arXiv:1004.4520v1 [cs.IT] 26 Apr 2010

Non-Systematic Codes for
Physical Layer Security

Marco Baldi, Marco Bianchi, Franco Chiaraluce,
DIBET, Polytechnic University of Marche,
Ancona, Italy
Email: {m.baldi, m.bianchi, f.chiaralu¢@univpm.it

Abstract—This paper is a first study on the topic of achieving Aee .~ - Bob ~
physical layer security by exploiting non-systematic chanel f | f |
codes. The chance of implementing transmission security dahe LY ol Encoder ——t Bob's L% 5] pecoder ——p
physical layer is known since many years in information theoy, [ [ channel | [
but it is now gaining an increasing interest due to its many N\ y N\ 7
possible applications. It has been shown that channel codin
techniques can be effectively exploited for designing phical A - ~
layer security schemes, able to ensure that an unauthorized , ! " !
receiver, experiencing a channel different from that of the c'ﬁ‘;‘;ﬁel L g} Decoder (—=p
the authorized receiver, is not able to gather any informaton. ' I
Recently, it has been proposed to exploit puncturing techigjues S /
in order to reduce the security gap between the authorized ah
unauthorized channels. In this paper, we show that the same Fig. 1. Block scheme of a wire-tap channel.

target can also be achieved by using non-systematic codedla

to scramble information bits within the transmitted codeword.

reconstruct the plaintext message, i@g = u, with very

high probability, whereas the message recovered by Eve has
Despite nowadays transmission security is often impleo form of correlation withu. An important parameter for

mented at higher layers, the idea of achieving it at physidhle wire-tap channel is the secrecy capacity, defined as the

layer has been the inspiring basis for the development of thighest transmission rate at which Eve is unable to decode

modern theory of cryptography. When security is implemént@ny information.

at physical layer, all receivers share the same (complete)A lot of literature is devoted to studying the wire-tap chahn

knowledge of the transmission technique, without the needpacity and how to achieve it. For a detailed discussion

of any form of secret sharing. The channel is responsible fon the wire-tap channel and the secrecy capacity, we refer

differentiation among users, and security is only basechen tthe interested reader t01[2],.][3] and the references therein

differences among the channels experienced by authorimbd dhe literature confirms that an increasing attention has bee

I. INTRODUCTION

unauthorized users. devoted to the application of classic and modern coding
A very simple model that is well suited to represeriechniques on the wire-tap channel [3}-[7].
physical layer security schemes is thire-tap channel, first In this study, we are interested in the Additive White

