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Abstract—The exact Markov modeling analysis of erasure
networks with finite buffers is an extremely hard problem due
to the large number of states in the system. In such networks,
packets are lost due to either link erasures or blocking by the
full buffers. In this paper, we propose a novel method that
iteratively estimates the performance parameters of the network
and more importantly reduces the computational complexity
compared to the exact analysis. This is the first work that
analytically studies the effect of finite memory on the throughput
and latency in general wired acyclic networks with erasure links.
As a case study, a random packet routing scheme with ideal
feedback on the links is used. The proposed framework yieldsa
fairly accurate estimate of the probability distribution o f buffer
occupancies at the intermediate nodes using which we can not
only identify the congested and starving nodes but also obtain
analytical expressions for throughput and average delay ofa
packet in the network. The theoretical framework presentedhere
can be applied to many wired networks, from Internet to more
futuristic applications such as networks-on-chip under various
communication and network coding scenarios.

I. I NTRODUCTION

In networks, packets may have to be relayed through a
series of intermediate nodes where each may receive packets
via many other data streams as well. Hence, the packets may
have to be stored at intermediate nodes for transmission at
a later time. For infinte buffer case, the intermediate nodes
need not have to drop the arriving packets. However, often
times, buffers are limited in size. Although a large buffer
size is usually affordable and preferred to minimize packet
drops, large buffers have an adverse effect on the packet delay.
Additionally, as second-order effects, using larger buffer sizes
at intermediate nodes would have practical problems such as
on-chip board space and increased memory-access latency.

The problem of buffer sizing and congestion control is of
paramount interest to router design engineers. Typical routers
today route several tens of gigabits of data each second [1].
Realistic studies have shown that, at times, Internet routers
handle about ten thousand independent streams/flows of data
packets. With a reasonable buffer size of few Gigabytes
of data, each stream can only be allocated a few tens of
data packets. Therefore, at times when long parallel flows
congest a router, the effects of such a small buffer space per
flow come to play. Though we are motivated partly by such
concerns, our work is far from modeling realistic scenarios.
This work modestly aims at providing a theoretical framework
to understand the fundamental limits of single information

flow in finite-buffer wired networks and investigate the trade-
offs between throughput, average packet delay and buffer size.

The problem of computing capacity and designing efficient
coding schemes for lossy networks has been widely studied
[2]–[4]. However, the study of capacity of networks with finite
buffer sizes has been limited. This can be attributed solelyto
the fact that finite buffer systems are analytically harder to
track in general. In [5], [6], it was shown that min-cut capacity
cannot be achieved due to the limited buffer constraint in a line
network. Here, we wish to establish a framework to investigate
the same for general wired networks.

Recently, [3] outlined various coding strategies for achiev-
ing capacity in line erasure networks. However, it only con-
sidered infinite buffer in its study. Later, [7] considered the
limitations posed by finite memory in a simple two-hop
wireline network. Inspired by this work, in [5], [6] authors
investigated the information-theoretic capacity of multi-hop
wireline networks with varying buffer constraints at each node.
However, they only considered upper and lower bounds for
the throughput. Further, the problem of finding the packet
delay has been visited in the queueing theory literature on
the behavior of open tandem queues that are analogous to line
networks [8], [9]. However, this view is not applicable directly
in general network topologies.

We consider wired acyclic erasure networks with ideal
feedback on the links when a directed random packet routing
scheme is used. Although the previous works provide some
insight into the performance analysis of networks, they are
limited to either infinite-buffer cases or a simple two-hop line
network with limited memory. Moreover, the interplay of the
throughput and latency is not considered in a small buffer
regime. Our approach employs a discrete-time model to derive
estimates for the buffer occupancy distribution at intermediate
nodes. We then obtain analytical expressions for throughput
and average packet delay in terms of the estimated buffer
occupancy distributions.

The motivation behind this work is twofold: From a prac-
tical point of view, it analyzes the performance parametersof
the random routing protocol in wired directed networks which
is more of an interest to the network community. On the other
hand, from a theoretical point of view, our work develops
a framework that not only can be adapted to estimate the
performance parameters of various communication schemes
such as random linear coding but also can provide insight
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into the interplay among the buffer size, throughput and delay
in general. The later is impossible to be exactly analyzed
due to the exponential growth in the number of states and
the complexity of the equations [5] but our work develops
an approximation to it. Further, the work establishes a lower
bound on the information theoretic capacity of finite buffer
networks.

