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Abstract—Recently, Guo and Xia gave sufficient conditions
for an STBC to achieve full diversity when a PIC (Partial
Interference Cancellation) or a PIC-SIC (PIC with Successive
Interference Cancellation) decoder is used at the receiver. In this
paper, we give alternative conditions for an STBC to achievefull
diversity with PIC and PIC-SIC decoders, which are equivalent
to Guo and Xia’s conditions, but are much easier to check. Using
these conditions, we construct a new class of full diversityPIC-
SIC decodable codes, which contain the Toeplitz codes and a
family of codes recently proposed by Zhang, Xu et. al. as proper
subclasses. With the help of the new criteria, we also show that
a class of PIC-SIC decodable codes recently proposed by Zhang,
Shi et. al. can be decoded with much lower complexity than what
is reported, without compromising on full diversity.

I. I NTRODUCTION

Space-Time Block Codes (STBCs) which can provide full
diversity with low decoding complexity are important from
an implementation point of view. Complex orthogonal de-
signs (CODs) are known to provide real symbol-by-symbol
ML decodability and thus have least ML decoding complex-
ity [1], [2], [3]. These codes, however, suffer from low rates as
the number of transmit antennas increases. As a remedy, quasi-
orthogonal designs were proposed [4]. These codes achieve
higher rate at the cost of higher ML decoding complexity.
Single complex symbol or double real symbol ML decodable
quasi-orthogonal STBCs were constructed in [5], [6] and [7].
In [8] and [9], the framework for multigroup ML decodable
codes was given. An STBC isg-group ML decodable if the
information symbols of the STBC can be partitioned into
g sets, such that each set of symbols can be ML decoded
independent of other sets. As a result, the number of symbols
that have to be jointly decoded is less and hence these codes
have low complexity ML decoders. In [10], fast-decodable
STBCs were introduced. These codes were not multigroup ML
decodable, but they still have low ML decoding complexity.
More fast-decodable codes were constructed in [11], [12].

All the codes discussed in the previous paragraph rely
on ML decoders to achieve full diversity. As a result, their
decoding complexities are still high, especially when the
number of antennas or the rate is high. On the other hand,
STBCs that give full diversity with linear receivers (Zero-
Forcing (ZF) or Minimum Mean-Square-Error (MMSE) re-
ceivers) [13], [14], have lower decoding complexities, since
each information symbol is decoded independently of other

symbols, but suffer from low rates and performance. Recently,
Guo and Xia [15], [16], introduced PIC and PIC-SIC decoders
and gave sufficient conditions for an STBC to achieve full
diversity under PIC and PIC-SIC decoding. The class of PIC
decoders includes the ML decoder, ZF decoder and a number
of other receivers with complexity and performance that liein
between those of ML and ZF.

Consider an STBC obtained from adesign [17],
X =

∑K

i=1 xiAi where,xi are the real information symbols,
the linear dispersion matricesAi ∈ CT×N are linearly
independent overR, T is the delay andN is the number
of transmit antennas. The rate of such an STBC isK/2T
complex symbols per channel use (cspcu). Agrouping scheme
is a partition I1, . . . , Ig of the set {1, . . . ,K}, where Ik
are calledgroups. There is a corresponding partition of the
information symbols intog sets, where fork = 1, . . . , g, the
kth set of symbols is{xj |j ∈ Ik}. A PIC receiver decodes
each set of symbols independently of other sets. In order
to decode thekth group of symbols, a PIC decoder first
implements a linear filter to eliminate the interference from
symbols in all other groups and then decodes all the symbols
of the kth group jointly. A PIC-SIC receiver uses succes-
sive interference cancellation along with PIC decoding. Let
nmax = max{|Ik| | k = 1 . . . , g}. We say that the grouping
schemeI1, . . . , Ig leads tonmax-real symbol PIC decoding
or nmax-real symbol PIC-SIC decoding when a PIC decoder
or a PIC-SIC decoder is used respectively, since each step of
the decoding process involves the joint decoding of at the most
nmax real symbols.

Using Coordinate Interleaving [6], full-diversity, rate4/3
double-real symbol (single complex symbol) PIC decodable
STBCs were constructed in [18] for2 and 4 antennas. A
systematic design of STBCs leading to full diversity with PIC
and PIC-SIC decoding was proposed in [19]. In [20], STBCs
that have low PIC and PIC-SIC decoding complexity were
constructed using Alamouti code [21] structure.

The contributions and organization of this paper are as
follows.

• We propose alternative sufficient conditions for an STBC
to achieve full diversity under PIC and PIC-SIC decoding.
We show that these conditions are equivalent to the
conditions given by Guo and Xia [16]. The criteria in [16]
are difficult to check, whereas the new conditions can be
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checked easily. The use of the proposed criteria makes the
problem of finding full-diversity codes easier (Section II).

• With the help of the new full-diversity conditions, for
any number of antennasN and any choice ofλ ≤ N , we
construct full-diversity,λ-real symbol PIC-SIC decodable
codes with rates arbitrarily close toλ cspcu. This class
of codes allows one to trade rate for decoding comfort.
The proposed class of codes includes (see Table I and
Fig. 1):

– a family of codes from [19], but with a new choice
of grouping scheme, leading to lower decoding com-
plexities than those reported in [19],

– the single real symbol PIC decodable Toeplitz
codes [13],

– the two antenna, rate4/3 code from [18].