introduced by Wyner in 1975 [1]. In the wire-tap channeBaussian Noise (AWGN) wire-tap model, where the secrecy
model, a transmitter (Alice) sends information to the legitte capacity equals the difference between the two channel ca-
receiver (Bob), but this is also received by the eavesdmoppgecities [8]. So, in order to achieve transmission security
(Eve). Alice can adopt whatever randomization, encodirgpb’s channel must have higher signal-to-noise ratio (SNR)
and modulation scheme before transmitting her message, #mah Eve’s channel. Alternatively, a feedback channel betw
both Bob and Eve are perfectly aware of the transmissidiice and Bob (also accessible to Eve) is needéd [9], but such
technique she uses; so, at least in principle, they are betkse is not considered in this paper.
able to recover the plaintext messagg from the ciphertext  In the context defined above, an important parameter is the
(c). However, the channel that separates Alice from Bob $ecurity gap, that expresses the quality difference between
generally different from that between Alice and Eve. FosthiBob’s and Eve’s channels required to achieve a sufficier lev
reason, the ciphertext received by Baig) is different from of physical layer security. An important target is to keep th
that gathered by Evecf). So, after inverting the encodingsecurity gap as small as possible, in such a way as to achieve
map, the message obtained by Balg] can differ from physical layer security even with a small degradation of'&€ve
that recovered by Eveufs). A block scheme of the wire-tap channel with respect to Bob's one. Some recent literatuse ha
channel is reported in Figl 1. been devoted to the study of the way such reduction can be
Based on these assumptions, physical layer security on gahieved by exploiting techniques from coding theory [5].
wire-tap channel is achieved when Bob is able to exactlyIn this paper, we investigate how the security gap can be
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reduced by exploiting non-systematic transmission, incwhigap. In particular, in[[5], the authors propose the usage of
the information bits are not in clear within the transmittedunctured codes, by associating the secret bits to puntture
codewords, but are scrambled during encoding. In particulsits. They consider punctured LDPC codes and prove that
we show that such solution, suitably combined with err@uch technique, for a fixed secrecy rate, is able to guarantee
correcting codes, can outperform other schemes, recerdlyconsiderable reduction in the security gap with respect to
proposed, based on punctured codes, as it provides smaflen-punctured (systematic) transmission.
secrecy gaps for a given set of parameters. Both the casem this paper, we consider an alternative solution, based
of hard-decoded classic block codes (e.g., BCH codes) aml non-systematic coding. As we will show in the following
modern soft-decoded block codes (e.g., LDPC codes) ajgctions, non-systematic coding is also able to achiew®agst
considered and reveal to be equally effective. reduction in the security gap, that becomes comparable (and
The paper is organized as follows. In Secfidn Il we introducg/en better) than that obtained through puncturing.
the notation. In Section ]Il we describe the coding schentk an
the role of scrambling. In Sectidn ]V the analysis is extehde m
to the case of non-systematic LDPC codes. In Se¢fibn V we
compare the secrecy gap performance of the various sotution

considered. Finally, Sectidn VI concludes the paper. In the scheme we consider, Alice implements the encoding
map as follows:

. PHYSICAL LAYER SECURITY THROUGH
NON-SYSTEMATIC CODES

II. NOTATION AND RELATED WORK

We consider an AWGN wire-tap channel model in which
Alice sends a secret message in the form df a & binary c=u-S-G, ®)
vectoru. Before transmission, the secret message is encoded ) ) )
by Alice into al x n binary worde, with n > k, that is then Where G is the k x n generator matrix of arin, k)-linear
transmitted over the channel. Theerecy rate R, is defined as Plock code in systematic form, arilis a non-singulak x k
the ratio between the secret message length and the tragsmfeinary scrambling matrix. Due to its systematic charadger,
word length. So, in the case we consider, the secrecy r&&f also be written a6 = [I|C], wherel is ak x k identity

coincides with the transmission rate: matrix andC is ak x (n — k) matrix representing the parity-
check constraints. This settings resembles that of the Mc&l
k cryptosystem [10], where, in addition, the encoded wordsig a
Rs=R=—. 1)
n permuted.

More in general, it should b&, < R, since part of the Based on these assumptions, the encoded word can also
transmitted information bits could be non-secret. The gpecPeen written ag = [u - S|u - S - C| = [ci[c,], wherec; is the
CaseRS — R is considered here for the sake of S|mp||c|ty vector Containing the firgt bits OfC, while Cr collects its last

The transmitted word is received by Bob and Eve throudﬂts. Both Bob’s and Eve’s channels introduce errors. Hawrev
two different channels. We denote by the word received by as mentioned,ﬁ—z‘ must be large enough to ensure that,
Bob and bycg the word received by Eve, respectively. Bob'svith very high prot})BabiIity, Bob’s decoder is able to corratit
and Eve’s channels are corrupted by AWGN with differerdrrors, thus delivering, after descramblimgy, = u = ¢;-S™!.
SNR: ]’fl—g 5 is Bob’s channel energy per bit to noise powe®n the contrary,%;‘ must be small enough to ensure that,
after decoding, the Codeword obtained by Eve is still aéfdct
by an error vectoke. So, in this case, at the output of the
descrambler, Eve has:

spectral density ratio, Where%‘ is the same parameter for

Eve’s channel. SimilarlyP? is BEob’s bit error rate and>®
is Eve’s one.

