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Abstract—This paper is a first study on the topic of achieving
physical layer security by exploiting non-systematic channel
codes. The chance of implementing transmission security atthe
physical layer is known since many years in information theory,
but it is now gaining an increasing interest due to its many
possible applications. It has been shown that channel coding
techniques can be effectively exploited for designing physical
layer security schemes, able to ensure that an unauthorized
receiver, experiencing a channel different from that of the
the authorized receiver, is not able to gather any information.
Recently, it has been proposed to exploit puncturing techniques
in order to reduce the security gap between the authorized and
unauthorized channels. In this paper, we show that the same
target can also be achieved by using non-systematic codes, able
to scramble information bits within the transmitted codeword.

I. I NTRODUCTION

Despite nowadays transmission security is often imple-
mented at higher layers, the idea of achieving it at physical
layer has been the inspiring basis for the development of the
modern theory of cryptography. When security is implemented
at physical layer, all receivers share the same (complete)
knowledge of the transmission technique, without the need
of any form of secret sharing. The channel is responsible for
differentiation among users, and security is only based on the
differences among the channels experienced by authorized and
unauthorized users.

A very simple model that is well suited to represent
physical layer security schemes is thewire-tap channel, first
introduced by Wyner in 1975 [1]. In the wire-tap channel
model, a transmitter (Alice) sends information to the legitimate
receiver (Bob), but this is also received by the eavesdropper
(Eve). Alice can adopt whatever randomization, encoding
and modulation scheme before transmitting her message, and
both Bob and Eve are perfectly aware of the transmission
technique she uses; so, at least in principle, they are both
able to recover the plaintext message (u) from the ciphertext
(c). However, the channel that separates Alice from Bob is
generally different from that between Alice and Eve. For this
reason, the ciphertext received by Bob (cB) is different from
that gathered by Eve (cE). So, after inverting the encoding
map, the message obtained by Bob (uB) can differ from
that recovered by Eve (uE). A block scheme of the wire-tap
channel is reported in Fig. 1.

Based on these assumptions, physical layer security on the
wire-tap channel is achieved when Bob is able to exactly
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Fig. 1. Block scheme of a wire-tap channel.

reconstruct the plaintext message, i.e.,uB = u, with very
high probability, whereas the message recovered by Eve has
no form of correlation withu. An important parameter for
the wire-tap channel is the secrecy capacity, defined as the
highest transmission rate at which Eve is unable to decode
any information.

A lot of literature is devoted to studying the wire-tap channel
capacity and how to achieve it. For a detailed discussion
on the wire-tap channel and the secrecy capacity, we refer
the interested reader to [2], [3] and the references therein.
The literature confirms that an increasing attention has been
devoted to the application of classic and modern coding
techniques on the wire-tap channel [3]–[7].

In this study, we are interested in the Additive White
Gaussian Noise (AWGN) wire-tap model, where the secrecy
capacity equals the difference between the two channel ca-
pacities [8]. So, in order to achieve transmission security,
Bob’s channel must have higher signal-to-noise ratio (SNR)
than Eve’s channel. Alternatively, a feedback channel between
Alice and Bob (also accessible to Eve) is needed [9], but such
case is not considered in this paper.

In the context defined above, an important parameter is the
security gap, that expresses the quality difference between
Bob’s and Eve’s channels required to achieve a sufficient level
of physical layer security. An important target is to keep the
security gap as small as possible, in such a way as to achieve
physical layer security even with a small degradation of Eve’s
channel with respect to Bob’s one. Some recent literature has
been devoted to the study of the way such reduction can be
achieved by exploiting techniques from coding theory [5].

In this paper, we investigate how the security gap can be
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reduced by exploiting non-systematic transmission, in which
the information bits are not in clear within the transmitted
codewords, but are scrambled during encoding. In particular
we show that such solution, suitably combined with error
correcting codes, can outperform other schemes, recently
proposed, based on punctured codes, as it provides smaller
secrecy gaps for a given set of parameters. Both the cases
of hard-decoded classic block codes (e.g., BCH codes) and
modern soft-decoded block codes (e.g., LDPC codes) are
considered and reveal to be equally effective.

The paper is organized as follows. In Section II we introduce
the notation. In Section III we describe the coding scheme and
the role of scrambling. In Section IV the analysis is extended
to the case of non-systematic LDPC codes. In Section V we
compare the secrecy gap performance of the various solutions
considered. Finally, Section VI concludes the paper.

