T, As,.., A, (Ta;a € FF)
The equation can be rewritten as = Z H e (@eenCy)
(Clv C2y oo oy CLCl41y - vy Cl+n)' e Sy ang
N . where Ej = (le,...,cljn), na(é'l,...,éfq) = |{z|a =
(65,0, =Bty s =Bjm, 0, 0) = 0. (C1is---,Cq)}], ande; = 1 if ¢j; # 0 ande; =0 if ¢j; = 0.
Now the codeword$e;, 0, ..., —Bj1,. .., —Bjm,0,...,0) are Here(z,;a € F3) is a29-tuple of variables withF3, that is,
in C* and satisfy conditions (i) and (ii). m (%00..0,%00...15+ -+ T11..1)- _
Example 1:Let C; be the[8, 3, 4] linear code ovef3 with First we consider the cage= 2, i.e. the secref = (s1, s2).
generator matrix For simplicity, we use the corresponding decimal represent
tion of the subscripts of the variables in tidold joint weight
10002211 enumerator. Lef; = {1} and7: = {2} with indicator vectors
G= 8 (1) (1) ; (2) 1 (2) ; 17, and1yp, respectively. Consider the 4-fold joint weight enu-

meratorJy,. 1, ¢t ct(z.) Wherea € F3. We are interested
We consider the scheme based on the duat,ofvith [ = 2 in the coefficientziozs. The coefficient is a polynomial in
(so we have 6 participants). Applying the proposition, we caroz17273 and it gives information on the number and supports
verify that the access structure consists of 4 groups of Sizedf pairs of codewordsi, 7 € C+ whose first two coordinates
and 1 group of size 6. are (u1,0) and (0, v2) respectively, where; andv, are both

Example 2:Consider the scheme based on tf#e4,4] non-zero. In general, for secrets of lendthve use the2l-
extended binary Hamming code with= 3. In this case, we fold joint weight enumeratof/,,. . 1, ct...ct(zaia € F3')
have a total of 5 participants. There are 4 groups of size 4 antierea € F2. The following theorem generalizes a result in
1 group of size 5 in the access structure. [6] where Jacobi polynomials were used.

Corollary 2: Any group ofdi- — [ — 1 or less participants Theorem 5:Let X; be the subset off3’ consisting of
is not in the access structure whetg is thelth generalized all vectors whose first! coordinates are zero and let
Hamming weight ofC+. Xy = {(¢,¢;) | 7 € {1,...,1}}, wheree; € F} is

Proof: The ith generalized Hamming weight of a linearthe jth unit vector. Then the coefficient o]fIan2 Zq N
code is the minimum support of its subcodes of dimensiQﬂTlw_rlTl_’CL_’____’CL(xa;a € F2') is a polynomialp(z,;a €
l. A minimal access grous = {F,,..., P, } corresponds ). Identify X; with {0,...,2 — 1} via the binary number

to an [l + n,l] subcodeD of C*+ such that supf®) = representation and write
{1,...,1,41,...,im}. Hence,m > di- — 1. [

Corollary 3: If I > 2 then any group of(d*+ —1) — 1 or p= Z Cp H xhe.
less participants is not in the access structure. penzt  a€Xa



Then the numbed/q(m) of groups of sizem in the access have strict inequality foi/z(m). Then there exists a nonzero

structure of the scheme based ©rsatisfies elemente € C* with supp(c) C Uszl supp(d;) N {l +
1,...,1+n}. Let (&) € F5"™ be obtained fron by deleting
Me(m) < e, the coordinates where all th& are zero. Ther{(¢)’, D) has

"

minirr)um weight at leastl-, hence gives rise to a summand

where the sum is over all with 32! ; = m Moreover, if t*{'?"P")in Pp(t), whered(((¢)’, D)) > d*. This yields
m < 2d* — 1 then equality holds. Corollary 6: Consider a secret sharing scheme based on
a self-orthogonal linear codé and let7 be the set of all
tuples inC+ that give rise to an access group of size(cf.
Propositior ). For a tuplévi,...,0;) € T, letD(vi, ..., ;)
be the code generated by thg, in which the columns
where all thev; are zero are deleted. If for all such tuples,
| Ué‘:l supp(7;) N{l+1,...,1 +n}| = m. all monomials in Pp,.... 5)(t) (except for the monomial

corresponding td € D+ /D) have degree less thaft- then

Hence due to Propositidnl 1, every such tuple determineg,@ ity holds in Theoreff 5, i.e. the number of groups of size

group in the access structure of the scheme based @md ,,, i the access structure of the scheme based @an be
every minimal access group occurs as a union of suppots,q off fromJ;
T1

of such a tuple. However, in general there may be different
tuples of codewords that correspond to the same access.group V. BINARY SELF-DUAL CODES
In this situation, there exists a tupl@, ..., 7;) as above and
an element € C* such that

