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Abstract—Recently, Guo and Xia gave sufficient conditions symbols, but suffer from low rates and performance. Regentl
for an STBC to achieve full diversity when a PIC (Partial Guo and Xial[15],[[15], introduced PIC and PIC-SIC decoders
Interference Cancellation) or a PIC-SIC (PIC with Successie and gave sufficient conditions for an STBC to achieve full
Interference Cancellation) decoder is used at the receiven this . . .
paper, we give alternative conditions for an STBC to achievédull diversity u-nder PIC and PIC-SIC decoding. The class of PIC
diversity with PIC and PIC-SIC decoders, which are equivalet decoders includes the ML decoder, ZF decoder and a number

to Guo and Xia’s conditions, but are much easier to check. Usg of other receivers with complexity and performance thatrlie
these conditions, we construct a new class of full diversitIC-  petween those of ML and ZE.
SIC decodable codes, which contain the Toeplitz codes and a cgnsider an STBC obtained from alesign [17]

family of codes recently proposed by Zhang, Xu et. al. as progr _ K 4 ‘ . -
subclasses. With the help of the new criteria, we also show X = Zi:l ;A; where,z; are the real information symbols,

a class of PIC-SIC decodable codes recently proposed by Zhgn _the linear dispersion _matriceﬂi € (CTX]\_] are linearly
Shi et. al. can be decoded with much lower complexity than wha independent oveR, 7' is the delay andN is the number

is reported, without compromising on full diversity. of transmit antennas. The rate of such an STBCKig&2T
complex symbols per channel use (cspcugréuping scheme
is a partitionZ,,...,Z, of the set{l,...,K}, whereZ,
Space-Time Block Codes (STBCs) which can provide fullre calledgroups. There is a corresponding partition of the
diversity with low decoding complexity are important frominformation symbols intg; sets, where fok = 1,...,g, the
an implementation point of view. Complex orthogonal dek'" set of symbols is{z;|j € Z}. A PIC receiver decodes
signs (CODs) are known to provide real symbol-by-symbelch set of symbols independently of other sets. In order
ML decodability and thus have least ML decoding complexe decode thek*® group of symbols, a PIC decoder first
ity [, [2], [B]. These codes, however, suffer from low rat@s implements a linear filter to eliminate the interferencenfro
the number of transmit antennas increases. As a remedy; quagmbols in all other groups and then decodes all the symbols
orthogonal designs were proposéd [4]. These codes achiefethe k' group jointly. A PIC-SIC receiver uses succes-
higher rate at the cost of higher ML decoding complexitgive interference cancellation along with PIC decodingt Le
Single complex symbol or double real symbol ML decodable,,., = max{|Zx| | k=1...,9}. We say that the grouping
quasi-orthogonal STBCs were constructed_in [5], [6] dnd [7$chemeZ;, ..., Z, leads ton,,,,-real symbol PIC decoding
In [8] and [9], the framework for multigroup ML decodableor n,,.-real symbol PIC-SC decoding when a PIC decoder
codes was given. An STBC ig-group ML decodable if the or a PIC-SIC decoder is used respectively, since each step of
information symbols of the STBC can be partitioned intthe decoding process involves the joint decoding of at thetmo
g sets, such that each set of symbols can be ML decoded,. real symbols.
independent of other sets. As a result, the number of symboldJsing Coordinate Interleaving [6], full-diversity, rats/3
that have to be jointly decoded is less and hence these codesble-real symbol (single complex symbol) PIC decodable
have low complexity ML decoders. In_[10], fast-decodabl8TBCs were constructed in_[18] fa and 4 antennas. A
STBCs were introduced. These codes were not multigroup Mlystematic design of STBCs leading to full diversity witiCPI
decodable, but they still have low ML decoding complexityand PIC-SIC decoding was proposed|[ini[19].[InI[20], STBCs
More fast-decodable codes were constructed in [11], [12]. that have low PIC and PIC-SIC decoding complexity were
All the codes discussed in the previous paragraph retpnstructed using Alamouti code [21] structure.
on ML decoders to achieve full diversity. As a result, their The contributions and organization of this paper are as
decoding complexities are still high, especially when thigllows.
number of antennas or the rate is high. On the other hands We propose alternative sufficient conditions for an STBC
STBCs that give full diversity with linear receivers (Zero-  to achieve full diversity under PIC and PIC-SIC decoding.
Forcing (ZF) or Minimum Mean-Square-Error (MMSE) re- We show that these conditions are equivalent to the
ceivers) [13], [14], have lower decoding complexities,cgin conditions given by Guo and Xia [1L6]. The criterialin [16]
each information symbol is decoded independently of other are difficult to check, whereas the new conditions can be

