
Structured LDPC Codes from Permutation Matrices
Free of Small Trapping Sets

Dung Viet Nguyen, Bane Vasić, Michael Marcellin
Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ 85721
Email: {nguyendv, vasic, marcellin}@ece.arizona.edu

Shashi Kiran Chilappagari
Marvell Semiconductor Inc,

5488 Marvell Lane, Santa Clara, CA 95054
Email: shashickiran@gmail.com

Abstract—This paper introduces a class of structured low-
density parity-check (LDPC) codes whose parity check matrices
are arrays of permutation matrices. The permutation matrices
are obtained from Latin squares and form a finite field under
some matrix operations. They are chosen so that the Tanner
graphs do not contain subgraphs harmful to iterative decoding
algorithms. The construction of column-weight-three codes is
presented. Although the codes are optimized for the Gallager
A/B algorithm over the binary symmetric channel (BSC), their
error performance is very good on the additive white Gaussian
noise channel (AWGNC) as well.

I. INTRODUCTION

It is now well established that the error floor phenomenon,
an abrupt degradation in the error performance of low-density
parity-check (LDPC) codes [1] in the high signal-to-noise-ratio
(SNR) region, is due to the presence of certain structures in
the Tanner graph that lead to decoder failures. For iterative
decoding, these structures are known as trapping sets.

Ideally, LDPC codes should be designed so that their Tanner
graphs do not contain most harmful trapping sets, but unfortu-
nately, except for the binary erasure channel, trapping sets for
other channels such as the BSC or the AWGNC, are only
partially understood. Consequently, many existing methods
of constructing LDPC codes only attempt to maximize the
girth of the Tanner graphs [2]–[4] or avoid subgraphs that
are believed to be harmful [5]. In the latter approach, the
subgraphs are identified either by computer simulation or
hardware emulation, or are conveniently defined to make the
search easier. The problem in these approaches lies in the
underlying assumption about harmfulness, which is not proven
or is restricted to specific cases.

In this paper, LDPC codes are constructed so that their
Tanner graphs do not contain trapping sets of the Gallager
A/B algorithm on the BSC. The code construction utilizes
the Trapping Set Ontology (TSO) given by Vasic et. al. in
[6]. This database contains trapping sets for the Gallager A/B
algorithms which are organized based on their topological
relations. Our approach relies greatly on the relative harm-
fulness1 of different trapping sets to determine which trapping

1The relative harmfulness of a trapping set given in the TSO for the Gallager
A/B algorithm over the BSC is determined by its critical number and strength
[7]. The relative harmfulness of a trapping set given in the TSO for the
sum product algorithm over the BSC is currently being studied and will be
discussed in the journal version of this paper.

sets should not be present in the Tanner graphs of codes. The
choice of which trapping sets to avoid is critical to the error
performance and the code rate.

Although the codes are optimized for the Gallager A/B
algorithm over the BSC, experimental results indicate that
their error performance under other iterative algorithms such
as the sum product algorithm (SPA) are also extremely good.
The explanation for this is based on the observation by
Chilappagari et. al. in [8] that the decoding failures for various
decoding algorithms and channels are closely related and
subgraphs responsible for these failures share some common
underlying topological structures. These structures are either
trapping sets for iterative decoding algorithms on the BSC or
larger subgraphs containing these trapping sets.

The above approach can be incorporated into many existing
classes of LDPC codes to result in codes with good error
performance (e.g., [9], [10]), including the new class of
structured LDPC codes that we propose in this paper.

To be efficiently encodable and decodable, LDPC codes
must be structured. An important class of structured LDPC
codes are quasi-cyclic (QC) codes. In the past few years,
numerous QC constructions have been proposed. They can be
broadly classified as algebraic [9], [11]–[13] and combinatorial
[14], [15]. In this paper, we give a class of structured LDPC
codes whose parity check matrices are arrays of permutation
matrices. Our design is motivated by the work of Lan et. al.
[9]. In [9], the authors give a general algebraic construction
of QC-LDPC codes based on a one-to-one correspondence
between an element of the multiplicative group of GF(q) and
a circulant permutation matrix of size (q − 1) × (q − 1). In
our construction, the set of permutation matrices together with
some matrix operations (introduced later in this paper) form
a field isomorphic to GF(q). Our permutation matrices are
similar to circulants in the sense that the set of q − 1 non-
identity permutation matrices form a cyclic group, but they are
more general as the circulant property holds on indices under-
stood as elements of GF(q). More specifically, the permutation
corresponding to αt sends the indices (0, 1, α, . . . , αq−2) to
(0 + αt, 1 + αt, α+ αt, . . . , αq−2 + αt).