II. N OTATION AND RELATED WORK

We consider an AWGN wire-tap channel model in which
Alice sends a secret message in the form of a1 × k binary
vectoru. Before transmission, the secret message is encoded
by Alice into a1× n binary wordc, with n ≥ k, that is then
transmitted over the channel. Thesecrecy rate Rs is defined as
the ratio between the secret message length and the transmitted
word length. So, in the case we consider, the secrecy rate
coincides with the transmission rate:

Rs = R =
k

n
. (1)

More in general, it should beRs ≤ R, since part of the
transmitted information bits could be non-secret. The special
caseRs = R is considered here for the sake of simplicity.

The transmitted word is received by Bob and Eve through
two different channels. We denote bycB the word received by
Bob and bycE the word received by Eve, respectively. Bob’s
and Eve’s channels are corrupted by AWGN with different
SNR: Eb
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Eve’s channel. Similarly,PB
e is Bob’s bit error rate andPE

e

is Eve’s one.
Security at physical layer is achieved when Bob has bit error

rate lower than a given threshold,PB
e ≤ PB

e , while Eve’s bit
error rate is greater than another threshold (next to0.5), PE

e ≥
PE
e . Starting from the curve of bit error rate as a function of the

signal-to-noise ratio for the transmission technique adopted,
these two values can be expressed in terms ofEb
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, and the
security gapSg is easily obtained as follows:
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(2)

Several works have been devoted to the study of what
transmission techniques are best suited to reduce the security

gap. In particular, in [5], the authors propose the usage of
punctured codes, by associating the secret bits to punctured
bits. They consider punctured LDPC codes and prove that
such technique, for a fixed secrecy rate, is able to guarantee
a considerable reduction in the security gap with respect to
non-punctured (systematic) transmission.

In this paper, we consider an alternative solution, based
on non-systematic coding. As we will show in the following
sections, non-systematic coding is also able to achieve a strong
reduction in the security gap, that becomes comparable (and
even better) than that obtained through puncturing.

III. PHYSICAL LAYER SECURITY THROUGH

NON-SYSTEMATIC CODES

In the scheme we consider, Alice implements the encoding
map as follows:

c = u · S ·G, (3)

whereG is the k × n generator matrix of an(n, k)-linear
block code in systematic form, andS is a non-singulark× k
binary scrambling matrix. Due to its systematic character,G

can also be written asG = [I|C], whereI is a k× k identity
matrix andC is a k× (n− k) matrix representing the parity-
check constraints. This settings resembles that of the McEliece
cryptosystem [10], where, in addition, the encoded word is also
permuted.

Based on these assumptions, the encoded word can also
been written asc = [u · S|u · S ·C] = [cl|cr], wherecl is the
vector containing the firstk bits ofc, whilecr collects its lastr
bits. Both Bob’s and Eve’s channels introduce errors. However,
as mentioned,Eb
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B
must be large enough to ensure that,

with very high probability, Bob’s decoder is able to correctall
errors, thus delivering, after descrambling,uB = u = cl ·S

−1.
On the contrary,Eb
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E
must be small enough to ensure that,

after decoding, the codeword obtained by Eve is still affected
by an error vectore. So, in this case, at the output of the
descrambler, Eve has:

uE = u+ el · S
−1, (4)

whereel is the left part of the error vectore = [el|er]. From
(4) we notice that descrambling has the effect of spreading the
residual errors after decoding.

For the goals of the present paper, it is preliminarily useful
to obtain, in analytical terms, an estimate of the bit error rate
(Pe) and frame error rate (Pf ) for Bob and Eve in absence or
in presence of scrambling. For such purpose, we first refer to
two explicative cases, namely, unitary rate coding andt-error
correcting coding. In the next section, we will provide further
results, based on numerical simulations, in which we consider
LDPC coding and we will compare the proposed approach
with that based on puncturing.



A. Unitary Rate Coding

We can consider the case of unitary rate coding by imposing
k = n andG coincident with ak × k identity matrix Ik. If
we also assumeS = Ik, the unitary code is systematic, and
the system reduces itself to a framed uncoded transmission.
Focusing attention on the case of Binary Phase Shift Keying
(BPSK), the bit and frame error probabilities are given by:

{

Pe =
1
2erfc

(√

Eb

N0

)

,

Pf = 1− (1− Pe)
k
.