I. INTRODUCTION
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checked easily. The use of the proposed criteria makes thids theT x N matrix of transmitted signal} is theT x N,.
problem of finding full-diversity codes easier (Sectidn Il)additive noise matrix} is the T x N, matrix of received
« With the help of the new full-diversity conditions, forsignal, all matrices being over the complex fi€ld andSNR
any number of antennd$ and any choice ok < N, we is the average signal-to-noise ratio at each receive aatdhn
construct full-diversity\-real symbol PIC-SIC decodableis assumed thaX takes values from a Space-Time Block Code
codes with rates arbitrarily close to cspcu. This class (STBC)C, satisfying the power constrair(|| X ||%./T) = 1.
of codes allows one to trade rate for decoding comfottet X = Zfil x; A; be a design i real symbols{z;} with
The proposed class of codes includes (see T@ble | aivtkar dispersion or weight matrice$; € C**. The set of
Fig.[d): matrices{ A;} must be linearly independent over We obtain
— a family of codes from[[19], but with a new choicean STBCC(X, A) from this design by letting the real symbols
of grouping scheme, leading to lower decoding coni® take values from a signal sgt which is a finite subset of

plexities than those reported in [19], R, ie,C(X, A) = {1 wAillay, .., ag]" € A}.
— the single real symbol PIC decodable Toeplitz For a complex matrix4, define
codes [13], vec(A) = [vec(Ape)T vec(Apm)T]T.

— the two antenna, rat¢/3 code from [18].
Specifically, for any choice of\ < N <T, we con- When using an STBCC(X,A_), the received signal
struct STBCs for N antennas with delayr, rate Y = VSNRXH +W can be rewritten as
A(1— 22 cspeu ]and worst-case PIC-SIC decoding y = vee(Y) = VSNRGz + vec(W)
complexity of M7=, where, M is the size of the ~ ~
comglex gonstellation used. With large enoughwe get whereG; = G(H) = [vec(ALH) -+ -vec(Ax H)] € RN E
rates close to\ (SectioriTl]). is a function of the channel realizationd and

B 7 . . .
« Using the new full-diversity criteria, we give a new” at[):i)ll"s. .I;éfZK] E“I4 tlie ;herovec_f;)r S%fh;;a; S:n(f:%”:;gtlo?or
grouping scheme for the full-diversity PIC-SIC decodabl ' beeeosg grouping . uen '

. . . eachk:l,...,g,|Ik|:nk>OandIk:{zk1,...,zkn}.

codes given in[[20], with the number of real symboli T b Tk
. . et vz, = [vi,,---,2i, |* denote thek™ group of
per group only half of what is reported in_[20]. The b Ik Fors ml kg | be the i" col ¢
new grouping scheme, thus leads to huge reduction §ymbols. Fori = 1,..., K, let g; be thei™ column o

decoding complexity. Specifically, this class is comprised: FOF ¥ = 1.....9, define Gz, =g, 'Z'J'Vgégmrk] and
of codes for any even values of andT with T > N, Vzi = span({gjlj ¢ Zy.}) is the subspace Gk*"" spanned

having rate & (1 — -2 cspcu and worst-case pic-by the set 01_‘ vectors{gq|j ¢ I} over R. Denote by
N-2 Pz, the matrix that projects a vector onto the subspace

SIC decoding complexity/ —= . Whereas, the decoding_ -F
complexity reported in([20] X (Sectior(IV). Vi the orthogqnal complement of~ the subspa@;: Let
Vz, = span({g;li € I;,1 > k}) and Pz, be the matrix that

N I?lr'[e.zctlf)gs for futurle workt gleetgls;:ussed In Stﬁc@n _V' ‘ rojects a vector onto the subspaﬁ’gc. It must be noted
otation: For a complex matri e transpose, the conjuga hatG, G, Vi,, Vs, Pr, and Py, are all functions of the

. _ 1 H
and the conjugate-transpose are denoteddbyA and A channel realizatiorff, although the notation we use does not

respectively.||A|| is the Frobenius norm of the matrix. . . . . .
: . . . : . explicitly show this aspect. However, we continue using thi
I, is the n x n identity matrix, 0 is the all zero matrix . .
notation for the sake of brevity.

of appropriate dimension and = /—1. The empty set is Assume that for eack — 1,...,g, the vector symbols

denoted byo. The cardinality of a sef’ is denoted byl xz, are encoded independently of each other. If we define a

The complement of a sét V.V'th respect to a universal sétis permutationt] of the coordinates of vectors R* as follows
denoted by'¢, whenevelU is clear from context. For a square

matrix A, det(A) is the determinant ofd. For a complex II(e;, ;) = €n,togny_+j forallk=1,...,9, 1 <5 <ny,
matrix A Ag. and ‘.4“”. denote its Te"f" and imaginary PaMSy here e1,...,ex is the standard basis ofR¥X, then
respectively. Vectorization of a matrig is denoted byec(A)

. . A = Az, x--- x Az, where, Az, C R"*.
and the expectation operator is denotedsgy). A PIC decoder[[15] with the grouping scherfig, ..., Z,

II. ANEW EULL-DIVERSITY CRITERION decodes each of the groups of symbols:z, as follows

In this section, we give alternative conditions for an STBCiz, = arg mina,, e, ||Pr,y— VSNRPr, Gz, 77, ||3- (1)
to achieve full diversity with PIC and PIC-SIC decoding. A PIC-SIC decoder [[I5] with the grouping scheme
These conditions are equivalent to the conditions givel &}, [ ... T, decodes each of the groups of symbolszz
but are easier to check. This makes the problem of finding fuﬁe’quehtiglly using the following algorithm. The decodker is
diversity PIC, PIC-SIC decodable codes and grouping SCbe"iﬁtiaIized with k = 1 andy, — .
easier leading to low decoding complexity.