Security at physical layer is achieved when Bob has bit error
rate lower than a given threshol®” < PB, while Eve’s bit ug =u+e S, (4)
error rate is greater than another threshold (negtip P* >
PE. Starting from the curve of bit error rate as a function of th&heree; is the left part of the error vectar = [e;|e,]. From
signal-to-noise ratio for the transmission technique &ebp (4) we notice that descrambling has the effect of spreadieg t
these two values can be expressed in termstof and the residual errors after decoding.

security gapS, is easily obtained as follows: For the goals of the present paper, it is preliminarily usefu
to obtain, in analytical terms, an estimate of the bit erader
P_eB =f (5:{; ) , (P.) and frame error rateHy) for Bob and Eve in absence or
PE_ (T B in presence of scrambling. For such purpose, we first refer to
e =f (N_o E) ’ @) two explicative cases, namely, unitary rate coding &edor
S, = EBy| _ By| correcting coding. In the next section, we will provide het

results, based on numerical simulations, in which we carsid
Several works have been devoted to the study of whaDPC coding and we will compare the proposed approach
transmission techniques are best suited to reduce theityecwrith that based on puncturing.



A. Unitary Rate Coding 1004

We can consider the case of unitary rate coding by imposing ("]
k = n and G coincident with ak x k identity matrix I. If
we also assum8& = I, the unitary code is systematic, and £
the system reduces itself to a framed uncoded transmission°§
Focusing attention on the case of Binary Phase Shift Keying

3—5— Unscrambled

. . = —<—w=5
(BPSK), the bit and frame error probabilities are given by: & 10" 5
I
P, = Lerfe (,/&) 37O w=300
{ € 2 No e ’ (5) | = Perfect Scrambling
—1—(1— 0+
Pr=1-(1-F)". 01 2 3 4 5 6 7 8 9 1011 1213 14 15

In order to estimate the effect of the non-systematic trans- E/N, 14B]

mission induced by the introduction of a scrambling matrix _ , _ _
with row and column weight> 1, we can first refer to an E'ge'é'of Elctr:;giir:?e with unitary rate coding; & n = 1576) for several
ideal case. Such ideal case is what we patfect scrambling;
it models a scrambling technique that, in presence of one (or
more) error(s), produces maximum uncertainty. In othenger 2 shows the curves of?® for some values ofw, and for
under the hypothesis of perfect scrambling, a single rasidahe two limit cases of absence of scrambling (unscrambled
bit error in the decoded word is sufficient to ensure that hdlansmission) and perfect scrambling.
of its bits are in error after descrambling. In practicefper ~ As we observe from the figure, the unscrambled transmis-
scrambling can be approached by using de®igavith dense sion gives low values of bit error rate even at rather low SNR.
S—1) matrices, that is, with a high density @afsymbols. A On the contrary, by assuming a sufficiently large valuevof
very high scrambling effect is obtained when the density étrambling permits us to keep the bit error rate closé.fo
S—1 is 0.5, but also a lower density could suffice to achievécorresponding to the case of complete lack of information)
an almost perfect scrambling effect. up to a rather highf,—z threshold. In addition, scrambling

It is easy to prove that, under the condition of perfedielps to improve the slope of the. curve, so reducing the
scrambling, the bit error rate after descrambling equalé h&ecurity gap. As expected, perfect scrambling ensuresesie b
the frame error rate expressed bY (5), that is: performance, but a~! matrix with density~ 0.2 (w = 300)

is sufficient to have a similar (optimal) behavior.