Proof: The sum of the coefficients,, where>"2 ' i, =
m, equals the number of tupl¢g, . . ., v;) of elements o€+
such that the projection af; onto the first coordinates is the
jth unit vector inF, and

In this section, we focus on schemes based on binary self-
dual codes and the case- 2. Based on the previous section,
supp(@) C ULy supp(d;) N {l+1,...,1+n}. we useJ1,, 1p,.c.c(To;- - ,a:.15) and determine the coefficient
of z19x5. Let us denote this coefficient b¥. Under some
Then for any;j € {1,...,1}, [supp(¢) N supp(v;) N {l + conditions, we can determir# using the biweight enumerator
1,...,l+n}| > wt(é) + wt(7;) — 1 — m and hence of C.
dt < wi(@+ ) Proposition 7: L_efc C be an [n,k,_d] binary self-dual code.
~ If C has a 2-transitive automorphism group then
<1+ m— (wt(e) + wt(¥;) —1 —m)

1 o
§2m—|—2—2dl, Z: mmjcﬂc(xo,xl,zng)
which yieldsm > 3d* — 1. Hence ifm < 3d*+ — 1 then 1 92
l e —
the sum of the coefficients, with 327 ' 11, = m equals the n(n — 1) dx30zs Je.c(@o, @1, 2,@3).

number of access groups of size " Proof: The first part of the proof is taken from][7]. We

If C is self-orthogonal then there exists a weaker conditigr@n write the biweight enumerator as
than the one in Theorel 5 under which the number of access i ok
groups of sizen can be read off from thel-fold joint weight Je,c(wo, w1, 22, 73) = Y | Aijpivhriahah
enumerator. To state this condition, we need the notion ef tm’hereAi_ngJ is the number of pairs of codewords witly =
code extension enumeratbelow. i,no1 = jin1o = k,nyy = L. For a given coefficientd; ; ;
Definition 2: Let D be a linear self-orthogondlV, k,d|  ang coordinate position, let Ny (i, j, k, 1) be the set of all
code. Thecode extension enumeratts the complex poly- nairs of codewords i€ which contribute t0A; ., and with

nomial n
Pp(t) = th(<c,D>)7 01 pattern ath. It follows thatz [Nk (3, j, kD) = 7 A5k

h=1
_ _ since any pair inN;, hasj positions with the 01 pattern.
where the sum is over a system of repre/se.ntatwe@b_fD. Since the automorphism group is transitive thai (¢, j, k, 1))
Clearly deg(Pp) < d, and a summand’ in Pp(t) gives is independent oh. Thus, | N, (i, j, k,1)| = L A; jky and in

rise to a linear self-orthogon@h, k + 1, d’] code. particular,| N (i, j, k, 1)| = L A; j 1.
Now consider a secret sharing scheme based on a binary gt NJ (i, j,k,1) be the set of all pairs of codewords in
self-orthogonal linear codé and let(t:, . .., %) be a tuple of N, (; j, k. 1) with 10 pattern at positioh. Using the arguments

elements of - giving rise to an access group of size as in  aphove and since the automorphism group is 2-transitivey the
Propositior( L. LetD be the linear code generated by tite |N/ (i, j, k,1)| is independent of and
where the columns where all thé are zero are deleted. Then

D is a self-orthogonal + m, ] code of minimum distance at N (3,4, k. 1)| = L|N2(,”j7 k)|
leastd™". n—1

Assume that there exists another tuple of element§-of __ ki Al
leading to the same access group, i.e. in Theokém 5, we n(n—1)""""



The proposition now follows. [ | VI. INVARIANT THEORY
Since the following examples deal with self-dual codes, we SupposeC is an [n, k, d] binary self-dual code. We shall
shall remark the following. _ _ apply invariant theory in describing the access structure,
Proposition 8: For a secret sharing scheme with= 2 gjmilar to what was done i [6]. We consider the cése 2.
based on a self-dual binary codethe size of every minimal Thys we shall look at the 4-fold joint weight enumerator
group in the access structure is even. Tipe s c.c(za) Wherea € F4.

Proof: A minimal access group of size: in the access — |f 4]l ‘the codewords ot have weights divisible by 4 then
structure corresponds to a pdif;, 72) of words inC* = C e have a Type Il code. Otherwise, we have a Type | code. In
such thatty = (10 ...)andd, = (0 1 ...) andm = [g] itwas shown that the biweight enumerator of a Type | code
|(supp(v1) Usupp(t2)) — {1,2}|. The latter equalsvt(71) — s jnvariant under the grou@, generated by all permutation