This paper is organized as follows. First, we present a
formal definition of the problem and the network model in
Section II. Next, we investigate the tools and steps for finite-
buffer analysis in Section III. We then obtain expressions for
throughput and average delay in Section IV. Finally, Section V
presents our analytical results compared to the simulations.

II. PROBLEM STATEMENT AND NETWORK MODEL

Throughout this work, we model the network by an acyclic
directed graph

−→
G(V,

−→
E ), where packets can be transmitted

over a link −→e = (u, v) only from the nodeu to v. The
system is analyzed using a discrete-time model, where each
node can transmit at most a single packet over a link in an
epoch. The links are assumed to be unidirectional, memoryless
and lossy, i.e., packets transmitted on a link−→e = (u, v) ∈

−→
E

are lost randomly with a probability ofε−→e = ε(u,v). Note
that the erasures are due to the quality of links (e.g., noise,
interference) and do not represent packet losses due to finite
buffers. Clearly, erased packets are disregarded. Moreover, the
packet losses on different links are assumed to be independent.
Each nodev ∈ V has a buffer size ofmv packets with each
packet having a fixed size. Source and destination pairs are
assumed to have sufficient memory to store any data packets.
The unicast information theoretic throughput between a pair
of nodes is defined to be the transmission rate of information
packets (in packets per epoch) between them. The delay of a
packet is also defined as the time taken from the instant when
the source starts transmitting a packet to the instant when the
destination receives it. Note that the source node can generate
innovative packets during each epoch.

Throughout this paper, nodes and noded represent the
source and destination nodes respectively. Also, for anyx ∈
[0, 1], x , 1− x.

III. U NDERSTANDING FINITE-BUFFERANALYSIS

Here, we study the tools and steps that enable our frame-
work for analyzing finite-buffer wired erasure networks.

A. Communication Scheme and Buffer States

Thoroughly investigated in [5] for the exact analysis of
a finite-buffer line network, the problem of identifying the
throughput capacity is equivalent to the problem of finding the
buffer occupancy distribution of the intermediate nodes asa
result of ergodicity of the corresponding Markov chain. Hence,
in order to approach our problem properly it is necessary to
clearly define the buffer states in a manner that first of all, the
buffer states construct an irreducible ergodic Markov chain
and second the steady state distribution of the buffer states
could be helpful to obtain expressions for the performance
parameters of the network. Thus, a proper definition for the

buffer states cannot be proposed unless the communication
scheme is known. For example, since Random Linear Coding
(RLC) is used as the communication scheme in [5], the states
are defined as the number of packets stored in the buffer of
a node whose information has not yet been conveyed to the
next-hop node. Analyzing RLC in a general network (which
achieves the capacity of finite buffer regime) is very involved
and is the subject of the future work. Instead, as a first step
towards estimating the performance parameters we consider
a directed random routing scheme for packets together with
lossless zero-delay feedback on the links.

To be more precise, the nodes operate using the following
rules, one after another.

1. At each epoch, every nodeu selects a random ordering
of the outgoing edges and transmits the packets it houses
one by one. If the packet is successfully received and
stored at a neighbor,u deletes the packet from its buffer
and transmits the next packet (if any) on the next edge
in the selected order. Else, it tries to transmit the same
packet on the next (in the selected order) outgoing edge.
This process is continued until all packets are transmitted
or a transmission is attempted on each link. Therefore, a
node withdo outgoing links transmits at mostdo packets
per epoch.

2. After the transmission attempts are made, the node at-
tempts to accept the arriving packets. If more packets are
received than it can store, it selects a random subset of the
arriving packets whose size equals the amount of space
available and stores the selected packets. Consistent with
step 1, appropriate acknowledgment messages are then
sent.

Note that under such a mode of operation, at any epoch when
two nodes receive two packets from a particular node, the
received packets have no common information. Equivalently,
no replication is performed at any node and it is possible
to define a concept of state or occupancy for each node
individually. The buffer state of a node is simply defined to
be the number of packets it stores. It can be seen that this
concept of occupancy follows a Markov chain behavior and
can be studied thus.

B. Approximate Markov Chain for an intermediate Node

Consider a nodeu ∈ V in a network
−→
G (V,

−→
E ) with di

incoming anddo outgoing edges and a buffer size ofmu

as depicted in Fig. 1. Let the nodes that can send packets
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Fig. 1. A Node in a general wired network.

to u be denoted byN+(u) , {vi, . . . , vdi
}. Similarly,
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let the nodes to whichu can send packets be denoted by
N−(u) , {wi, . . . , wdo

}. We assume that the following
assumptions hold in the network regarding the arrival and
departure processes.