Consider an N transmit antenna,N, receive antenna
quasi-static Rayleigh flat fading MIMO channel given by &z, := arg min., ea,, ||Pr,ye—VSNRPr, Gz, 27, ||%
Y = VSNRX H + W, whereH is the N x N,. channel matrix, (2)

« Step 1: Decode thg!” vector of information symbols as



o Step 2: Assignyxi1 = yr — VSNRGz, 27, and then of (Xz, (ax) + Xz¢(u ))T. Thus, the subspace spanned by the
assignk := k + 1. columns of (X7, (ak) + Xz (u))” is the entireC". Hence,
o Step 3: Ifk > g, stop. Else, go to Step 1. the rank of Xz, (ax) + XIC( ) is N for everyu € RN =",

Note that sphere-decodefs [22] can be used to sélve (1)Now assume that the rank Ofz, (ax) + Xz (u) is N for
and [2). Thek' sphere-decoder jointly decodes, real everyu € RY—" andaj € AAz, \ {0}. If H # 0, there
symbols or%: complex symbols. However, a sphere-decod@iust be at least one column @f which is non-zero and
|mplementat|on of the ML decoder would jointly decoddience has a non-zero dot product with at least one of the
K = Y9_ n real symbols. Thus, both PIC and PIC-SI@ows of X7, (ax) + Xz¢(u), since the rank of the row-space
decoders have reduced average sphere-decoding comgdexi@f Xz, (ax) + Xz¢(u) is N, i.e., full. Thus,

The worst-case decodlng complexity of both PIC and PIC- SIC K—n,

decoders is M=, where M is the cardinality of the

underlying c%r]fnpllex constellation. However, an STBC whmg gl + Z uidi H XI’“ (ax) +XIC( )) H#0.
does not have any additional property that can lead to Iow

ML decoding compIeX|ty will have a worst-case ML decodinghus, Gz, ar + 1™ wigi, #0 for any u € RE-™
complexity of M>i-1 = and so Gz, ay ¢ Vz,. It only remains to show that such

In [16], two sets of sufficient conditions were given for a® code achieves full-diversity under ML decoding. Let
STBC to achieve full-diversity, one each when the receivéfi and X, be two distinct codewords corresponding to
employs a PIC and a PIC-SIC decoder respectively. THéstinct information symbol vectorg;, &, € A respec-
following theorem from[[16], gives sufficient conditiongfihe tively. Since a = & — & # 0, there exists at least
STBC(C(X, A) to achieve full-diversity under PIC decodingone & € {1,...,g} such thataz, € AAz, \ {0}. Then,
For any set of vectorsl, defineAA = {a; — as|a;,as € A}. X1 — X2 = Xz, (az,) + Xz¢(azg). Thus from the hypothe-

Theorem 1 ([16]): An STBC C(X,.A) achieves full- sis, X1 — X5 has rankN. Thus the code achieves full diversity
diversity under PIC decoding with a grouping scheménder ML decoding. [
Ti,...,T, if it satisfies the following two conditions: The following theorem froni [16] gives a sufficient condition

1) C(X,A) achieves full-diversity when an ML decoder ifor an STBC to achieve full diversity under PIC-SIC decoding

used and )
2) for everyk — 1,...,g, every H # 0 and every Theorem 3 ([16]): An STBC (C(X,.A) achieves full-
a, € AAz, \ {0}, we haveGz,ax ¢ Vz diversity under PIC-SIC decoding with a grouping scheme
k k k*

We now provide an alternative condition for full- dlver5|ty g If it satisfies the following two conditions:
under PIC decoding which is equivalent to the criterion ) C(X A) achieves full-diversity when an ML decoder is

of Theorem[l. Letl' = {jl,...,jm} be any non-empty ) ?SEd and P I 0 and
subset of {1,...,K} with j; < jo <--- <. For any ) for eZe;ly 0 ""F]g’ 2/ery ‘;’f and every
w=[ur,...,ur]" € R, defineXr(u) = S\ u;4;,. Gk € AAL \ {0}, we AveGTT,. ax ¢ 2 o
Theorem 2: An STBC C(X, A) achieves full-diversity un- We now provide an alternative condition for full-diversity
der PIC decoding with a grouping scherfig,. .., Z,, if it under PIC-SIC decodmg,whlch_ls eguwale.zn.tto the critend
satisfies the following condition for evedy=1,...,g: Theoren{B. Fok =1,..., g, defineZ; = {j[j € Z;, > k}.
for ever AAz \ {0} and ever RIZE we Theorem 4. An STBC C(X, .A) achieves full-diversity un-
) have: raxr/ﬂ?koteX I’“) X is Nyu < ' der PIC-SIC decoding with a grouping scheffig. .., Z,, if
- T (% Tk (u) ' o it satisfies the following condition for evely=1,...,g:
Further, this condition is equivalent to the full-diveysdrite- for every as € Adz, \ {0} and everyu e R we
. k Tk )

rion of Theoreni1L. ) i .
Proof: It is enough to show that the criteria of The- have: rank ofXz, (ax) + Xz, (u) is N.

