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Abstract—Linear-programming pseudocodewords play a piv-
otal role in our understanding of the linear-programming de-
coding algorithms. These pseudocodewords are known to be
equivalent to the graph-cover pseudocodewords. The latterpseu-
docodewords, when viewed as points in the multidimensional
Euclidean space, lie inside a fundamental cone. This fundamental
cone depends on the choice of a parity-check matrix of a code,
rather than on the choice of the code itself. The cone does not
depend on the channel, over which the code is employed.

The knowledge of the boundaries of the fundamental cone
could help in studying various properties of the pseudocodewords,
such as their minimum pseudoweight, pseudoredundancy of the
codes, etc. For the binary codes, the full characterizationof the
fundamental cone was derived by Koetter et al. However, if the
underlying alphabet is large, such characterization becomes more
involved. In this work, a characterization of the fundamental cone
for codes overF3 is discussed.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes attract a lot of
interest due to their excellent performance. For various com-
munication channels, it was shown either analytically or
empirically that LDPC-like codes attain capacity, when de-
coded by iterative message-passing algorithms (for example,
see [5], [6], [7]).

In attempt to construct a framework for analysis of LDPC-
like codes, it was observed by Wiberg that the message-passing
algorithms operate locally on the Tanner graph of the code [9].
Therefore, the performance of the decoder is similar, whether
it is applied to the Tanner graph itself, or to its so-called
graph cover. This observation led to a definition ofcomputa-
tional tree pseudocodewords. Later, a closely related concept
of graph-cover pseudocodewordswas extensively studied by
Koetter and Vontobel [8]. These pseudocodewords were also
found to be a reason for failure events of linear-programming
decoder applied to binary linear codes [1], [2].

The graph-cover pseudocodewords, when viewed as points
in the Euclidean space, lie inside afundamental cone[4], [8].
The cone boundaries depend on the parity-check matrix of
the code rather than on the code itself. For binary codes, the
fundamental cone was thoroughly studied in [4]. However,
as the size of the underlying field grows, the number of
inequalities describing the boundaries of the fundamental
cone also grows. In this work, we aim to extend the results
in [4] towards codes defined overF3 by providing a detailed
characterization of the corresponding fundamental cone.

II. D EFINITIONS AND SETTINGS

Let C be a linear code of lengthn over a finite fieldF
△

= Fq

with q elements, and denote byF∗ a set of nonzero elements
of F. The codeC can be defined as

C = {c ∈ F
n : cHT = 0} (1)

whereH is anm× n matrix with entries fromF (called the
parity-check matrixof C), and 0 is all-zeros vector. Denote
the set of column indices and the set of row indices ofH by
I = {1, 2, · · · , n} andJ = {1, 2, · · · ,m}, respectively. We
use notationHj for the j-th row ofH , wherej ∈ J . Denote
by supp(c) the support of a vectorc. For eachj ∈ J , let
Ij = supp(Hj). Denote by||x|| a norm of a real vectorx.

The Tanner graph of a linear codeC overF is an equivalent
characterization of the code’s parity-check matrixH. The
Tanner graphG = (V , E) has a vertex setV = U ∪ V , where
U = {ui}i∈I and V = {vj}j∈J . There is an edge between
ui ∈ U and vj ∈ V if and only if Hj,i 6= 0. This edge is
labeled with the valueHj,i. We denote byN (v) the set of
neighbors of a vertexv ∈ V .

To illustrate this concept, consider the following example
from [3].

Example 2.1:Let C be a [4, 2] linear code overF = F3

with parity-check matrix

H =

(

1 2 2 1
2 0 1 2

)

(2)

Figure 1 shows the Tanner graph for the codewordc =
(1 0 2 1) of the codeC with the parity-check matrix (2).
Each vertexui ∈ U is labeled with the value ofci. The reader
may check that for each parity-check vertexvj , j = 1, 2, the
sum, over all vertices inN (vj), of the vertex labels multiplied
by the corresponding edge labels is zero.

Next, we introduce the following two definitions from [4].
Definition 2.1: A graph G̃ = (Ṽ , Ẽ) is a finite coverof

the Tanner graphG = (V , E) if there exists a mappingΠ :
Ṽ −→ V which is a graph homomorphism (Π takes adjacent
vertices in G̃ to adjacent vertices inG), such that for every
vertexv ∈ V and everỹv ∈ Π−1(v), the neighborhoodN (ṽ)
of ṽ (including edge labels) is mapped bijectively toN (v).

Definition 2.2: A cover of the graphG is said to have
degreeM , whereM is a positive integer, if|Π−1(v)| = M
for every vertexv ∈ V . We refer to such a cover graph as an
M -coverof G.
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Fig. 1. Tanner graph for the example[4, 2] codeC overF3 ([3]). Edge labels
are shown in square brackets, and vertex labels in round brackets.