The construction allows for a systematic reduction of error
floors. We present a construction algorithm which recursively
builds the parity check matrix by adding permutation matrices.
The algorithm ensures that after each step, the corresponding

ar
X

iv
:1

00
4.

11
98

v1
 [

cs
.I

T
]

 7
 A

pr
 2

01
0

Tanner graph does not contain certain trapping sets defined in
the TSO.

The rest of the paper is organized as follows. In Section
II, we provide the background related to LDPC codes and
the necessary preliminaries for the construction method. In
Section III, we give the general definition of the class of
structured LDPC codes from permutation matrices. In Section
IV, we present the construction of codes based on Latin
squares obtained from the additive group of a Galois field. In
Section V, we describe the construction algorithm and present
the construction of several column-weight-three codes. Finally,
we conclude the paper in Section VI.

II. PRELIMINARIES

In this section, we introduce the definitions and notation
used throughout the paper.

A. LDPC Codes and Trapping Sets

Let C denote an (n, k) LDPC code over the binary field
GF(2). C is defined by the null space of H , an m× n parity
check matrix of C. H is the bi-adjacency matrix of G, a Tanner
graph representation of C. G is a bipartite graph with two sets
of nodes: n variable (bit) nodes V = {1, 2, . . . , n} and m
check (constraint) nodes C = {1, 2, . . . ,m}. The length of
the shortest cycle in the Tanner graph G is called the girth g
of G.

A trapping set for an iterative decoding algorithm is defined
as a non-empty set of variable nodes in G that are not
eventually corrected by the decoder [16]. A trapping set T
is called an (a, b) trapping set if it contains a variable nodes
and the subgraph induced by these variable nodes has b odd
degree check nodes.

B. Permutation Matrices from Latin Squares

A permutation matrix is a square binary matrix that has
exactly one entry 1 in each row and each column and 0’s
elsewhere. Our construction makes use of permutation matri-
ces that do not have 1’s in common positions. These sets of
permutation matrices can be obtained conveniently from Latin
squares.

A Latin square of size q (or order q) is a q × q array in
which each cell contains a single symbol from a q-set S, such
that each symbol occurs exactly once in each row and exactly
once in each column. A Latin square of size q is equivalent
to the Cayley table of a quasigroup Q on q elements (see [17,
pp. 135–152] for details).

For mathematical convenience, we use elements of Q to
index the rows and columns of Latin squares and permutation
matrices. Let L = [li,j]i,j∈Q denote the Latin square defined
on the Cayley table of a quasigroup (Q,⊕) of order q. Define
f , an injective map from Q to Mat(q, q,GF(2)), the set of
matrices of size q × q over GF(2), as follows:

f : Q → Mat(q, q,GF(2))

α 7→ f(α) = [mi,j]i,j∈Q

such that:

mi,j =

{
1 if li,j = α
0 if li,j 6= α

.

It follows from the above definition that the images of
elements of Q under f give a set of q permutation matrices
that do not have 1’s in common positions.

III. LDPC CODES AS ARRAY OF PERMUTATION MATRICES

In this section, we give the general definition of LDPC
codes whose parity check matrices are arrays of permutation
matrices. LetW = [wi,j]1≤i≤µ,1≤j≤η be an µ×η matrix over
a quasigroup Q,

W =

w1,1 w1,2 · · · w1,η

w2,1 w1,2 · · · w2,η

...
...

. . .
...

wµ,1 wµ,2 · · · wµ,η

 . (1)

With some abuse of notation, let H = f(W) = [f(wi,j)]
be an array of permutation matrices, obtained by replacing
elements of W with their images under f , i.e.,

H =

f(w1,1) f(w1,2) · · · f(w1,η)
f(w2,1) f(w1,2) · · · f(w2,η)

...
...

. . .
...

f(wµ,1) f(wµ,2) · · · f(wµ,η)

 . (2)

Then H is a binary matrix of size µq× ηq. The null space of
H gives an LDPC code of length ηq. The column weight and
row weight of H are µ and η, respectively.