14 wt(t2) — 1 —[supp(v1) Nsupp(v2)|. SinceC is self-dual, matrices, all 16 matrices diggg1, £1,+1,41), and
the weight of every word irC is even. Moreover, the parity

of | supp(¥) Nsupp(¥)| equals the inner product af, with 1100
U, hence is zero as well. Henee is even. ] T, = L1 =100
Example 3:The automorphism group of thg, 4,4] ex- v 0 0 1 1
tended Hamming code is 2-transitive and its biweight enu- 0 0 1 -1
merator is The biweight enumerator of a Type Il code is invariant under

the groupGs generated by7, andT; = diag(1,4,1,1) [[7].
Te.c(@o, w1, w2,03) = 25 + 1wsas + a3+ Le?t G F;tang forG, or Gf depending onqthe type) E)fJ code
ldasa] + 14ayx] + 2 + 168x5atase] + 14a305+ we are dealing with. Following the arguments fin [7] ahd [8,
ldasxy + 14xtay + a5, Section 1], and using the MacWilliams theorem in [5], wenca
verify that Tz, ,1T2,c,c(:va) is left invariant by every element

i _ 3,3 2 2 _
We obtainZ = dxjz; + 122212525, Whenl = 2, the total - ¢ 4 acting simultaneously on the following sets of variables:

number of participants is 6. Sinc;%a;ll —1=5, we can read

off the number of access groups of size 4 as 12. The only W = {wo, 21,72, 23}
other access group is the one formed by all participants. 17 = {x4, 5, 6, 27}
Example 4:The biweight enumerator of the4, 12, 8] Go- _
L o Vs = {ws, 29,710,711}
lay codeg,, was computed in[]8] and it is known that the
automorphism group of this code is 5-transitive. Applyihg t Vi = {@z, 213, 210, 215}
proposition above, we obtain Hence, Ji,, .1.,.c.c(za) is @ simultaneous invariant for the
Z = 61602223230t + 2217621025 2302 + diagonal action ofG. As a consequence, we can extend

0.5 6 0. 56 the results in[[6] regarding the Molien series. Note that the
73925 wix2wy + 7392x) x12503+ exponents of the variables i¥, are always zero, hence we
2640z52 T8 + 7392005z ] x5 w5+ can just consider the remaining three sets. The vector space
739202823 27 2% + 3696023232328+ of invariants that we are going to use @&z,]¢;, where
F3\ V4 andi, j, k are the total degrees of the variables in
369602502523 + 12320252 w52 Ta © F2 \ Ve ANCL, J, . . .
ToT1TaTs + ToT172Ts + V1, Va, Vs respectively. The corresponding generalized Molien

36960xqz] w523 + 2661122527 w305+ series[[12] is given by

7392250 w02’ + 12320050, 2925+ %0 o0 o

73920801 2320 + 18480z adad 4 Bo(rs,t) =D > > dim(Cla] )

147840z 3z w3 + 73920232 2325+ 1210 R 1

18480z a3 w3t a4 + 73920a 023 a5+ == 2 :
0r1%2 T3 0T1L2%3 |G| = detI — rg)defI — sg)def(I — tg)

6160z rsrs? + 36960322525+ Based H _ _ _ d i
250 o 5 5 10 s 7 ased on the previous section, we are interested in
36960z wowy + 221 7620w whwy” 4 1762, w0+ dim(C[z,])%, ;). Its generating function in the variable is

672x7 w3t 4+ 176272° 4+ 26402 x52s. given by

For the secret sharing scheme basednnwith secret lenght

I = 2, the number of groups in the access structure of size ~ 9sOt )

m = 10 can be read off fronZ as 6160 due to Theoreml5, Usind MAGMA B btain the f (”S’t):_(o’o]z Tvoe [

since10 < %dL — 1 = 11. For every tuple(v, v2) giving sing [8]. we obtain the following for Type I:

rise to an access group of size = 12, we can compute  Fg(r) = (r20 + 716 — 2p1% 4 2712 4 010 408 6 1 7)

Pp i, ,5,)(t) expl_icitl_y, using the information_on the pairs of J(r32 — 230 4 9p28 _ 4p26 524 g2 4 620

codewords that is given b¥. It turns out that in all the cases,
. — 6118 + 4710 — 6r1 4 6112 — 4910 4 518 — 446

all monomials have degree less than 8, hence due to Corollary

[, the number of access groups of siZeequals36960. +2rt —2r? +1).

Fo(r) = i@c(?", s, 1)




For Type Il we have

Fao(r) = (4r%% + 4151 4 5716 1 6938 4 730
4 3,’,22 + 2T14 4 ,,,6)
J(r%8 — 88 _9pT2 | 9,64 _ ;56 | 9,48

— 40 4932 _0p24 8 1)),

VII. CONCLUSION

We discuss an extension of Massey secret sharing scheme
and analyze the access structure using the dual code and the
g-fold joint weight enumerator. It would be worthwhile to
replace symmetry properties (group transitivity) by regity
properties (combinatorial designs) in Prgp. 7. Note that fo
the scheme based on the extended Golay code, we were only
able to give a partial description of the access structuoe. F
future work, we consider the complete description of the
access structure. Another interesting problem is to determ
the access structure of schemes based on other families of
codes.
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