1. For eachk = 1, . . . , di, suppose that the packets arrive
on (vk, u) in a memoryless fashion with a rate ofλk

packets/epochi.e., with inter-arrival times having a geo-
metric distribution with mean1

λk

. Also, the processes on
different incoming links are statistically independent.

2. At any instant, for everyk = 1, . . . , do, a packet is sent
on (u,wk) it is successfully received and stored atwk

with a probabilityωk independent of the past and future
events on the edge.

Note that this is hypothetical since in any realistic model
of a network, the probability that a packet is successfully
transmitted and stored at the next hop depends not only on
the channel conditions, but also state of the next-hop node.
Since the state of the next-hop node has dependence on its
past, the probability of successful receipt can also be expected
to have a dependence on its past. In fact this mode of node
operation can be replaced by any other scheme that fits into
the Markovian set-up of the assumptions above.

At any instant, the number of packets arriving can range
from 0 up todi and the number of packets departing can range
from 0 to do. Hence, at each epoch, the statenu can change
to any other in the set{nu − do, . . . , nu + di}∩ {0, . . . ,mu}.
At any epoch, the probabilityak with which k packets arrive
and the probabilityek with which k packets depart are given
by

A(x) =

di
∑

k=0

akx
k =

di
∏

j=1

(λj + λjx) (1)

E(x) =

do
∑

k=0

ekx
k =

do
∏

j=1

(ωj + ωjx). (2)

The dynamics of the number of packets stored atu at thelth

epoch is a Markov chain that is similar to the one depicted in
Fig. 2.
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Fig. 2. The dynamics of a nodeu with mu = 5 anddi = do = 2.

For all input parameters, the Markov chain can be shown to
be aperiodic, irreducible and ergodic. Therefore, it possesses
a unique steady-state distribution. LettingΛ = (λ1, . . . , λdi

)
to denote the vector of arrival rates andΩ = (ω1, . . . , ωdi

)
to denote the vector of departure rates, the unique steady-
state distributionϑ(·,Λ,Ω,mu) for the chain can be computed
using a pair of probability transition matricesTE andTA

1 that
correspond to the transitions between states that are effected

1For notational consistency, we can extendek = 0 for k > do andak = 0
for k > di. Also, for notational convenience, we useϑ(·) as a short-hand
ϑ(·,Λ,Ω,mu).

by the departure and arrival of packets, respectively. Notethat
ϑ is the steady-state distribution after the arriving packets are
processed. These transition matrices are defined as follows.

TE =





















1 0 0 · · · 0 0
∑di

k=1 ek e0 0 · · · 0 0
∑di

k=2 ek e1 e0 · · · 0 0
∑di

k=3 ek e2 e1 · · · 0 0
...

∑di
k=mu

ek emu−1 emu−2 . . . e1 e0





















. (3)

TA =























a0 a1 a2 a3 · · · amu−1
∑di

k=mu
ak

0 a0 a1 a2 · · · amu−2
∑di

k=mu−1 ak

0 0 a0 a1 · · · amu−3
∑di

k=mu−2 ak

...
0 0 0 0 · · · a0

∑di
k=1 ak

0 0 0 0 · · · 0 1























. (4)

Note that, thei, j th entry inTE corresponds to the transition
of the occupancy fromi − 1 to j − 1 with the departure of
i− j packets. Similarly, thei, j th entry in TA corresponds to
the transition fromi−1 to j−1 with the arrival ofi−j packets.
The actual transition matrix for the Markov chain is then seen
to beTETA. The steady-state distributionϑ of the occupancy
just after the arriving packets are accepted and the steady-
state distributionϑ† of the occupancy just after the packets
have been sent but before arriving packets are accommodated
are given by

ϑTETA = ϑ andϑ†TATE = ϑ†. (5)

However, these two steady-state distributions are relatedby
ϑ† = ϑTE andϑ = ϑ†TA. To evaluate the rate of information
on the link (u,wi), one must investigate the rule for packet
departure. If at an epoch, more packets are stored than the
number of links that allow successful transmission, then each
link conveys a packet of information to its neighbors. However,
if the occupancynu at an epochl is smaller than the number
h of outgoing links that allow for transmission, each link can
be assumed to equally receivenu

h
packets on the average – a

consequence of the random selection of ordering for outgoing
links. Then, the time average of the information rate on the
edge(u,wi) can be seen as

I({(u, wi)},Λ,Ω,mu) =
∑

H⊂{0,...,do}

i∈H

(

∏

k∈H

ωk

)

×

(

∏

k′∈Hc

ωk′

)(

∑

j≥|H|

ϑ(j) +
∑

j<|H|

j

|H|
ϑ(j)

)

.