IV. STRUCTURED LDPC CODES FROM GALOIS FIELDS OF
PERMUTATION MATRICES

A. Galois Fields of Permutation Matrices

Consider the Galois field GF(q), where q is a power of a
prime. Let α be a primitive element of GF(q). The powers
of α, α−∞ , 0, α0 = 1, α, α2, . . . , αq−2, give all the q
elements of GF(q) and αq−1 = 1. Let L = [li,j]i,j∈GF(q)
denote the Latin square defined by the Cayley table of the
quasigroup given by the set {0, 1, α, . . . , αq−2} together with
the subtractive operation of GF(q), i.e., li,j = i − j. Let
M = {M−∞,M0,M1, . . . ,Mq−2} be the set of images of el-
ements of GF(q) under f , i.e., Mt = [m

(t)
i,j]i,j∈GF(q)

= f(αt).
It is easy to see that M−∞ = I , the q × q identity matrix.
To show that M forms a field isomorphic to GF(q) under
the matrix operations defined below, we give the following
propositions. Due to page limitations, the proofs are omitted.

Proposition 1: For all t1, t2 ∈ Z, f(αt1 +αt2) = Mt1Mt2 .
Proposition 2: For all t ≥ 0, Mt+1 = PMtQ, where P ∈
Mq×q[GF(2)] is given as

P =

1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

, (3)

and Q is the transpose of P .
Define the addition � and the multiplication � on M as:

Mt1 �Mt2 = Mt1Mt2 ,

Mt1 �Mt2 = P (t2−t1)Mt1Q
(t2−t1)

= P (t1−t2)Mt2Q
(t1−t2)

then it can be shown that M together with � and � form a
field isomorphic to GF(q).

B. LDPC Codes from Galois Fields of Permutation Matrices

Define W and H as in (1) and (2), where Q is the set
{0, 1, α, . . . , αq−2} together with the subtractive operation
of GF(q). The following theorem gives the necessary and
sufficient condition on W , such that the Tanner graph cor-
responding to H has girth at least 6.

Theorem 1 (Cross-addition Constraint): The Tanner graph
corresponding toH contains no cycle of length four iff wi1,j1+
wi2,j2 6= wi1,j2 +wi2,j1 for any 1 ≤ i1, i2 ≤ µ, 1 ≤ j1, j2 ≤ η,
i1 6= i2, j1 6= j2.

Proof: The proof is omitted due to page limitations.
It can be seen that the construction of LDPC codes with

girth at least 6 from a Galois field of permutation matrices
reduces to the finding of a matrix W that satisfies the cross-
addition constraint. One form of W that satisfies the cross-
addition constraint is given by

W =

0 0 0 · · · 0
0 1 α · · · αq−2

0 α α2 · · · 1
...

...
...

. . .
...

0 αq−2 1 · · · αq−3

 . (4)

Let H = f(W). From Proposition 2, it follows that H has
the following structure:

H =

I I I · · · I
I M0 M1 · · · Mq−2
I M1 M2 · · · M0

...
...

...
. . .

...
I Mq−2 M0 · · · Mq−3

 , (5)

where Mt = P tM0Q
t and I is the q × q identity matrix. H

is an array of permutation matrices from M and is a q2 × q2
matrix over GF(q) with both row and column weights q. Since
W satisfies the cross-addition constraint, the Tanner graph
corresponding to H contains no cycle of length 4.

For any pair (γ, ρ) of positive integers with 1 ≤ γ, ρ ≤ q,
let H be a γ × ρ subarray of H. Then H is a γq× ρq matrix
over GF(2) which is also free of cycles of length 4. H has
constant column γ and row weight ρ. The null space of H
gives a regular structured LDPC code C of length ρq with rate
at least (ρ− γ)/ρ [1].

Remarks:
• The matrix W in (4) is obtained by adding a row and

a column of all zeros to L, where L is the Latin square
obtained from the Cayley table of the multiplicative group
of GF(q).

• The codes given in this paper can be alternatively defined
on integer latices. Since array LDPC codes introduced by
Fan in [10], can be defined on integer lattices as shown
in [18], they are special cases of the codes given in this
paper. If q is a prime, then the parity check matrices of
array LDPC codes are subarrays of f(Wp), where Wp is
obtained by permuting rows and columns of W (in (4)).
The codes by Lan et. al. [9] based on the additive groups
of prime fields are also array LDPC codes.

• Our class of codes is also different from codes given
by Gabidulin et. al in [19] (except for codes based on
prime fields, for which the latter become array codes).
In [19], permutation matrices of size q × q, where q is a
power of a prime, are obtained from the Tensor product
of circulant matrices of size p×p, thus are different from
the permutation matrices in (5).