Specifically, for any choice ofλ ≤ N ≤ T , we con-
struct STBCs for N antennas with delayT , rate
λ
(
1− N−1

T

)
cspcu and worst-case PIC-SIC decoding

complexity of M
λ−1

2 , where, M is the size of the
complex constellation used. With large enoughT , we get
rates close toλ (Section III).

• Using the new full-diversity criteria, we give a new
grouping scheme for the full-diversity PIC-SIC decodable
codes given in [20], with the number of real symbols
per group only half of what is reported in [20]. The
new grouping scheme, thus leads to huge reduction in
decoding complexity. Specifically, this class is comprised
of codes for any even values ofN andT with T ≥ N ,
having rate N

2

(
1− N−2

T

)
cspcu and worst-case PIC-

SIC decoding complexityM
N−2

4 . Whereas, the decoding
complexity reported in [20] isM

N
2 (Section IV).

Directions for future work are discussed in Section V.
Notation: For a complex matrixA the transpose, the conjugate
and the conjugate-transpose are denoted byAT ,Ā and AH

respectively.||A||F is the Frobenius norm of the matrixA.
In is the n × n identity matrix, 0 is the all zero matrix
of appropriate dimension andi =

√
−1. The empty set is

denoted byφ. The cardinality of a setΓ is denoted by|Γ|.
The complement of a setΓ with respect to a universal setU is
denoted byΓc, wheneverU is clear from context. For a square
matrix A, det(A) is the determinant ofA. For a complex
matrix A, ARe andAIm denote its real and imaginary parts
respectively. Vectorization of a matrixA is denoted byvec(A)
and the expectation operator is denoted byE(·).

II. A N EW FULL-DIVERSITY CRITERION

In this section, we give alternative conditions for an STBC
to achieve full diversity with PIC and PIC-SIC decoding.
These conditions are equivalent to the conditions given in [16],
but are easier to check. This makes the problem of finding full-
diversity PIC, PIC-SIC decodable codes and grouping schemes
easier leading to low decoding complexity.

Consider anN transmit antenna,Nr receive antenna
quasi-static Rayleigh flat fading MIMO channel given by
Y =

√
SNRXH +W , whereH is theN×Nr channel matrix,

X is theT ×N matrix of transmitted signal,W is theT ×Nr

additive noise matrix,Y is the T × Nr matrix of received
signal, all matrices being over the complex fieldC, andSNR
is the average signal-to-noise ratio at each receive antenna. It
is assumed thatX takes values from a Space-Time Block Code
(STBC) C, satisfying the power constraint,E(||X ||2F/T ) = 1.
Let X =

∑K

i=1 xiAi be a design inK real symbols{xi} with
linear dispersion or weight matricesAi ∈ CT×N . The set of
matrices{Ai} must be linearly independent overR. We obtain
an STBCC(X,A) from this design by letting the real symbols
to take values from a signal setA which is a finite subset of
RK , i.e., C(X,A) = {∑K

l=1 alAl|[a1, . . . , aK ]T ∈ A}.
For a complex matrixA, define

ṽec(A) = [vec(ARe)
T vec(AIm)T ]T .

When using an STBCC(X,A), the received signal
Y =

√
SNRXH +W can be rewritten as

y = ṽec(Y ) =
√
SNRGx+ ṽec(W )

where,G = G(H) = [ṽec(A1H) · · · ṽec(AKH)] ∈ R2NrT×K

is a function of the channel realizationH and
x = [x1, . . . , xK ]T ∈ A is the vector of real information
symbols. LetI1, . . . , Ig be a grouping scheme such that, for
eachk = 1, . . . , g, |Ik| = nk > 0 andIk = {ik,1, . . . , ik,nk

}.
Let xIk

= [xik,1
, . . . , xik,nk

]T denote thekth group of
symbols. Fori = 1, . . . ,K, let gi be the ith column of
G. For k = 1, . . . , g, define GIk

= [gik,1
· · · gik,nk

] and
VIk

= span({gj|j /∈ Ik}) is the subspace ofR2NrT spanned
by the set of vectors{gj|j /∈ Ik} over R. Denote by
PIk

the matrix that projects a vector onto the subspace
V ⊥
Ik

, the orthogonal complement of the subspaceVIk
. Let

ṼIk
= span({gj|j ∈ Il, l > k}) and P̃Ik

be the matrix that
projects a vector onto the subspaceṼ ⊥

Ik
. It must be noted

that G, GIk
, VIk

, ṼIk
, PIk

and P̃Ik
are all functions of the

channel realizationH , although the notation we use does not
explicitly show this aspect. However, we continue using this
notation for the sake of brevity.

Assume that for eachk = 1, . . . , g, the vector symbols
xIk

are encoded independently of each other. If we define a
permutationΠ of the coordinates of vectors inRK as follows

Π(eik,j
) = en1+···+nk−1+j for all k = 1, . . . , g, 1 ≤ j ≤ nk,

where e1, . . . , eK is the standard basis ofRK , then
ΠA = AI1

× · · · × AIg where,AIk
⊂ Rnk .