(6)

In a similar argument, we notice that some of the arriving
packets get randomly blocked if all the arriving packets cannot
be stored. We can evaluate the probability with which a packet
arriving on the edge(vi, u) is blocked from

pb({(vi, u)}; Λ,Ω, mu) =
∑

H⊂{0,...,di}

i∈H

(

∏

k∈H\{i}

λk

)

×

(

∏

k′∈Hc

λk′

)(

∑

mu−j<|H|

|H| −mu + j

|H|
ϑ†(j)

)

.

(7)
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C. Iterative Estimation of the Buffer Occupancies

In this section, we discuss our iterative estimation technique
in details based on the approximate Markov chain model
introduced in section III-B. Considering that blocking will
introduce dependence of the packet incoming/outgoing process
over each edge on its past, in order to use the results of Sec-
tion III-B, we have to make certain simplifying assumptions
on the blocking phenomenon. We model the blocking on every
edge−→e = (u, v) of the network as follows.

• Every packet that arrives atv successfully (without get-
ting erased) is blocked in a memoryless fashion with
probability quv. Also, at any epoch, the blocking of
packets on any subset of incoming edges ofv is assumed
to be independent of one another.

Under the above assumption, the blocking process and hence
the departure process on every link of the network is modeled
as a memoryless process. Since each packet arriving on an
edge−→e = (u, v) is blocked with a probability ofquv, a
packet arriving on−→e is accepted only if both the channel
allows the packet and the node accepts it. Therefore, the
effective departure rate on the edge(u, v) is seen to beεuvquv.
Assuming that the node operates in the mode described in
Section III-A, we can use (6) and (7) to identify both the rate
of information flow and the blocking probabilities on every
edge of the network. Thus, the problem reduces to finding a
solution (̺uv, quv)(u,v)∈−→

E
that satisfies the following system

of non-linear equations for each(u, v) ∈
−→
E .

̺uv =

{

εuv u = s
I({(u,v)},(̺wu)

w∈N+(u)
,(ε

uu′ quu′ )
u′∈N−(u)

,mu)

quv

u 6= s
,

quv =

{

pb({(u, v)}; (̺wv)w∈N+(v), (εvv′qvv′)v′∈N−(v),mv) v 6= d

0 v = d
.

Note that in the above equations̺uv represents the fraction
of time at which packets will be delivered tov. However, the
actual rate of information flow is equal toρuv = quv̺uv.

Since the above set of equations are an approximation to
the actual dynamics, it is not clear as to whether there even
exists a solution to the above system. However, the proof of
existence and uniqueness of the solution is detailed in [10]for
the case of line networks.

Finally, the solution to the system of equations can be
found by identifying the limit of the sequence defined by the
following iterative procedure2.

1. Seti = 1 and for each edge(u, v) ∈
−→
E , setquv = 0 and

̺
(1)
uv =

{

0 u 6= s

εuv u = s
.

2. Compute̺(i+1)
uv , q

(i+1)
uv by using ̺

(i)
uv, q

(i)
uv on the right-

hand side of the above system of nonlinear equations and
incrementi by 1.

3. If i < L+ 1, perform step 2.

2In practice, the number of iterationsL which suffice to converge to the
solution within reasonable accuracy depends on the structure of the network.
Alternatively, one may use|ϑ(i+1) − ϑ(i)|+ |ϑ†(i+1)

− ϑ†(i)| < ǫ for the
convergence criteria.

IV. ESTIMATION OF THE THROUGHPUT ANDAVERAGE

PACKET DELAY

In this section, we exploit the results of the iterative esti-
mation method for buffer occupancy distributions and obtain
analytical expressions for throughput and average delay.

Since the routing scheme is such that information is not
replicated at any node, the estimate of the total information
that arrives at the destination is the sum total of the information
rate arriving on each of its incoming edges. Hence,

Ĉ(s, d,
−→
G) =

∑

v∈N+(d)

̺∗vd(1− q∗vd) =
∑

v∈N+(d)

̺∗vd, (8)

where we let(̺∗uv, q
∗
uv) to be either the component-wise limit

of the sequence{̺(i)uv, q
(i)
uv}i∈N whenL = ∞, or (̺(L)

uv , q
(L)
uv )

whenL < ∞. Additionally, by the conservation of information
flow, the above estimate can be obtained by computing the rate
of flow of information through any cutF using the following.