orem[d and Theorel 2 are equivalent. liet {1,...,g}, Further, this condition is equwalent to the full-diveysdrite-

Ty = {j1, v dne} ANATE = {1, Lic ). rion of TheoreniB.

Let us assume that an STRAX, A) satisfies the criteria Proof: Proof is similar to the proof of Theorel 2. m

posed in Theoreifl 1 under a grouping schéne . ., Z,.. For The new conditions, Theorern$ 2 dnid 4, are easier to check
I

any H # 0 andaj, € AAz, \ {0} we haveGz,ay ¢ Vi, . than the conditions of Theorembk 1 ddd 3. This will be evident

Hence, for anyu = [ui,...,un-n,|T € RN-" we have when we discuss codes and grouping schemes achieving full
Gy ak,_i_ZKfnku_gl ;A’O ’ Sincng g, = Gec( A, H) for diversity under PIC and PIC-SIC decoding in Sectiéns il
k =1 (24 - q q
g=1,...,K, we have, and[V.
K—ny I1l. A NEW CLASS OF FULL-DIVERSITY PIC-SIC
0 # ZalAJIH + Z wi Ay, H = (Xz, (ak) + Xz¢ (u)) H. DECODABLE CODES

In this section, for any integek > 1 and any number
Since this is true for everyd # 0, we have that no non- of antennasN > A, we constructi-real symbol PIC-SIC
zero N x 1 complex vector is orthogonal to all the columnsglecodable codes with rates arbitrarily closeXaspcu. We



then use the new criteria, Theorefs 2 and 4, to show thlatdiagonal STBC which i€ group ML decodable, the two
these codes achieve full diversity with PIC-SIC decodinige T groups beingez, andzz,.
proposed class of codes includes a family of codes reported .
in [19]. However, we use a grouping scheme with double tif Full-diversity
number of groups reported in [19] and hence we show thatUsing the new criteria, Theoreribs 2 ddd 4, we show that the
these codes can be decoded with much lower complexities thwaposed STBCs achieve full diversity with PIC-SIC decagdin
those reported i [19]. The new class of codes also includ@ésgeneral, and PIC decoding in the case whes 2.
the rate4/3 code for2 antennas reported in [118]. Proposition 1: The family of STBCs[(#) achieve full diver-
sity with PIC-SIC group decoding and grouping schefde (3).
Proof: We use Theoreni]4 to prove this proposition.
Consider integers\,n > 1. Let the number of antennasconsider the cask = 1. The information symbols in:z, are
N > A, number of groupg = 2n and number of real symbols encoded into theV x 1 real vectorv; z.. Sinceq is a full-
K =X\g=2n\ Fork=1,...,g, let thek" group be diversity rotation for theZ* lattice, for any non-zero vector
Te={(k—DA+1,(k—DA+2,... kA @) 4 € AA \_{O}, each coordinate of; re is_non-zer(_). Thus,
for any choice ot 1., € RN *1 each coordinate af; is non-
Each real symbat;, i = 1,..., K, takes values from a regularzero. Hence, for any choice of ;,,, v, . .. ,v,, the resulting
PAM signal set, i.e., a finite subset @f independent of other matrix has rankV. Hence, the matrixXz, (az,) + Xz, (u) has
symbols. Clearly, the signal st C R” is a cartesian product rank N for any choice ofu € RE=*. Thus, the condition of
of K one-dimensional real signal sets. Hence, the vectorstieoreni® is satisfied fot = 1. Using a similar argument

A. A New class of codes

information symbolsez,, ..., zz, are encoded independentlyfor eachk = 2, ..., g, it is straightforward to show that all the
of each other. criteria of Theoreni 4 are satisfied. Hence, the proposed code
Let Q € R be a full-diversity rotation matrix[[23] achieves full diversity with PIC-SIC decoding. [
for the Z* lattice. For eachk = 1,...,g, define  propostion 22 Whenn = 1,2, the family of STBCs [[4)
27, = [2(h-)At1s 2 1)at2s -5 20A] | @S 27, = Quz,. FOI  achieve full diversity with PIC group decoding and grouping
m =1,...,n, definew,, € C**! as follows: schemel[TB).
Proof: Similar to the proof of Propositioh] 1, but uses