A PIC decoder [15] with the grouping schemeI1, . . . , Ig
decodes each of theg groups of symbolsxIk

as follows

x̂Ik
= arg minxIk

∈AIk
||PIk

y−
√
SNRPIk

GIk
xIk

||2F . (1)

A PIC-SIC decoder [15] with the grouping scheme
I1, . . . , Ig decodes each of theg groups of symbolsxIk

sequentially using the following algorithm. The decoder is
initialized with k = 1 andy1 = y.

• Step 1: Decode thekth vector of information symbols as

x̂Ik
:= arg minxIk

∈AIk
||P̃Ik

yk−
√
SNRP̃Ik

GIk
xIk

||2F .
(2)



• Step 2: Assignyk+1 := yk −
√
SNRGIk

x̂Ik
and then

assignk := k + 1.
• Step 3: Ifk > g, stop. Else, go to Step 1.

Note that sphere-decoders [22] can be used to solve (1)
and (2). Thekth sphere-decoder jointly decodesnk real
symbols ornk

2 complex symbols. However, a sphere-decoder
implementation of the ML decoder would jointly decode
K =

∑g

k=1 nk real symbols. Thus, both PIC and PIC-SIC
decoders have reduced average sphere-decoding complexities.
The worst-case decoding complexity of both PIC and PIC-SIC
decoders is

∑g

k=1 M
nk
2 , whereM is the cardinality of the

underlying complex constellation. However, an STBC which
does not have any additional property that can lead to low
ML decoding complexity will have a worst-case ML decoding
complexity ofM

∑g
k=1

nk
2 .

In [16], two sets of sufficient conditions were given for an
STBC to achieve full-diversity, one each when the receiver
employs a PIC and a PIC-SIC decoder respectively. The
following theorem from [16], gives sufficient conditions for the
STBC C(X,A) to achieve full-diversity under PIC decoding.
For any set of vectorsA, define∆A = {a1 − a2|a1, a2 ∈ A}.

Theorem 1 ([16]): An STBC C(X,A) achieves full-
diversity under PIC decoding with a grouping scheme
I1, . . . , Ig if it satisfies the following two conditions:

1) C(X,A) achieves full-diversity when an ML decoder is
used and

2) for every k = 1, . . . , g, every H 6= 0 and every
ak ∈ ∆AIk

\ {0}, we haveGIk
ak /∈ VIk

.

We now provide an alternative condition for full-diversity
under PIC decoding which is equivalent to the criterion
of Theorem 1. LetΓ = {j1, . . . , j|Γ|} be any non-empty
subset of {1, . . . ,K} with j1 < j2 < · · · < j|Γ|. For any
u = [u1, . . . , u|Γ|]

T ∈ R|Γ|, defineXΓ(u) =
∑|Γ|

i=1 uiAji .
Theorem 2: An STBC C(X,A) achieves full-diversity un-

der PIC decoding with a grouping schemeI1, . . . , Ig, if it
satisfies the following condition for everyk = 1, . . . , g:

• for every ak ∈ ∆AIk
\ {0} and everyu ∈ R|Ic

k|, we
have: rank ofXIk

(ak) +XIc
k
(u) is N .

Further, this condition is equivalent to the full-diversity crite-
rion of Theorem 1.

Proof: It is enough to show that the criteria of The-
orem 1 and Theorem 2 are equivalent. Letk ∈ {1, . . . , g},
Ik = {j1, . . . , jnk

} andIc
k = {l1, . . . , lK−nk

}.
Let us assume that an STBCC(X,A) satisfies the criteria

posed in Theorem 1 under a grouping schemeI1, . . . , Ig. For
any H 6= 0 and ak ∈ ∆AIk

\ {0} we haveGIk
ak /∈ VIk

.
Hence, for anyu = [u1, . . . , uN−nk

]T ∈ RN−nk we have,
GIk

ak +
∑K−nk

i=1 uigli 6= 0. Since gq = ṽec(AqH) for
q = 1, . . . ,K, we have,

0 6=
nk∑

i=1

aiAjiH +

K−nk∑

i=1

uiAliH =
(
XIk

(ak) +XIc
k
(u)

)
H.

Since this is true for everyH 6= 0, we have that no non-
zeroN × 1 complex vector is orthogonal to all the columns

of (XIk
(ak) +XIc

k
(u))T . Thus, the subspace spanned by the

columns of(XIk
(ak) +XIc

k
(u))T is the entireCN . Hence,

the rank ofXIk
(ak) +XIc

k
(u) is N for everyu ∈ RN−nk .

Now assume that the rank ofXIk
(ak) +XIc

k
(u) is N for

every u ∈ RN−nk and ak ∈ ∆AIk
\ {0}. If H 6= 0, there

must be at least one column ofH which is non-zero and
hence has a non-zero dot product with at least one of the
rows of XIk

(ak) +XIc
k
(u), since the rank of the row-space

of XIk
(ak) +XIc

k
(u) is N , i.e., full. Thus,

nk∑

i=1

aiAjiH +

K−nk∑

i=1

uiAliH =
(
XIk

(ak) +XIc
k
(u)

)
H 6= 0.