(5)

In order to estimate the effect of the non-systematic trans-
mission induced by the introduction of a scrambling matrix
with row and column weight> 1, we can first refer to an
ideal case. Such ideal case is what we callperfect scrambling;
it models a scrambling technique that, in presence of one (or
more) error(s), produces maximum uncertainty. In other terms,
under the hypothesis of perfect scrambling, a single residual
bit error in the decoded word is sufficient to ensure that half
of its bits are in error after descrambling. In practice, perfect
scrambling can be approached by using denseS (with dense
S
−1) matrices, that is, with a high density of1 symbols. A

very high scrambling effect is obtained when the density of
S
−1 is 0.5, but also a lower density could suffice to achieve

an almost perfect scrambling effect.
It is easy to prove that, under the condition of perfect

scrambling, the bit error rate after descrambling equals half
the frame error rate expressed by (5), that is:

PPS
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2
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2
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





. (6)

So, the condition of perfect scrambling can be used as a
bound, since it gives Eve’s maximum bit error rate. When
we instead adopt a real scrambling matrix, the bit error rate
for a unitary rate coded transmission can be conveniently
estimated. First of all, it is necessary to evaluate the bit error
rate conditioned to erred frames, since scrambling is effective
only on them. Such probability can be expressed as:

Pr =
Pe

Pf

. (7)

If we denote byw(i) the Hamming weight of thei-th
column of S−1, w(i) ≤ k, ∀i ∈ [1, . . . , k], an approximate
estimate of the bit error rate on thei-th received bit after
descrambling can be obtained by using arguments similar to
those developed in [11] and it is expressed:

PS
e (i) = Pf

1− (1− 2Pr)
w(i)

2
. (8)

As a numerical example, we have considered the case
k = n = 1576 (that will be of interest in the following) and
calculated the bit error rate for several degrees of scrambling.
For the sake of simplicity, we have studied the case of regular
scrambling matrices, that is,w(i) = w, ∀i ∈ [1, . . . , k]. Fig.
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Fig. 2. Bit error rate with unitary rate coding (k = n = 1576) for several
levels of scrambling.

2 shows the curves ofPS
e for some values ofw, and for

the two limit cases of absence of scrambling (unscrambled
transmission) and perfect scrambling.

As we observe from the figure, the unscrambled transmis-
sion gives low values of bit error rate even at rather low SNR.
On the contrary, by assuming a sufficiently large value ofw,
scrambling permits us to keep the bit error rate close to0.5
(corresponding to the case of complete lack of information)
up to a rather highEb

N0

threshold. In addition, scrambling
helps to improve the slope of thePe curve, so reducing the
security gap. As expected, perfect scrambling ensures the best
performance, but anS−1 matrix with density≈ 0.2 (w = 300)
is sufficient to have a similar (optimal) behavior.

B. t-Error Correcting Coding

In order to further improve the slope of thePe curves, a
linear block code with dimensionk < n can be introduced.

In this subsection, we consider the adoption of an(n, k)
linear block code able to correctt bit errors under hard-
decision decoding. Such code could be, for example, a Bose-
Chaudhuri-Hocquenghem (BCH) code; in the following we
will consider the (2047, 1354) BCH code, able to correct
t = 69 errors. This code has a value ofk not so different
from that considered in the previous subsection.

When such a coding scheme is adopted, the frame error rate
and bit error rate at the receiver can be estimated as follows:
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whereP0 is the channel bit error rate, taking into account the
bandwidth expansion due to the presence of the code:

P0 =
1

2
erfc

(

√

Eb

N0
·
k

n

)

. (10)

Starting from Eqs. (9), we can easily obtain that, in presence
of perfect scrambling, the bit error rate of a transmission based
on a t-error correcting code becomes:
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Fig. 3. Bit error rate for the(2047, 1354, 69) BCH code and different levels
of scrambling.
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Based on these modified expressions, Eq. (8) can be used
again. Some examples are shown in Fig. 3 where we have con-
sidered a(2047, 1354, 69) BCH code with different levels of
scrambling. By a comparison with Fig. 2 (that, however, refers
to a slightly different value ofk) we see that the introduction
of the code reduces the signal-to-noise ratio (as obvious and
expected) and, mostly important for our purposes, increases
the slope of thePS

e andPPS
e curves. Besides slope increase,

scrambling contributes to emphasize the knee between the
region of high bit error rate and that of low/medium bit error
rate, that is the actual requirement for having a small secrecy
gap. From Fig. 3 we see thatw = 20 (densityw/k ≈ 0.01)
is enough for this purpose, while in absence of the code (see
Fig. 2) w = 300 (densityw/k ≈ 0.19) was necessary.

IV. N ON-SYSTEMATIC LDPC CODES

As an example of Soft-In Soft-Out modern error correcting
schemes, we have considered LDPC codes, to which we have
applied the approach of non-systematic transmission based
on scrambling. For the sake of comparison, we have also
considered the approach based on puncturing proposed in [5].

Non-systematic LDPC codes have been already studied
outside the physical layer security issue. In particular, they
have been proved able to give an important advantage over
systematic encoding in the presence of source redundancy. In
[12]–[15] non-systematic LDPC codes for redundant source
data are studied. Non-systematic encoding is accomplishedby
using the same scrambling approach considered in this paper
or through alternative techniques aspost-coding andsplitting.