) B. t-Error Correcting Coding

In order to further improve the slope of the, curves, a

. . linear block code with dimensioh < n can be introduced.
So, the condition of perfect scrambling can be used as gy, tnig subsection, we consider the adoption of (ank)

bound, since it gives Eve's maximum bit error rate. Whefhear block code able to correet bit errors under hard-
we instead adopt a real scrambling matrix, the bit error raig.qision decoding. Such code could be, for example, a Bose-
for a unitary rate coded transmission can be Convenie”@haudhuri-Hocquenghem (BCH) code; in the following we

estimated. First of all, it is necessary to evaluate the iod@re i\ consider the (2047,1354) BCH code, able to correct
rate conditioned to erred frames, since scrambling is ®#C ; _ 59 errors. This colje has a value bfnot so different

only on them. Such probability can be expressed as:

from that considered in the previous subsection.
P When such a coding scheme is adopted, the frame error rate
e

P = Ff (7) and bit error rate at the receiver can be estimated as fallows
. . . ;. n n X i
If we deni)lte byw(z) the- Hamming weight of th_a th Py = Z ") pia - Py,
column of S™%, w(i) < k,Vi € [1,...,k], an approximate S\
estimate of the bit error rate on theth received bit after "\ 4 ©)
descrambling can be obtained by using arguments similar to P, = Z - < .>P5(1 - P)"
. - o . n\ 1
those developed i [11] and it is expressed: i=t41
@) where P, is the channel bit error rate, taking into account the
1—(1-2P)"" i i :
PS(i) = Py ( 5 ) - ®) bandwidth expansion due to the presence of the code:
. . 1 Ey, k
As a numerical example, we have considered the case Py = §erfc ~ o] (10)
k = n = 1576 (that will be of interest in the following) and o n

calculated the bit error rate for several degrees of scrimgnbl ~ Starting from Eqs[{9), we can easily obtain that, in presenc
For the sake of simplicity, we have studied the case of regulaf perfect scrambling, the bit error rate of a transmissiasen
scrambling matrices, that isy(i) = w,Vi € [1,...,k]. Fig. on at-error correcting code becomes:
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Fig. 3. Bit error rate for th€2047, 1354, 69) BCH code and different levels Fig. 4. Simulated bit error rate for LDPC codes with= 1576 and R =
of scrambling. 2/3, adopting systematic transmission, puncturing and sdiagib

. In our simulations, we have considered two LDPC codes
pps _L1p 1 3 <T,L>P(§(1 _py—i. (11) designed through the Progressive Edge Growth (PEG) al-
i gorithm [17]. Both codes have a lower triangular parity-
check matrix, in such a way as to allow systematic encoding
Based on these modified expressions, Ef. (8) can be usgghout the need of Gaussian elimination. The first code has
again. Some examples are shown in Elg. 3 where we have CRfhgth n = 2364, dimensionk = 1576 (hence, code rate
sidered a(2047, 1354,69) BCH code with different levels of R = 2/3) and it has been used for simulation of systematic
scrambling. By a comparison with Fig. 2 (that, however,r€feand non-systematic transmission. The latter has beennebtai
to a slightly different value ok) we see that the introductionby adopting a dens&s76 x 1576 scrambling matrix, in order
of the code reduces the signal-to-noise ratio (as obviods a@ approach the effect of a perfect scrambler. The secone cod
expected) and, mostly important for our purposes, incasgas lengthn = 3940 and dimensiork = 1576. It has been
the slope of thePS and P% curves. Besides slope increaseysed to simulate punctured transmission, by puncturing all
scrambling contributes to emphasize the knee between tRe1576 information bits. So, the transmission rate results
region of high bit error rate and that of low/medium bit errojn 1576/ (3940 — 1576) = 2/3, as for the cases without
rate, that is the actual requirement for having a small s§crepuncturing.
gap. From FigLB we see that = 20 (densityw/k ~ 0.01)  Fig. [@ shows the simulated performance, in terms of bit
is enough for this purpose, while in absence of the code (sgfor rate, for the considered transmission schemes based o
Fig.[2) w = 300 (densityw/k ~ 0.19) was necessary. LDPC codes. As we observe from the figure, the systematic
transmission ensures the best performance in terms of error
correction capability. However, in the considered contaixt
As an example of Soft-In Soft-Out modern error correctinghysical layer security, it shows an important drawbackf th
schemes, we have considered LDPC codes, to which we hie bit error rate significantly smaller thanb even at low
applied the approach of non-systematic transmission basé@nal-to-noise ratio (the same behavior was observedgs. Fi
on scrambling. For the sake of comparison, we have aléoandl3).
considered the approach based on puncturing propos&d.in [5][The approach based on puncturing gives worse error correct-
Non-systematic LDPC codes have been already studieg performance, with a loss of abotits dB in the waterfall
outside the physical layer security issue. In particulagyt region with respect to systematic LDPC coding. However, the
have been proved able to give an important advantage ousage of punctured bits for transmitting the secret mesisage
systematic encoding in the presence of source redundancyable to ensure a higher bit error rate for low signal-to-eois
[12]-[15] non-systematic LDPC codes for redundant sour¢atio. Both such aspects could be improved by adopting non-
data are studied. Non-systematic encoding is accomplishedsystematic unpunctured LDPC codes based on the proposed
using the same scrambling approach considered in this papetambling technique: the performance loss with respect to
or through alternative techniques jasst-coding andsplitting.  the systematic LDPC code is abou dB in the waterfall
A similar approach to the design of non-systematic LDP®gion, and the bit error rate is maintained clos&)® in a
codes is also presented in_[16], where the authors aim lafger interval of signal-to-noise ratio values.
designing codes with sparse generator matrices, in such &hese facts reflect on the security gap over the AWGN wire-
way that the bit error rate performance remains not far frotap channel. Discussion of the security gap and comparison o
that of systematic LDPC codes. We notice that such targettige considered techniques from this point of view are regabrt
diametrically opposed to physical layer security. in the next section.