Wry, = [2(2m— + 12 (2m— .
Eem—2r (DA , +  Theoreni® instead of Theordm 4. ]
Z(2m—2)a+2 T 12@m-1)r+2 " Z(2m—1)x T 1Z2mA] " -

Note that w,, r. depends on symbols fromz, ,, and C. Rate-Decoding Complexity-Delay tradeoff

Wy, 1m depends on symbols fromyz,, . Since N > ), there The class of codes proposed in this section have rate,

exist integersd > 1 and r € {0,1,...,A— 1} such that B = xo4— cspcu for a givenn, A and N. Equivalently,

N =d\ +r. Form =1,...,n, define vectow,, € CNx1 as for any givenA > 1, N > A andT > N we can

follows: choosen =T — N + 1 resulting in a7 x N STBC with

o . . rate R = A (1 — £=1). By choosingT’ large enough, a full-

Um = (W, Wiy Wy Zem—2)at1 F 12 @m-1)At1 diversity, \-real symbol PIC-SIC decodable code with rdte
CZ(@me_2)Agr T iz(gm_l)Hr]T, arbitrarily close to\ cspcu can be constructed using the given

procedure. Thus, the single-real symbol PIC-SIC decodable
codes of this section have rates arbitrarily closel tospcu
and the single-complex symbol (double real symbol) PIC-SIC
decodable codes have rates arbitrarily close tspcu.

At each stage of PIC-SIC decodind](2) or PIC
decoding (forthe case=2) (@), X real symbols,

there being d copies of wl in the above expres-
sion. Again, v, g. depends on symbols fromxz,,, ..

and v, 1, depends on symbols fromez,, . Further,
let vy, = [vm(1) v (2) -+ vy (N)]T for complex scalars
vm(1), -+, v (V). The proposed STBC is

[v1(1) 0 0 0 7 {Z(h—1)r4+1, T(k—1)r42,- - -, Tra} are jointly decoded. If
va(1) 01 (2) 0 0 M is the cardinality of the underlying complex constellation
v3(l)  wa(2)  v1(3) --- 0 then each real symbol takes values from/af-ary regular
: : : . : PAM signal set. For each of th&/ *=" choices of values that
' ' ' ' ' the A\ — 1 symbols z(;_1)xy2,--.,7kx jointly assume, the
v (N) | (4) value of z(;,_1)»41 that minimizes eithel{1) of{2) given the
. values ofz(;_1)x12,- .-, Txx can be found by simple scaling,
vn (1) vn-1(2) rounding off and hard limiting. Thus, the order of worst case
0 vn(2) cee e : decoding complexity of the proposed codes\is = .
: : : : When, N = 2, A = 2 andT = 3, we obtain the ratel/3
: : : ' code reported in[[18], which has a worst-case PIC decoding
L 0 0 0 - wu(N)]

complexity of M0
The delay of this code i = N + n — 1. Consider the delay Example 1. Let N =3, A =2 andT = 6. Corresponding
optimal case, i.e.pn = 1. When A = N, (@) reduces to value ofn is 4 and the code uses a PIC-SIC decoder with



g = 8 to obtain full diversity. The rate of the code4g3 cspcu a, € AAz, \ {0} and anyu € R®*"~1. From Theorem12, it is
and worst-case decoding complexityig°-5. The number of enough to show that the matriXz, (ax) + Xze(u) is of rank
real symbols in the design i& = 16. Grouping scheme is: N. Consider the smalledte {1,...,n} such thaty;(1) # 0.
I, = {1,2}, I, = {3,4}, ... Is = {15,16}. The real symbols Such anl always exists and < [%]. This is so because,
zj, j=1,...,12, are generated as: Ursq ge(1) OF vry 1, (1) is equal toax when k is odd or
even respectively and hene%] is non-zero. Because of the
choice ofl, the first/ — 1 diagonal layers will be zero and
where,@ is a2 x 2 full-diversity rotation forZ? lattice. The all entries in thel*” diagonal layer will be non-zero. Thus,

[ZQk—l 22k]T = Q[l‘gk_l ka]T fork=1,...,8,

resulting STBC is the N x N submatrix ofXz, (ax) + Xz¢ (u) consisting of all
21 iz 0 0 the N' columns andV consecutive rows starting from tg
25 iz 29 iz 0 row will be lower triangular with non-zero, equal diagonal

20 4+ iz 26+ izg 21 4z entries. Thus, this submatrix is of rank and hence the matrix

2134 iz 210 +izia 25 +izy X1, (ak) + Xz¢(u) is of rank V. [ |
0 214 + 1216 29 + 1211
0 0 z13 + 1215

Example 2: Consider the cas&v = A = 4 andT = 6.
Corresponding value ot is 3 and the code is decoded using
a PIC-SIC decoder to get full diversity. The rate of this cide