Ĉ(s, d,
−→
G) =

∑

uv∈F

̺∗uv(1− q∗uv). (9)

As it is defined in Section III-A, the operation scheme is
chosen to have feedback on all the links and we treat packets in
a First-Come First-Serve (FCFS) fashion at the buffers. Also,
the absence of directed cycles allows us to assign an order
v1, v2, . . . , vn to all the nodes of the network in a manner that
we havei < j for every link (vi, vj) ∈

−→
E .

In order to estimate the average delay that a packet experi-
ences in the network, one can proceed in a recursive fashion.
The average delay that an arriving packet (at timel) at node
u ∈ V experiences depends on the buffer occupancy of the
nodeu and its outgoing links. For example, suppose at epoch
l (packet arrival time), nodeu has alreadyk packets where
k ≤ mu − 1. Then, the arriving packet has to wait for the
first k packets to leave nodeu before it can be transmitted.
We defineDu(k) as the average time it takes from the instant
that nodeu receives a packet given that it has already storedk

packets, until the time that the destination node receives that
packet. We compute the average delay functionDu(.) for all
the intermediate nodesu ∈ V using the following proposition.

Proposition 1: Let ruv = εuvquv be the average packet
transfer rate on link(u, v) ∈

−→
E andr−u be the sum of the rates

on all outgoing edges (i.e., r−u =
∑

v∈N−(u) ruv). Also, let
πv(j) (j = 0, 1, . . . ,mv−1) be the steady state probability of
the buffer of nodev ∈ V storing alreadyj packets right before
a new packet arrives and is stored in the buffer. For every
intermediate nodeu ∈ V , given the average delay functions
of all its next-hop neighbors (Dv(j) for all v ∈ N−(u) and
j = 0, 1, . . . ,mv − 1), Du(.) can be obtained by

Du(k) =
k + 1

r−u
+

∑

w∈N−(u)

ruw

r−u

(

mw−1
∑

j=0

πw(j)Dw(j)
)

(10)

for k = 0, 1, . . . ,mu − 1.

Proof: Due to space limitation, we just provide a brief
sketch of the proof. Equation (10) is consisted of two terms:
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1. The first term represents the average time it takes for a
total of k + 1 packets (counting our selected packet) to
leave nodeu successfully.

2. The second term relates to the average delay due to
the rest of the network. The probability of conveying
a packet from nodeu to nodev can be estimated by
ruv

r
−
u

. An arriving packet at nodev finds its buffer already
occupied by j packets with probabilityπv(j). Thus,
the packet will experience an average delay ofDv(j)
from this node to the destination. Hence, the average
packet delay from nodev to the destination is equal to
∑mw−1

j=0 πw(j)Dw(j).

It is easy to see thatπv(j) can be calculated using

πv(j) =

{

ϑ†
v
(j)

1−ϑ
†
v(mv)

j = 1, 2, . . . ,mv − 1

0 j = mv

(11)

To obtain the average packet delay from the source to the
destination, the average delay functionDu(.) is computed for
all the nodes in the reverse order3 (i.e.,{vn, . . . , v2, v1}). Then,
the total average packet delay (Ds(0)) is computed by applying
Proposition 1 to the source node.

V. SIMULATION RESULTS

In this section, we present the results of actual network
simulations in comparison with our analysis and will show that
our framework gives accurate estimates of buffer occupancy
distributions as well as throughput and average delay.

We consider the network shown in Fig. 3 to compare the
results of the simulation and inferences. In this network, all

Fig. 3. A general wired acyclic directed network chosen for simulation).

the edges haveε = 0.5 (erasure probability) except the edges
{(1, 2), (1, 3), (15, 17), (16, 17)} for which ε = 0.05. All the
intermediate nodes are assumed to have the same buffer size.
In order to measure the exact performance parameters of
this network, millions of packets are sent from the source
(Node 1) to the destination (Node17). Fig. 4 presents a
comparison between the actual buffer occupancy distributions
and our iterative estimates for four of the nodes in the network
of Fig. 3. Also, Fig. 5 presents the variations of the actual
throughput and average packet delay and our analytical results
versus the buffer size. Note that, the throughput is presented in
packets/epoch and average packet delay is presented inepochs.
As it can be observed, our estimation is very close to the actual
simulation results.

3Note that we haveDd(k) = 0 for every k whered denotes the destination
node.
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