Thus, GIk
ak +

∑K−nk

i=1 uigli 6= 0 for any u ∈ RK−nk

and so GIk
ak /∈ VIk

. It only remains to show that such
a code achieves full-diversity under ML decoding. Let
X1 and X2 be two distinct codewords corresponding to
distinct information symbol vectorsξ1, ξ2 ∈ A respec-
tively. Since a = ξ1 − ξ2 6= 0, there exists at least
one k ∈ {1, . . . , g} such that,aIk

∈ ∆AIk
\ {0}. Then,

X1 −X2 = XIk
(aIk

) +XIc
k
(aIc

k
). Thus from the hypothe-

sis,X1−X2 has rankN . Thus the code achieves full diversity
under ML decoding.

The following theorem from [16] gives a sufficient condition
for an STBC to achieve full diversity under PIC-SIC decoding.

Theorem 3 ([16]): An STBC C(X,A) achieves full-
diversity under PIC-SIC decoding with a grouping scheme
I1, . . . , Ig if it satisfies the following two conditions:

1) C(X,A) achieves full-diversity when an ML decoder is
used and

2) for every k = 1, . . . , g, every H 6= 0 and every
ak ∈ ∆AIk

\ {0}, we haveGIk
ak /∈ ṼIk

.

We now provide an alternative condition for full-diversity
under PIC-SIC decoding, which is equivalent to the criterion of
Theorem 3. Fork = 1, . . . , g, defineĨk = {j|j ∈ Il, l > k}.

Theorem 4: An STBC C(X,A) achieves full-diversity un-
der PIC-SIC decoding with a grouping schemeI1, . . . , Ig, if
it satisfies the following condition for everyk = 1, . . . , g:

• for every ak ∈ ∆AIk
\ {0} and everyu ∈ R

|Ĩk|, we
have: rank ofXIk

(ak) +XĨk
(u) is N .

Further, this condition is equivalent to the full-diversity crite-
rion of Theorem 3.

Proof: Proof is similar to the proof of Theorem 2.
The new conditions, Theorems 2 and 4, are easier to check

than the conditions of Theorems 1 and 3. This will be evident
when we discuss codes and grouping schemes achieving full
diversity under PIC and PIC-SIC decoding in Sections III
and IV.

III. A NEW CLASS OF FULL-DIVERSITY PIC-SIC
DECODABLE CODES

In this section, for any integerλ ≥ 1 and any number
of antennasN ≥ λ, we constructλ-real symbol PIC-SIC
decodable codes with rates arbitrarily close toλ cspcu. We



then use the new criteria, Theorems 2 and 4, to show that
these codes achieve full diversity with PIC-SIC decoding. The
proposed class of codes includes a family of codes reported
in [19]. However, we use a grouping scheme with double the
number of groups reported in [19] and hence we show that
these codes can be decoded with much lower complexities than
those reported in [19]. The new class of codes also includes
the rate4/3 code for2 antennas reported in [18].

A. A New class of codes

Consider integersλ, n ≥ 1. Let the number of antennas
N ≥ λ, number of groupsg = 2n and number of real symbols
K = λg = 2nλ. For k = 1, . . . , g, let thekth group be

Ik = {(k − 1)λ+ 1, (k − 1)λ+ 2, . . . , kλ}. (3)

Each real symbolxi, i = 1, . . . ,K, takes values from a regular
PAM signal set, i.e., a finite subset ofZ, independent of other
symbols. Clearly, the signal setA ⊂ RK is a cartesian product
of K one-dimensional real signal sets. Hence, the vectors of
information symbolsxI1

, . . . , xIg are encoded independently
of each other.

Let Q ∈ R
λ×λ be a full-diversity rotation matrix [23]

for the Zλ lattice. For each k = 1, . . . , g, define
zIk

= [z(k−1)λ+1, z(k−1)λ+2, . . . , zkλ]
T as zIk

= QxIk
. For

m = 1, . . . , n, definewm ∈ Cλ×1 as follows:

wm = [z(2m−2)λ+1 + iz(2m−1)λ+1

z(2m−2)λ+2 + iz(2m−1)λ+2 · · · z(2m−1)λ + iz2mλ]
T .

Note that wm,Re depends on symbols fromxI2m−1
, and

wm,Im depends on symbols fromxI2m . SinceN ≥ λ, there
exist integersd ≥ 1 and r ∈ {0, 1, . . . , λ− 1} such that
N = dλ + r. Form = 1, . . . , n, define vectorvm ∈ CN×1 as
follows:

vm = [wT
m wT

m · · · wT
m z(2m−2)λ+1 + iz(2m−1)λ+1

· · · z(2m−2)λ+r + iz(2m−1)λ+r]
T ,

there being d copies of wT
m in the above expres-

sion. Again, vm,Re depends on symbols fromxI2m−1
,

and vm,Im depends on symbols fromxI2m . Further,
let vm = [vm(1) vm(2) · · · vm(N)]T for complex scalars
vm(1), · · · , vm(N). The proposed STBC is




v1(1) 0 0 · · · 0
v2(1) v1(2) 0 · · · 0
v3(1) v2(2) v1(3) · · · 0

...
...

...
. . .

...
...

...
... · · · v1(N)

vn(1) vn−1(2) · · · · · ·
...

0 vn(2) · · · · · ·
...

...
...

... · · ·
...