2 cspeu and the worst-case decoding complexity/is®. This In [20], systematic construction of STBCs which give full

stands in comparison with t.he reedelay optimal, fast-ML- _diversity with PIC and PIC-SIC decoding were given. These
decodab_le code in [11], which has a Worst—c._';lse ML deCOd'gﬁ'BCs are constructed by replacing each element of an
complexny of M*2 an(_j rate25code in [12] with worst-case ajamouti code block [24] with a matrix containing multiple
ML decoding complexity ofi/”. . diagonal layers of coded symbols. With the help of the new
Example 3: Let V=4, A = 3 and T’ = 9. Corresponding full-diversity criteria, we propose a new grouping scheme
value ofn is 6. Full diversity can be achieved using a PIC; . v oo Codes with double the number of groups reported
SIC decoder. Rate of the codedscspcu and the worst-case, [20]. Consequently, the new grouping scheme leads to huge
reduction in decoding complexity. Finally, we compare the

. ; : I?11|:§te—decoding complexity pairs achievable by various Ri€ a
has lower decoding complexity, but is of larger delay. Th'ﬁIC—SIC decodable codes available in the literature.
example illustrates the tradeoff between decoding conitglex

and delay that is achieved by the proposed class of codes.

IV. ANEW GROUPING SCHEME FOR CODES If20]

D. A family of codesin [[19] as a subclass of proposed codes

A subclass of the proposed class of codes correspondingtoA New grouping scheme
the case\ = N was first constructed in_[19]. However, the
worst-case decoding complexity of these codes was reportediVe now describe the codes proposed_in [20] along with the
in [19] asM* instead of the complexitM% that we report new grouping scheme. Let the number of transmit antennas,
in this paper. In[[19], for eacl € {1,...,n}, the symbols N, be even. Let the number of real symbols per group be
r1,,, , andzz,  constituted then'" group, even though they £'. Letn > 1 be any integer and the number of groyps 4n.
can be split into two groups without affecting the full-disity Number of real symbols in the designiS= A\g = 2nN. The
property of the code. new grouping scheme is as follows. Hoe= 1, ..., g, the k"
E. Toeplitz codes as a subclass of the proposed codes group is
Toeplitz codes[113] are known to provide full diversity with
a zero-forcing receiver. The subclass of the codes proposed I ={(k—DX+1,(k—1)X+2,...,kA}L (5)
this section corresponding th = 1 are exactly the Toeplitz
codes with the underlying complex constellation being sgua
QAM. In this case, the PIC decoder is nothing but a re&kt each real symbol take values from a regular PAM con-
symbol-by-symbol zero-forcing receiver. We now prove thgtellation, i.e., a finite subset df, independent of other
full-diversity property using the new criterion in Theor@n symbols and let) € R*** be a full-diversity rotation matrix
Proposition 3: For A = 1 and any number of transmitfor the integer latticeZ*. For eachk = 1,...,g, define
antennasN, the STBC [(#) with the grouping schemiel (3xz, = [z(k,l)AH,z(k,l)MQ,...,zk,\]T as zz, = Quz,. For
achieves full diversity with PIC decoding. me{l,...,n} andl € {1,..., A}, defineA(m,l) as in [B),
Proof: In this case, for everyn = 1,...,n, we given at the top of next pag@(m,!) is an Alamouti code
havev,, (1) = vm(2) = - -+ = v (N) = T2m—1 + iT2m. Con- in real symbols zism,—a)r+1, Z(am—3)a+lr Z(4m—2)a+1 and
sider any k& < {1,...,2n}. Consider any real scalarzp,_1)x4;- The STBC proposed in_[20] upto a permutation



A(m, 1) = Z(am—Arl T 12um—3)x+l  Z@dm—2)A+1 T 1Zam—1)A 41 ©6)
’ —Z(am—2)A+1 T Z2Am—DA L ZAm—a)A+ — 2 dm—3)+1]

of rows and columns is grouping scheme]5) and hence achieves full diversity with
rA(1,1) 0 e 0 PIC-SIC decoding. [ |
A(2,1) A(1,2) --- 0 Proposition 5: Whenn = 1,2, the family of STBCs[{l7)
. A2,2) 0 along with the grouping schemig (5) achieve full-diversitthw
’ ' PIC decoding.
A(1, §) Proof: Similar to the proof of Propositiof]4, but uses
N Theoren 2 instead of Theordm 4. [
Q[(27 7)
)
A(n,1) 5 e : C. Rate and Decoding complexity
0 A(n,2) : ,
) ) For even number of transmit antennas,and code parame-
: : . : tern > 1, we have the number of real symbdis= 2nN. The
) 0 s An, 5 rate of the code iR = & (1 — &=2) cspcu, where botiV

T
The STBC [[V) consists of diagonal layers. Each diagona@nd7’ are even and’ > N. During PIC or PIC-SIC decoding,
layer has) = % Alamouti blocks that together encodev the number of real symb_ols that are jointly decoded%ﬁs
real symbols. Th&N real symbols can be divided into \When a sphere-decoder is employed to solve (1Y br (2), the
encoding groups each containihgsymbols. The four groups dimension of the sphere-decoding problem is oNly2 over
encoded by then'” layer arexz, ., zz,. ,. 7z,, , and R. This is in comparison w_lth\f—dlmensmnal s_phere—decoder
2z, . The delay of the STBA7) i& = N + 2(n — 1). For employed in [20]._ Thus, with the new grouping scheme, the
the delay optimal case, i.e2,= 1, (7) reduces to thd-group average complexity of the decoder is reduced.