• If L is defined by the Cayley table of the multiplicative
group of GF(q), then circulant permutation matrices of
size (q−1)× (q−1) are obtained as images of elements
of GF(q)\{0}. In such case, the necessary and sufficient
condition onW such that the Tanner graph corresponding
to H has girth at least 6 is called the cross-multiplication
constraint. This condition can be obtained from the cross-
addition constraint by replacing addition with multiplica-
tion. This gives an alternative description for the codes
described in [9].

V. CONSTRUCTION OF CODES FREE OF SMALL TRAPPING
SETS

The description of the class of LDPC codes given in
the previous sections along with Theorem 1 allow us to
construct codes by progressively building the Tanner graphs.
The construction is performed by an algorithm which forms
the matrix W in (1). The algorithm is based on a check and
select-or-disregard procedure. Let τ specify which graphical
structures should not be present in the Tanner graph G. For
example, Figure 1 shows the subgraphs induced by some small
trapping sets. τ may specify the girth of G and may also
specify the minimum distance of the code. For column-weight-
three codes, all possible codewords of even weight less than 12
are known and their induced subgraphs are listed in the TSO.
It is simple to check the Tanner graph for cycles of length four
thanks to Theorem 1. Finding girth of the Tanner graph can be
done in polynomial time using the Dijkstra or Bellman-Ford
algorithm, while enumerating cycles of a given length using
a standard tree-based algorithm has linear complexity in the
code length [6]. An efficient search of the Tanner graph for
trapping sets relies on the topological relations among them
and carefully analyzing the induced subgraphs. Details on the
graph searching techniques will be given in the journal version
of this paper.

The Tanner graph of a code is built progressively in ρ stages,
where ρ is the row weight of the parity check matrix. Usually,
ρ is not pre-specified, and codes are constructed to have rate
as high as possible. At each stage, a set of q variable nodes
are introduced, initially not connected to check nodes of the

(a) (b) (c)

Fig. 1. (a) (5, 3) trapping set of girth 6, (b) (5, 3) trapping set of girth 8 and
(c) (6, 4) trapping set. We use to represent variable nodes, � to represent
odd degree check nodes and 2 to represent even degree check nodes.

Tanner graph. Blocks of edges are then added to connect the
new variable nodes and the check nodes. Each block of edges
corresponds to a permutation matrix and hence corresponds
to an element of GF(q). An element of GF(q) may be chosen
randomly, or it may be chosen in a predetermined order. After
a block of edges is added, the Tanner graph is checked for
condition τ . If the condition τ is violated, then that block
of edges is removed and replaced by a different block. The
algorithm proceeds until no block of edges can be added
without violating condition τ . It can be seen that the algorithm
is a combination of the progressive edge growth algorithm for
constructing random LDPC codes [20] and the method in [18].

The complexity of the algorithm grows exponentially with
the column weight. The complexity also depends greatly on
how condition τ is checked on a Tanner graph. However, for
small column weights, say 3 or 4, and small to moderate
code lengths, the algorithm is well handled by state-of-the-
art computers. For example, the construction of a (1111, 808)
code which has girth 8, minimum distance at least 10 and
which contains no (5, 3) trapping set given in Figure 1(b) takes
less than 2 minutes on a 2.4 GHz computer.

We continue this section by providing two examples of con-
struction of column-weight-three codes whose Tanner graphs
do not contain small trapping sets described in the TSO.

Example 1: Let q = 53 and let C(new)
8 denote the code ob-

tained when τ is defined as a condition that the corresponding
Tanner graph of C(new)

8 has girth g ≥ 8. C(new)
8 is a (530, 371)

LDPC code with rate R = 0.7. Let C(old)8 denote the (530,
371) shortened array code (or integer lattice code described in
[18]). C(old)8 is obtained by extensive computer search and has
the maximum possible rate of R = 0.7. Denote by Cd10 the
code obtained when τ is such that the minimum distance of
Cd10 is at least 10. Cd10 is constructed by avoiding codewords
of weight 6 and 8 in the Tanner graph (the TSO lists two
possible codewords of weight 6 and five possible codewords
of weight 8 for codes with g ≥ 6). Cd10 is a (795, 636)
LDPC code with rate R = 0.8 and girth g = 6. The error
performance of C(new)

8 , C(old)8 and Cd10 under the SPA with
a maximum of 50 iterations over the AWGNC is shown in
Figure 2. It can be seen that the error performance of C(new)

8

is better than that of C(old)8 . One possible explanation for
this observation is that the Tanner graph of C(old)8 contains

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

C(new)

8

C(old)