1=t+1

IV. NON-SYSTEMATIC LDPC CODES



Our results show that systematic coded transmission (as
well as uncoded transmission) is unsuited to such kind of
applications, due to the low bit error rate values it actseve
even at low signal-to-noise ratio.

Non-systematic transmission, instead, is able to reduee th
security gap in terms of signal-to-noise ratio that is nelede
between Bob’s and Eve’s AWGN channels in order to achieve
physical layer security. We have compared non-systematic
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Fig. 5. Bit Error Rate versus the secrecy gap for the tectasiqronsidered.

(3]

V. COMPARISON BETWEEN THE CONSIDERED TECHNIQUES [4]

In order to compare the considered transmission technjques
we have fixedP? = 10°, and calculatedg:| . Starting Bl
B

from the value of% , it is possible to estimate Eve's bit g
°IB

error rate P* as a function of the gap,. Fig. 3 reports
these curves for the considered transmission techniques. |
the figure, for all techniques that adopt scrambling, thégoer [7]
scrambling condition has been considered (simulation ef th
scrambled LDPC code has been done with a d8nsematrix,

able to approach perfect scrambling). As we observe from theg]
figure, the usage of a systematic LDPC code gives a very slow
convergence of Eve’s bit error rate to the ideal valu@.56f So,
such technique requires a very high security gap for réalist
values of PE (that are usually> 0.4). The reason of such [10]
a slow convergence is systematic transmission: if we adopfl
non-systematic unitary rate code, even renouncing any erro
correction capability, performance is improved aRfl > 0.4 [12]
is reached for a gap value arouddiB. The situation can be
further improved by adopting non-systematic error coinect
codes. If we implement non-systematicity through punatyyri [13]
the conditionP? > 0.4 is achieved at 2.2 dB gap.

The best performance is achieved by implementing non-
systematic coded transmission through scrambling. Bogh th4]
BCH and the LDPC code, under the condition of perfect
scrambling, give very good performance. The condititfh >
0.4 is reached at.3 dB and1.4 dB gap by the scrambled [1°]
BCH and LDPC code, respectively. Obviously, LDPC codes
have the advantage of permitting us to work at smaller SNR#]

VI. CONCLUSION

We have investigated the usage of non-systematic codes[%(;il
achieving physical layer security. We have focused on the
AWGN wire-tap channel model, and estimated the security
gap as a measure of the effectiveness of several transmissio
schemes.

transmission implemented through scrambling and punguri
and showed that the former is able to outperform the latter,
requiring a smaller security gap.
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