ML decodable Precoded Coordinate Interleaved OrthogonaM/e now derive the worst-case decoding complexity when
Design (PCIOD) given in[]24]. the new grouping scheme is employed. For each step of the
In [20], full diversity was proved for a grouping schemalecoding proces$](1) anfll (2)J/2 real symbols have to be

with 2n groups, which is only half the number of groups ijointly decoded. If M is the cardinality of the underlying
new the grouping scheme. In terms of the new groups, themplex constellation, then each real symbol takes vahoes f
groups proposed in_[20] are: v/M-ary regular PAM signal set. By jointly fixing the values
of N/2—1 real symbols, the value of the last real symbol that
TiuLy, I3ULs, - s Tan—1 U Lans minhznizes ) or[(®) can be found out by scaling, rounding-
B. Full-diversity off and hard limiting. TheNn2ur1nber of realizations of the skt o
With the help of the new full-diversity criteria, Theoreffis 2V/2—1 real symbols is\ >~ . Thus, the order of the worst-
and[4, we now show that the STBC (7) yields full-diversitgase decoding CoanIexityM 7. This is much smaller than
with the new grouping scheme. the complexityM = reported in [[20].

Proposition 4: The family of STBCs [(I7) along with the The class of codes discussed in this section include the
grouping scheme[{5) achieve full-diversity with PIC-SIC defollowing rate 4/3 code for4 transmit antennas first given
coding. in [18].

Proof: Consider the casés = 1. The information Example 4. Consider the case wheW — 4, T — 6.
symbol vectorzz, is encoded intozz,. The A coordinates In this caseK — 16, A — 2, n = 2 and g ’: 8. The

of zz, act as one of thel real symbols in each of the . .

! : . rate of the resulting code id/3 cspcu and the order of
Since ) 1 a Taldversity rotaton for the nieger latiee, "0rSLcase decoding complexy K. However,using the
for any zy. € AA \{O}V each of thex coordginates Of’grouping scheme in [20]_ we get a decoding complexity o_f

. L1 |_Z|k f R h M?2. Thus, the new grouping scheme has reduced the decoding
zz, IS non-zero. Hence, for anyz, < R% k > 1, eac complexity considerably. From Propositiohs 4 dnid 5, this

_?_L thg matr_icesQl(lf,lh), Ql(llj’ 2)"1"(;(1’/\) s o;(full-ra?k. code can be decoded using both PIC and PIC-SIC decoders
e determinant of the submatrix ofz, (27, ) + Xz, (u) for get full diversity. The grouping scheme i%; = {1,2},

any u € RX=* consisting of the firstV rows and all the  ~ _ A are: |
N columns is the produdf];-, det(2(1,1)) # 0. Hence, the tIagtign{?r;;Lt};i;(.C')Ivie_hg/z 16}. For a full-diversity2 x 2 ro
matrix Xz, (z27,) + Xz, (u) is of rank N for any u € R~

Using a similar argument for eadh=1, ..., g, we see that
the STBC [[7) satisfies the hypothesis of Theofém 4 for the  [z01_1 20x]" = Q[zox_1 x2x]” fOrk=1,...,g.




TABLE |
COMPARISON OF FULL-DIVERSITY, PICAND PIC-SICDECODABLE CODES

Transmit Delay Number of Number of real Full diversity Rate Worst-case
Code Antennas groups symbols per group| with in cspcu Decoding
N T g A PIC decoding? R Complexity
Toeplitz [13)] >1 >N 2T — N +1) 1 Yes 1— N1 o)
Code in [18] C1) 2 3 4 2 Yes 4/3 MO-5
Codes in[[19] >1 >N T_-N+1 2N Yes if 7' < N + 1 N(1_%) MN
Codes in SedTll >1 >N | 2(T-N+1) <N Yesit T<N+1 | A(1-N1) | ™Mz
Code in [18] C2) 4 6 8 2 Yes 4/3 MO-5
Codes in[[20] 2m,m>1 | 2,1>Y | T-N+2 N Yesit T<N+2 | ¥ (1-2722) | Mm%
Codes in Se€lV | 2m, m>1 | 21, 1> N | 2(T-N+2) N Yesif T<N+2 | ¥(1-N2) | Mm%
The resulting STBC is codes in [[20] together with a new grouping scheme and the
. . 4 antenna code from_[18]. Consider the subclass of codes
Z1 + iz3 z5 + 127 0 0 . . . - ;
) _ in Section[ll with A = N/2. The worst-case decoding
—2z5 +iz7 z1 — 123 0 0 . L N—2
o bz 14 tin o iz I complexity of these codes i8/ =, same as that of codes
_29 +Z.121 ;3_2.215 _2 +Zé 26 _iz8 of Section[TV. However, for identical delay’, the rate of
0T T 0 ot mitin the codes in SectioR 1V i€ (1 — ¥=2), which is slightly
o telz s ~d T Te6 more than the raté} (1 — £=1) of the codes in Section]Il.
0 0 —214 + 1216 210 — 1212