0 0 0 · · · vn(N)




. (4)

The delay of this code isT = N + n− 1. Consider the delay
optimal case, i.e.,n = 1. When λ = N , (4) reduces to

a diagonal STBC which is2 group ML decodable, the two
groups beingxI1

andxI2
.

B. Full-diversity

Using the new criteria, Theorems 2 and 4, we show that the
proposed STBCs achieve full diversity with PIC-SIC decoding
in general, and PIC decoding in the case whenn = 2.

Proposition 1: The family of STBCs (4) achieve full diver-
sity with PIC-SIC group decoding and grouping scheme (3).

Proof: We use Theorem 4 to prove this proposition.
Consider the casek = 1. The information symbols inxI1

are
encoded into theN × 1 real vectorv1,Re. SinceQ is a full-
diversity rotation for theZλ lattice, for any non-zero vector
aI1

∈ ∆A \ {0}, each coordinate ofv1,Re is non-zero. Thus,
for any choice ofv1,Im ∈ RN×1, each coordinate ofv1 is non-
zero. Hence, for any choice ofv1,Im, v2, . . . , vn, the resulting
matrix has rankN . Hence, the matrixXI1

(aI1
) +XĨ1

(u) has
rankN for any choice ofu ∈ RK−λ. Thus, the condition of
Theorem 4 is satisfied fork = 1. Using a similar argument
for eachk = 2, . . . , g, it is straightforward to show that all the
criteria of Theorem 4 are satisfied. Hence, the proposed code
achieves full diversity with PIC-SIC decoding.

Proposition 2: When n = 1, 2, the family of STBCs (4)
achieve full diversity with PIC group decoding and grouping
scheme (3).

Proof: Similar to the proof of Proposition 1, but uses
Theorem 2 instead of Theorem 4.

C. Rate-Decoding Complexity-Delay tradeoff

The class of codes proposed in this section have rate,
R = nλ

N+n−1 cspcu for a givenn, λ and N . Equivalently,
for any given λ ≥ 1, N ≥ λ and T ≥ N we can
choosen = T −N + 1 resulting in aT × N STBC with
rateR = λ

(
1− N−1

T

)
. By choosingT large enough, a full-

diversity,λ-real symbol PIC-SIC decodable code with rateR
arbitrarily close toλ cspcu can be constructed using the given
procedure. Thus, the single-real symbol PIC-SIC decodable
codes of this section have rates arbitrarily close to1 cspcu
and the single-complex symbol (double real symbol) PIC-SIC
decodable codes have rates arbitrarily close to2 cspcu.

At each stage of PIC-SIC decoding (2) or PIC
decoding (for the casen = 2) (1), λ real symbols,
{x(k−1)λ+1, x(k−1)λ+2, . . . , xkλ} are jointly decoded. If
M is the cardinality of the underlying complex constellation,
then each real symbol takes values from a

√
M -ary regular

PAM signal set. For each of theM
λ−1

2 choices of values that
the λ − 1 symbolsx(k−1)λ+2, . . . , xkλ jointly assume, the
value ofx(k−1)λ+1 that minimizes either (1) or (2) given the
values ofx(k−1)λ+2, . . . , xkλ can be found by simple scaling,
rounding off and hard limiting. Thus, the order of worst case
decoding complexity of the proposed codes isM

λ−1

2 .
When,N = 2, λ = 2 andT = 3, we obtain the rate4/3

code reported in [18], which has a worst-case PIC decoding
complexity ofM0.5 .

Example 1: Let N = 3, λ = 2 andT = 6. Corresponding
value of n is 4 and the code uses a PIC-SIC decoder with



g = 8 to obtain full diversity. The rate of the code is4/3 cspcu
and worst-case decoding complexity isM0.5. The number of
real symbols in the design isK = 16. Grouping scheme is:
I1 = {1, 2}, I2 = {3, 4}, . . . ,I8 = {15, 16}. The real symbols
zj , j = 1, . . . , 12, are generated as:

[z2k−1 z2k]
T = Q[x2k−1 x2k]

T for k = 1, . . . , 8,

where,Q is a 2 × 2 full-diversity rotation forZ2 lattice. The
resulting STBC is




z1 + iz3 0 0
z5 + iz7 z2 + iz4 0
z9 + iz11 z6 + iz8 z1 + iz3
z13 + iz15 z10 + iz12 z5 + iz7

0 z14 + iz16 z9 + iz11
0 0 z13 + iz15



.

Example 2: Consider the caseN = λ = 4 and T = 6.
Corresponding value ofn is 3 and the code is decoded using
a PIC-SIC decoder to get full diversity. The rate of this codeis
2 cspcu and the worst-case decoding complexity isM1.5. This
stands in comparison with the rate2, delay optimal, fast-ML-
decodable code in [11], which has a worst-case ML decoding
complexity ofM4.5 and rate2 code in [12] with worst-case
ML decoding complexity ofM5.

Example 3: Let N = 4, λ = 3 andT = 9. Corresponding
value ofn is 6. Full diversity can be achieved using a PIC-
SIC decoder. Rate of the code is2 cspcu and the worst-case
decoding complexity isM . Compared with the rate2 code for
4 transmit antennas in Example 2, the code of this example
has lower decoding complexity, but is of larger delay. This
example illustrates the tradeoff between decoding complexity
and delay that is achieved by the proposed class of codes.