8

C
d10

Shannon Limit

R = 0.7

R = 0.8

Fig. 2. Performances of the codes given in Example 1 over the AWGNC.

subgraphs induced by the codeword of weight 6 while the
minimum distance of C(new)

8 is 10. Allowing the Tanner graph
of Cd10 to have girth 6 but requiring that the minimum distance
is at least 10 results in higher rate than the rate of C(new)

8 , while
maintaining the good error performance. This example clearly
demonstrates that larger girth alone does not necessarily lead
to better performance. We also remark that although minimum
distance is used as the design parameter to construct Cd10 with
good error performance, in general this may not be sufficient
to guarantee low error floors, since codes with high minimum
distance may still contain trapping sets.

Example 2: Let q = 192 = 361. The codes obtained when
conditions τ1, τ2, τ3 and τ4 are imposed are denoted with C1,
C2, C3 and C4, respectively. Conditions τ1, τ2, τ3 and τ4 are
defined as

• τ1: G has girth g ≥ 10.
• τ2: G has girth g ≥ 8; G does not contain the (5,3)

trapping set of girth 8 shown in Figure 1(b); and G does
not contain the (6,4) trapping set shown in Figure 1(c).

• τ3: G has girth g ≥ 8; G does not contain the (5,3)
trapping set of girth 8 and an eight cycle in G can share
2 variable nodes with at most one other eight cycle.

• τ4: G has girth g ≥ 6; G does not contain the (5,3)
trapping set of girth 6 shown in Figure 1(a); G does not
contain the (5,3) trapping set of girth 8; and an eight
cycle in G can share 2 variable nodes with at most one
other eight cycle.

The Tanner graphs of these codes contain 361 check nodes.
C1, C2, C3 and C4 have lengths n1 = 2888, n2 = 3249, n3 =
3610, n4 = 3971 and rates R1 = 0.63, R2 = 0.67, R3 =
0.70, R4 = 0.73. The error performance of C1, C2, C3 and
C4 under the SPA with a maximum of 50 iterations over the

0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

C

1

C
2

C
3

C
4

Shannon Limit

R = 0.62
 R = 0.67
 R = 0.70
 R = 0.73

Fig. 3. Performances of the codes given in Example 2 over the AWGNC.

AWGNC is shown in Figure 3.
It can be seen that the conditions τ1, τ2, τ3 and τ4 are

successively weaker. Since stronger conditions usually lead
to codes with lower rates, we can observe in this example
that R1 < R2 < R3 < R4. From the simulation results,
we see no loss in the error performance of codes with
weaker conditions. This example emphasizes the importance
of properly identifying the trapping sets to be avoided in the
Tanner graph since it is crucial for the rate and the error
performance of the code.

Remark: Conditions τ3 and τ4 permit an eight cycle in G
to share 2 variable nodes with at most one other eight cycle.
Consequently, (6, 4) trapping sets can be present in the Tanner
graphs but their variable nodes can be involved in at most two
eight cycles. Therefore many children of the (6, 4) trapping
set are avoided (see [6] for more details).

VI. DISCUSSION AND CONCLUSIONS

We have introduced a class of structured LDPC codes with
a wide range of rates and lengths. The code description is
based on Latin squares, hence they can be explained both
algebraically or combinatorially. Moreover, the description al-
lows a code construction by progressively building the Tanner
graph. The Tanner graph is built so that it does not contain a
predefined set of trapping sets of iterative decoding algorithms.
In this paper, we rely on the TSO - a database of trapping sets
for the Gallager A/B algorithm on the BSC. Our conjecture
is that trapping sets for other iterative decoding algorithms
such as the SPA must contain trapping sets for the Gallager
A/B algorithm. By eliminating trapping sets listed in the TSO,
the codes have good error performance when decoded by
other iterative decoding algorithms on the BSC or AWGNC.
Although we could not provide enough experimental results
for comparison with existing codes due to page limitations,
to the best of our knowledge, our codes outperform the best

known short length structured LDPC codes. Our current and
future work includes identifying trapping sets for various
decoding algorithms over the BSC and AWGNC, with the TSO
as a starting point.

VII. ACKNOWLEDGMENT

This work was funded by NSF under the grants IHCS-
0725403, CCF-0634969, CCF-0830245.

REFERENCES

[1] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA:
M.I.T. Press, 1963.

[2] O. Milenkovic, N. Kashyap, and D. Leyba, “Shortened array codes of
large girth,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3707–3722,
Aug. 2006.