Example 5: Consider the case wheN = 8 and T = 12.
In this case, full-diversity is achieved with PIC-SIC detay

Codes in Sectiol Tll can give higher rates at the cost of highe
decoding complexity by choosing the paramekeproperly.
However, the codes in Section]IV can have rate at the most

The rate of the code i cspcu and the worst-case decodingV/2 cspcu only.
complexity isM !>, On the other hand, the grouping scheme

in [20] gives a decoding complexity af/*. Delay optimal,

full-diversity rate 2 codes in [[12] and[[25] have decoding

complexities of the order o#/'° and M®° respectively. The
codes reported in [[12] and [R5] use the optimal, i.e., M

decoder, whereas the code reported in this paper uses anly,

suboptimal PIC-SIC decoder. Further, the code reportetidh [

has the non-vanishing determinant property. Thus, the £o¢

of this section trade performance to get superior decodi
comforts.

Example 6: Let N =6, 7" = 12. In this case, we get a rate

2 code with worst-case decoding complexity &f. On the
other hand, the rat2 fast-ML-decodable code fdt antennas
reported in[[12] has a decoding complexity of the ordeh 5.

The code given in[12] is delay optimal and has non-vanishit

determinant property whereas the new code gives enorm

reduction in decoding complexity without compromising! ful

diversity.

D. Comparison of full-diversity PIC and PIC-SIC decodable
codes

Table[] gives a summary of comparison of full-diversity

Full diversity PIC-SIC

Codes in SegTll decodable codes

Toeplitz codes[[13]

Codes in[[19]

ng

DUS < C1[18]

Fig. 1. Venn Diagram of codes listed in Talle |

PIC and PIC-SIC decodable codes available in literature.

Here, M is the size of the underlying complex constellation. Fig. [ shows the relationship among the codes listed in
The class of codes constructed in Sectioh Il of this pap&able[l. The two antenna code [n]18] is denoted’yand the
includes a family of codes from_[19] together with a newiour antenna code of [18] is denoted 8y. The intersection of
grouping scheme, the Toeplitz codes|[13] and the two antenfweplitz codes and codes in_[19] corresponds to the subclass
code of [18]. The class of codes in Sectiond IV includes thef codes in SectiopIll which havé’ = 1. Codes in[[20] are



1)
T T T T T T T
8r A 1 2)
21t : ] 3)
3 —+— Codes in Sec lll
E- — G -Codein Sec IV
S 6l — A -Zhang, Xu et. al. |
o — & -Zhang, Shiet. al.
£
T
)
8 ar o
B
g
e’ |
2
5 1
S |
()
§_ 0]
b i [2]
(3]
0r ]
| | | | | | |
0 05 1 15 2 25 3 35 4 [4]
Rate in cspeu
(5]
Fig. 2. Comparison of Rate vs. Worst-case-Decoding contgleairs [6]
achievable by various codes fof = 8 antennas and deld/ = 12 channel
uses
[7]
exactly the codes in SectignllV, but with a different growgpin
scheme. [8]

Fig.[2 shows the comparison of rate vs. worst-case-decoding
complexity pairs achievable by the codes in Section IlI, g
Section[1V, code given by Zhang, Xu et. al. [19] and the
code given by Zhang, Shi et. al. [20] for the caseNof= 8
and T 12. For codes from Sectioh]Il, each value of [10]
A = 1,...,8, gives a different rate-complexity pair. The
case) = 1 corresponds to a Toeplitz code. The complexityll1]
of the codes in Sectioh ]Il is much less than that of the
codes from[[19] and [[20] for identical rates. The code in
Section[IV¥ and the code in Sectién]lll with = 4 have
identical worst-case decoding complexity &f'-®, however,
the code in Sectioh IV has a slightly larger rate. In all other
cases, codes from Sectién]lll have the best rate—decodinl%
complexity tradeoff. [£3]

(12]

V. DISCUSSION [14]
In this paper, we give alternative criteria for STBCs toy;5
achieve full diversity with PIC and PIC-SIC decoding. Using
the new criteria we constructed a new class of full diversit .
PIC-SIC decodable codes and we also showed that some o?]
the PIC-SIC decodable STBCs available in the literature can
be decoded with lower complexities by choosing the groupin(ﬂn
scheme intelligently. The following are some of the direat
for future work.

Theorem§12 and 4 deal with the full diversity condition
only. What is the condition to maximize the coding gain?
What is the rate-decoding complexity tradeoff of STBCs
with PIC and PIC-SIC decoding?

Given an STBC, how does one find the grouping scheme
with least decoding complexity and full diversity?
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