D. A family of codes in [19] as a subclass of proposed codes

A subclass of the proposed class of codes corresponding to
the caseλ = N was first constructed in [19]. However, the
worst-case decoding complexity of these codes was reported
in [19] asMλ instead of the complexityM

λ−1

2 that we report
in this paper. In [19], for eachm ∈ {1, . . . , n}, the symbols
xI2m−1

andxI2m constituted themth group, even though they
can be split into two groups without affecting the full-diversity
property of the code.

E. Toeplitz codes as a subclass of the proposed codes

Toeplitz codes [13] are known to provide full diversity with
a zero-forcing receiver. The subclass of the codes proposedin
this section corresponding toλ = 1 are exactly the Toeplitz
codes with the underlying complex constellation being square
QAM. In this case, the PIC decoder is nothing but a real
symbol-by-symbol zero-forcing receiver. We now prove the
full-diversity property using the new criterion in Theorem2.

Proposition 3: For λ = 1 and any number of transmit
antennasN , the STBC (4) with the grouping scheme (3)
achieves full diversity with PIC decoding.

Proof: In this case, for everym = 1, . . . , n, we
havevm(1) = vm(2) = · · · = vm(N) = x2m−1 + ix2m. Con-
sider any k ∈ {1, . . . , 2n}. Consider any real scalar

ak ∈ ∆AIk
\ {0} and anyu ∈ R

2n−1. From Theorem 2, it is
enough to show that the matrixXIk

(ak) +XIc
k
(u) is of rank

N . Consider the smallestl ∈ {1, . . . , n} such thatvl(1) 6= 0.
Such anl always exists andl ≤ ⌈k

2⌉. This is so because,
v⌈ k

2
⌉,Re(1) or v⌈ k

2
⌉,Im(1) is equal toak when k is odd or

even respectively and hencev⌈ k
2
⌉ is non-zero. Because of the

choice of l, the first l − 1 diagonal layers will be zero and
all entries in thelth diagonal layer will be non-zero. Thus,
theN ×N submatrix ofXIk

(ak) +XIc
k
(u) consisting of all

theN columns andN consecutive rows starting from thelth

row will be lower triangular with non-zero, equal diagonal
entries. Thus, this submatrix is of rankN and hence the matrix
XIk

(ak) +XIc
k
(u) is of rankN .

IV. A N EW GROUPING SCHEME FOR CODES IN[20]

In [20], systematic construction of STBCs which give full
diversity with PIC and PIC-SIC decoding were given. These
STBCs are constructed by replacing each element of an
Alamouti code block [21] with a matrix containing multiple
diagonal layers of coded symbols. With the help of the new
full-diversity criteria, we propose a new grouping scheme
for these codes with double the number of groups reported
in [20]. Consequently, the new grouping scheme leads to huge
reduction in decoding complexity. Finally, we compare the
rate-decoding complexity pairs achievable by various PIC and
PIC-SIC decodable codes available in the literature.

A. A New grouping scheme

We now describe the codes proposed in [20] along with the
new grouping scheme. Let the number of transmit antennas,
N , be even. Let the number of real symbols per group beλ =
N
2 . Letn ≥ 1 be any integer and the number of groupsg = 4n.
Number of real symbols in the design isK = λg = 2nN . The
new grouping scheme is as follows. Fork = 1, . . . , g, thekth

group is

Ik = {(k − 1)λ+ 1, (k − 1)λ+ 2, . . . , kλ}. (5)

Let each real symbol take values from a regular PAM con-
stellation, i.e., a finite subset ofZ, independent of other
symbols and letQ ∈ Rλ×λ be a full-diversity rotation matrix
for the integer latticeZλ. For eachk = 1, . . . , g, define
zIk

= [z(k−1)λ+1, z(k−1)λ+2, . . . , zkλ]
T as zIk

= QxIk
. For

m ∈ {1, . . . , n} and l ∈ {1, . . . , λ}, defineA(m, l) as in (6),
given at the top of next page.A(m, l) is an Alamouti code
in real symbolsz(4m−4)λ+l, z(4m−3)λ+l, z(4m−2)λ+l and
z(4m−1)λ+l. The STBC proposed in [20] upto a permutation



A(m, l) =

[
z(4m−4)λ+l + iz(4m−3)λ+l z(4m−2)λ+l + iz(4m−1)λ+l

−z(4m−2)λ+l + iz(4m−1)λ+l z(4m−4)λ+l − iz(4m−3)λ+l

]
, (6)

of rows and columns is



A(1, 1) 0 · · · 0

A(2, 1) A(1, 2) · · · 0

... A(2, 2)
. . . 0

...
...

. . . A(1, N2 )
...

... · · · A(2, N2 )
...

... · · ·
...

A(n, 1)
... · · ·

...

0 A(n, 2) · · ·
...

...
...

. . .
...

0 0 · · · A(n, N
2 )




. (7)

The STBC (7) consists ofn diagonal layers. Each diagonal
layer hasλ = N

2 Alamouti blocks that together encode2N
real symbols. The2N real symbols can be divided into4
encoding groups each containingN2 symbols. The four groups
encoded by themth layer arexI4m−3

, xI4m−2
, xI4m−1

and
xI4m . The delay of the STBC (7) isT = N + 2(n− 1). For
the delay optimal case, i.e.,n = 1, (7) reduces to the4-group
ML decodable Precoded Coordinate Interleaved Orthogonal
Design (PCIOD) given in [24].