[3] Y. Wang, J. Yedidia, and S. Draper, “Construction of high-girth QC-
LDPC codes,” in Proc. 5th Int. Symp. on Turbo Codes and Related
Topics, Sept. 2008, pp. 180–185.

[4] S. Kim, J.-S. No, H. Chung, and D.-J. Shin, “Quasi-cyclic low-density
parity-check codes with girth larger than 12,” IEEE Int. Symp. Inf.
Theory, vol. 53, no. 8, pp. 2885–2891, Aug. 2007.

[5] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic,
“Analysis of absorbing sets for array-based LDPC codes,” in Proc. Int.
Conf. on Commun., Galsgow, Scotland, June 2007, pp. 6261–6268.

[6] B. Vasic, S. Chilappagari, D. Nguyen, and S. Planjery, “Trapping set
ontology,” in Proc. 47th Annual Allerton Conf. on Commun., Control
and Computing, Sept. 2009, pp. 1–7.

[7] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of
LDPC codes on the binary symmetric channel,” in Proc. Int. Conf. on
Commun., vol. 3, 2006, pp. 1089–1094.

[8] S. K. Chilappagari, M. Chertkov, M. G. Stepanov, and B. Vasic,
“Instanton-based techniques for analysis and reduction of error floors
of LDPC codes,” IEEE JSAC on Capacity Approaching Codes, vol. 27,
no. 6, pp. 855–865, Aug. 2009.

[9] L. Lan, L. Zeng, Y. Tai, L. Chen, S. Lin, and K. Abdel-Ghaffar,
“Construction of quasi-cyclic LDPC codes for AWGN and binary
erasure channels: a finite field approach,” IEEE Trans. Inf. Theory,
vol. 53, no. 7, pp. 2429–2458, Jul. 2007.

[10] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. 2nd
Int. Symp. Turbo Codes and Related topics, Sept. 2000, pp. 543–546.

[11] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured
LDPC codes,” in Proc. ISTA, 2001.

[12] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-
density parity-check codes constructed based on Reed-Solomon codes
with two information symbols,” IEEE Commun. Lett., vol. 7, no. 7, pp.
317–319, Jul. 2003.

[13] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-Shannon-limit quasi-
cyclic low-density parity-check codes,” IEEE Trans. Commun., vol. 52,
no. 7, pp. 1038–1042, Jul. 2004.

[14] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based
on finite geometries: a rediscovery and new results,” IEEE Trans. Inf.
Theory, vol. 47, no. 7, pp. 2711 –2736, Nov. 2001.

[15] B. Vasic and O. Milenkovic, “Combinatorial constructions of low-
density parity-check codes for iterative decoding,” IEEE Trans. Inf.
Theory, vol. 50, no. 6, pp. 1156–1176, Jun. 2004.

[16] T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual
Allerton Conf. on Commun., Control and Computing, Sept. 2003,
pp. 1426–1435. [Online]. Available: http://www.hpl.hp.com/personal/
Pascal Vontobel/pseudocodewords/papers

[17] C. J. Colbourn and J. H. Dinitz, Handbook of combinatorial designs,
second edition (Discrete mathematics and its applications). Chapman
& Hall/CRC, 2006.

[18] B. Vasic, K. Pedagani, and M. Ivkovic, “High-rate girth-eight low-
density parity-check codes on rectangular integer lattices,” IEEE Trans.
Commun, vol. 52, no. 8, pp. 1248–1252, Aug. 2004.

[19] E. Gabidulin, A. Moinian, and B. Honary, “Generalized construction
of quasi-cyclic regular LDPC codes based on permutation matrices,” in
Proc. IEEE Int. Symp. Inf. Theory, Jul. 2006, pp. 679–683.

[20] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular
progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory,
vol. 51, no. 1, pp. 386–398, Jan. 2005.

http://www.hpl.hp.com/personal/Pascal_Vontobel/pseudocodewords/papers
http://www.hpl.hp.com/personal/Pascal_Vontobel/pseudocodewords/papers

	I Introduction
	II Preliminaries
	II-A LDPC Codes and Trapping Sets
	II-B Permutation Matrices from Latin Squares

	III LDPC Codes as Array of Permutation Matrices
	IV Structured LDPC Codes from Galois Fields of Permutation Matrices
	IV-A Galois Fields of Permutation Matrices
	IV-B LDPC Codes from Galois Fields of Permutation Matrices

	V Construction of Codes Free of Small Trapping Sets
	VI Discussion and Conclusions
	VII Acknowledgment
	References