A similar approach to the design of non-systematic LDPC
codes is also presented in [16], where the authors aim at
designing codes with sparse generator matrices, in such a
way that the bit error rate performance remains not far from
that of systematic LDPC codes. We notice that such target is
diametrically opposed to physical layer security.
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Fig. 4. Simulated bit error rate for LDPC codes withk = 1576 andR =
2/3, adopting systematic transmission, puncturing and scrambling.

In our simulations, we have considered two LDPC codes
designed through the Progressive Edge Growth (PEG) al-
gorithm [17]. Both codes have a lower triangular parity-
check matrix, in such a way as to allow systematic encoding
without the need of Gaussian elimination. The first code has
length n = 2364, dimensionk = 1576 (hence, code rate
R = 2/3) and it has been used for simulation of systematic
and non-systematic transmission. The latter has been obtained
by adopting a dense1576× 1576 scrambling matrix, in order
to approach the effect of a perfect scrambler. The second code
has lengthn = 3940 and dimensionk = 1576. It has been
used to simulate punctured transmission, by puncturing all
its 1576 information bits. So, the transmission rate results
in 1576/ (3940− 1576) = 2/3, as for the cases without
puncturing.

Fig. 4 shows the simulated performance, in terms of bit
error rate, for the considered transmission schemes based on
LDPC codes. As we observe from the figure, the systematic
transmission ensures the best performance in terms of error
correction capability. However, in the considered contextof
physical layer security, it shows an important drawback, that
is, a bit error rate significantly smaller than0.5 even at low
signal-to-noise ratio (the same behavior was observed in Figs.
2 and 3).

The approach based on puncturing gives worse error correct-
ing performance, with a loss of about0.5 dB in the waterfall
region with respect to systematic LDPC coding. However, the
usage of punctured bits for transmitting the secret messageis
able to ensure a higher bit error rate for low signal-to-noise
ratio. Both such aspects could be improved by adopting non-
systematic unpunctured LDPC codes based on the proposed
scrambling technique: the performance loss with respect to
the systematic LDPC code is about0.3 dB in the waterfall
region, and the bit error rate is maintained close to0.5 in a
larger interval of signal-to-noise ratio values.

These facts reflect on the security gap over the AWGN wire-
tap channel. Discussion of the security gap and comparison of
the considered techniques from this point of view are reported
in the next section.
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V. COMPARISON BETWEEN THE CONSIDERED TECHNIQUES

In order to compare the considered transmission techniques,
we have fixedPB

e = 10−5, and calculatedEb

N0

∣

∣

∣

B
. Starting

from the value of Eb

N0

∣

∣

∣

B
, it is possible to estimate Eve’s bit

error ratePE
e as a function of the gapSg. Fig. 5 reports

these curves for the considered transmission techniques. In
the figure, for all techniques that adopt scrambling, the perfect
scrambling condition has been considered (simulation of the
scrambled LDPC code has been done with a denseS

−1 matrix,
able to approach perfect scrambling). As we observe from the
figure, the usage of a systematic LDPC code gives a very slow
convergence of Eve’s bit error rate to the ideal value of0.5. So,
such technique requires a very high security gap for realistic
values ofPE

e (that are usually≥ 0.4). The reason of such
a slow convergence is systematic transmission: if we adopt a
non-systematic unitary rate code, even renouncing any error
correction capability, performance is improved andPE

e ≥ 0.4
is reached for a gap value around5 dB. The situation can be
further improved by adopting non-systematic error correcting
codes. If we implement non-systematicity through puncturing,
the conditionPE

e ≥ 0.4 is achieved at a2.2 dB gap.
The best performance is achieved by implementing non-

systematic coded transmission through scrambling. Both the
BCH and the LDPC code, under the condition of perfect
scrambling, give very good performance. The conditionPE

e ≥
0.4 is reached at1.3 dB and1.4 dB gap by the scrambled
BCH and LDPC code, respectively. Obviously, LDPC codes
have the advantage of permitting us to work at smaller SNR.

VI. CONCLUSION

We have investigated the usage of non-systematic codes for
achieving physical layer security. We have focused on the
AWGN wire-tap channel model, and estimated the security
gap as a measure of the effectiveness of several transmission
schemes.

Our results show that systematic coded transmission (as
well as uncoded transmission) is unsuited to such kind of
applications, due to the low bit error rate values it achieves
even at low signal-to-noise ratio.

Non-systematic transmission, instead, is able to reduce the
security gap in terms of signal-to-noise ratio that is needed
between Bob’s and Eve’s AWGN channels in order to achieve
physical layer security. We have compared non-systematic
transmission implemented through scrambling and puncturing,
and showed that the former is able to outperform the latter,
requiring a smaller security gap.
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