In [20], full diversity was proved for a grouping scheme
with 2n groups, which is only half the number of groups in
new the grouping scheme. In terms of the new groups, the
groups proposed in [20] are:

I1 ∪ I2, I3 ∪ I4, · · · , I4n−1 ∪ I4n.
B. Full-diversity

With the help of the new full-diversity criteria, Theorems 2
and 4, we now show that the STBC (7) yields full-diversity
with the new grouping scheme.

Proposition 4: The family of STBCs (7) along with the
grouping scheme (5) achieve full-diversity with PIC-SIC de-
coding.

Proof: Consider the casek = 1. The information
symbol vectorxI1

is encoded intozI1
. The λ coordinates

of zI1
act as one of the4 real symbols in each of the

λ Alamouti blocksA(1, 1), A(1, 2),. . . ,A(1, λ) respectively.
Since Q is a full-diversity rotation for the integer lattice,
for any xI1

∈ ∆AIk
\ {0}, each of theλ coordinates of

zI1
is non-zero. Hence, for anyzIk

∈ Rλ, k > 1, each
of the matricesA(1, 1), A(1, 2),. . . ,A(1, λ) is of full-rank.
The determinant of the submatrix ofXI1

(zI1
) +XĨ1

(u) for
any u ∈ RK−λ consisting of the firstN rows and all the
N columns is the product

∏λ

l=1 det(A(1, l)) 6= 0. Hence, the
matrix XI1

(zI1
) +XĨ1

(u) is of rankN for any u ∈ RK−λ.
Using a similar argument for eachk = 1, . . . , g, we see that
the STBC (7) satisfies the hypothesis of Theorem 4 for the

grouping scheme (5) and hence achieves full diversity with
PIC-SIC decoding.

Proposition 5: When n = 1, 2, the family of STBCs (7)
along with the grouping scheme (5) achieve full-diversity with
PIC decoding.

Proof: Similar to the proof of Proposition 4, but uses
Theorem 2 instead of Theorem 4.

C. Rate and Decoding complexity

For even number of transmit antennas,N , and code parame-
tern ≥ 1, we have the number of real symbolsK = 2nN . The
rate of the code isR = N

2

(
1− N−2

T

)
cspcu, where bothN

andT are even andT ≥ N . During PIC or PIC-SIC decoding,
the number of real symbols that are jointly decoded isN

2 .
When a sphere-decoder is employed to solve (1) or (2), the
dimension of the sphere-decoding problem is onlyN/2 over
R. This is in comparison withN -dimensional sphere-decoder
employed in [20]. Thus, with the new grouping scheme, the
average complexity of the decoder is reduced.

We now derive the worst-case decoding complexity when
the new grouping scheme is employed. For each step of the
decoding process (1) and (2),N/2 real symbols have to be
jointly decoded. IfM is the cardinality of the underlying
complex constellation, then each real symbol takes values from√
M -ary regular PAM signal set. By jointly fixing the values

of N/2−1 real symbols, the value of the last real symbol that
minimizes (1) or (2) can be found out by scaling, rounding-
off and hard limiting. The number of realizations of the set of
N/2−1 real symbols isM

N/2−1

2 . Thus, the order of the worst-
case decoding complexity isM

N−2

4 . This is much smaller than
the complexityM

N
2 reported in [20].

The class of codes discussed in this section include the
following rate 4/3 code for 4 transmit antennas first given
in [18].

Example 4: Consider the case whenN = 4, T = 6.
In this caseK = 16, λ = 2, n = 2 and g = 8. The
rate of the resulting code is4/3 cspcu and the order of
worst-case decoding complexity isM0.5. However, using the
grouping scheme in [20] we get a decoding complexity of
M2. Thus, the new grouping scheme has reduced the decoding
complexity considerably. From Propositions 4 and 5, this
code can be decoded using both PIC and PIC-SIC decoders
to get full diversity. The grouping scheme is:I1 = {1, 2},
I2 = {3, 4},. . . ,I8 = {15, 16}. For a full-diversity2 × 2 ro-
tation matrixQ we have

[z2k−1 z2k]
T = Q[x2k−1 x2k]

T for k = 1, . . . , g.



TABLE I
COMPARISON OF FULL-DIVERSITY, PIC AND PIC-SICDECODABLE CODES

Code

Transmit Delay Number of Number of real Full diversity Rate Worst-case

Antennas groups symbols per group with in cspcu Decoding

N T g λ PIC decoding? R Complexity

Toeplitz [13] ≥ 1 ≥ N 2(T −N + 1) 1 Yes 1− N−1

T
O(1)

Code in [18] (C1) 2 3 4 2 Yes 4/3 M0.5

Codes in [19] ≥ 1 ≥ N T −N + 1 2N Yes if T ≤ N + 1 N
(

1− N−1

T

)

MN

Codes in Sec III ≥ 1 ≥ N 2(T−N+ 1) ≤ N Yes if T ≤ N+ 1 λ
(

1− N−1

T

)

M
λ−1

2

Code in [18] (C2) 4 6 8 2 Yes 4/3 M0.5

Codes in [20] 2m, m ≥ 1 2l, l ≥ N

2
T −N + 2 N Yes if T ≤ N + 2 N

2

(

1− N−2

T

)

M
N
2

Codes in Sec IV 2m, m ≥ 1 2l, l ≥ N

2
2(T−N+ 2) N

2
Yes if T ≤ N+ 2

N

2

(

1− N−2

T

)

M
N−2

4

The resulting STBC is



z1 + iz3 z5 + iz7 0 0
−z5 + iz7 z1 − iz3 0 0
z9 + iz11 z13 + iz15 z2 + iz4 z6 + iz8

−z13 + iz15 z9 − iz11 −z6 + iz8 z2 − iz4
0 0 z10 + iz12 z14 + iz16
0 0 −z14 + iz16 z10 − iz12



.

Example 5: Consider the case whenN = 8 and T = 12.
In this case, full-diversity is achieved with PIC-SIC decoding.
The rate of the code is2 cspcu and the worst-case decoding
complexity isM1.5. On the other hand, the grouping scheme
in [20] gives a decoding complexity ofM4. Delay optimal,
full-diversity rate 2 codes in [12] and [25] have decoding
complexities of the order ofM10 andM9.5 respectively. The
codes reported in [12] and [25] use the optimal, i.e., ML
decoder, whereas the code reported in this paper uses only the
suboptimal PIC-SIC decoder. Further, the code reported in [12]
has the non-vanishing determinant property. Thus, the codes
of this section trade performance to get superior decoding
comforts.

Example 6: Let N = 6, T = 12. In this case, we get a rate
2 code with worst-case decoding complexity ofM . On the
other hand, the rate2 fast-ML-decodable code for6 antennas
reported in [12] has a decoding complexity of the order ofM8.
The code given in [12] is delay optimal and has non-vanishing
determinant property whereas the new code gives enormous
reduction in decoding complexity without compromising full
diversity.

D. Comparison of full-diversity PIC and PIC-SIC decodable
codes

Table I gives a summary of comparison of full-diversity
PIC and PIC-SIC decodable codes available in literature.
Here,M is the size of the underlying complex constellation.
The class of codes constructed in Section III of this paper
includes a family of codes from [19] together with a new
grouping scheme, the Toeplitz codes [13] and the two antenna
code of [18]. The class of codes in Section IV includes the

codes in [20] together with a new grouping scheme and the
4 antenna code from [18]. Consider the subclass of codes
in Section III with λ = N/2. The worst-case decoding
complexity of these codes isM

N−2

4 , same as that of codes
of Section IV. However, for identical delayT , the rate of
the codes in Section IV isN2

(
1− N−2

T

)
, which is slightly

more than the rateN2
(
1− N−1

T

)
of the codes in Section III.

Codes in Section III can give higher rates at the cost of higher
decoding complexity by choosing the parameterλ properly.
However, the codes in Section IV can have rate at the most
N/2 cspcu only.

Codes in Sec III

Toeplitz codes [13]

Codes in [19]

Full diversity PIC-SIC
decodable codes

Codes in
Sec IV

C1[18] C2[18]

Fig. 1. Venn Diagram of codes listed in Table I

Fig. 1 shows the relationship among the codes listed in
Table I. The two antenna code in [18] is denoted byC1 and the
four antenna code of [18] is denoted byC2. The intersection of
Toeplitz codes and codes in [19] corresponds to the subclass
of codes in Section III which haveN = 1. Codes in [20] are
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Zhang, Xu et. al.
Zhang, Shi et. al.

Fig. 2. Comparison of Rate vs. Worst-case-Decoding complexity pairs
achievable by various codes forN = 8 antennas and delayT = 12 channel
uses

exactly the codes in Section IV, but with a different grouping
scheme.

Fig. 2 shows the comparison of rate vs. worst-case-decoding
complexity pairs achievable by the codes in Section III,
Section IV, code given by Zhang, Xu et. al. [19] and the
code given by Zhang, Shi et. al. [20] for the case ofN = 8
and T = 12. For codes from Section III, each value of
λ = 1, . . . , 8, gives a different rate-complexity pair. The
caseλ = 1 corresponds to a Toeplitz code. The complexity
of the codes in Section III is much less than that of the
codes from [19] and [20] for identical rates. The code in
Section IV and the code in Section III withλ = 4 have
identical worst-case decoding complexity ofM1.5, however,
the code in Section IV has a slightly larger rate. In all other
cases, codes from Section III have the best rate-decoding
complexity tradeoff.

V. D ISCUSSION

In this paper, we give alternative criteria for STBCs to
achieve full diversity with PIC and PIC-SIC decoding. Using
the new criteria we constructed a new class of full diversity
PIC-SIC decodable codes and we also showed that some of
the PIC-SIC decodable STBCs available in the literature can
be decoded with lower complexities by choosing the grouping
scheme intelligently. The following are some of the directions
for future work.

1) Theorems 2 and 4 deal with the full diversity condition
only. What is the condition to maximize the coding gain?

2) What is the rate-decoding complexity tradeoff of STBCs
with PIC and PIC-SIC decoding?

3) Given an STBC, how does one find the grouping scheme
with least decoding complexity and full diversity?
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