Fix some positive integerM . Let G̃ = (Ṽ , Ẽ) be anM -
cover of the Tanner graphG = (V , E) representing the codeC
with a parity-check matrixH. The vertices in the setΠ−1(ui)
are denoted{ui,1, ui,2, · · · , ui,M}, wherei ∈ I. Similarly, the
vertices in the setΠ−1(vj) are denoted{vj,1, vj,2, · · · , vj,M},
wherej ∈ J .

For any M ≥ 1, a graph-cover pseudocodewordis a
labeling of verticesui,µ of the M -cover graph with values
from F such that all parity-checks are satisfied. We denote
the label ofui,µ by λ(ui,µ) and letpi,µ

△

= λ(ui,µ) for each
i ∈ I, µ = 1, 2, · · · ,M . We may then write the graph-cover
pseudocodeword in a vector form as

p = (p1,1, p1,2, · · · , p1,M , p2,1, p2,2, · · · , p2,M , · · · ,

pn,1, pn,2, · · · , pn,M )

It is easily seen thatp belongs to a linear codẽC of length
Mn over F, defined by anMm × Mn parity-check matrix
H̃. To constructH̃, for 1 ≤ i∗, j∗ ≤ M and i ∈ I, j ∈ J ,
we let i′ = (i− 1)M + i∗, j′ = (j − 1)M + j∗, and so

H̃j′,i′ =

{

Hj,i if ui,i∗ ∈ N (vj,j∗ )
0 otherwise

It may be seen that̃G is the Tanner graph of the codẽC
corresponding to the parity-check matrix̃H.

We also define the(q − 1) × n unscaled graph-cover
pseudocodeword matrix

F =
(

f
(α)
i

)

α∈F∗; i∈I

where

f
(α)
i = |{µ ∈ {1, 2, · · · ,M} : pi,µ = α}| ≥ 0

for i ∈ I, α ∈ F
∗. For q = 2, graph-cover pseudocodeword

matrix is actually a row vector of lengthn, and so in that
case sometimes we use a vector notation rather than a matrix
notation. Thenormalized graph-cover pseudocodeword matrix
is defined as(1/M) · F .

It is straight-forward to see that for anyc ∈ C, the labeling
of ui,µ by the valueci for all i ∈ I, µ = 1, 2, · · · ,M , trivially
yields a pseudocodeword for allM -covers ofG, M ≥ 1.
However, non-trivial pseudocodewords do exist.

Example 2.2:([3]) Consider the ternary[4, 2] codeC in
Example 2.1. Here we can takeM = 4, so we have

p = (1 1 2 2 | 1 1 2 2 | 0 0 1 1 | 0 0 1 1)

and the parity-check matrix of the codẽC is given by

H̃ =

























0 0 1 0 2 0 0 0 0 0 2 0 1 0 0 0
0 0 0 1 0 2 0 0 0 0 0 2 0 1 0 0
1 0 0 0 0 0 2 0 2 0 0 0 0 0 1 0
0 1 0 0 0 0 0 2 0 2 0 0 0 0 0 1
0 0 2 0 0 0 0 0 1 0 0 0 0 0 2 0
0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0
0 2 0 0 0 0 0 0 0 0 0 1 0 2 0 0

























The unscaled graph-cover pseudocodeword matrix correspond-
ing to p is

F =

(

2 2 2 2
2 2 0 0

)

(3)

and the corresponding normalized graph-cover pseudocode-
word matrix is 1

4 · F .

III. B INARY CODES

Graph-cover pseudocodewords ofbinary codes were thor-
oughly studied in [4]. In particular, the characterizationof a
fundamental cone of the graph-cover pseudocodewords was
given therein. In this section, we recall some results in [4].

In this section we consider a binary linear codeC (thus
F = F2) with a parity-check matrixH . The corresponding
1 × n graph-cover pseudocodeword matrix is thus a vector
F = (f

(1)
i )i∈I . In this case, for the sake of simplicity, we

will rather use notationF = (fi)i∈I .
Definition 3.1: A binary fundamental coneof H, de-

notedK2(H), is defined as the set of vectorsx ∈ R
n that

satisfy

∀j ∈ J , ∀ℓ ∈ Ij : fℓ ≤
∑

i∈Ij\{ℓ}

fi (4)

∀i ∈ I : fi ≥ 0 (5)

The following two theorems for characterization of the
graph-cover pseudocodewords were presented in [4].

Theorem 3.1:Let F be an 1 × n integer nonnegative
matrix. Then the following two conditions are equivalent:

1) F is an (unscaled) graph-cover pseudocodeword matrix.
2) F ∈ K2(H) andH · F T = 0 mod 2.

Theorem 3.2:Let C be a binary linear code with the
parity-check matrixH. Let z ∈ K2(H) be a real vector of
length n. Then, for anyǫ > 0, there is an unscaled1 × n
pseudocodeword matrix (vector)F such that||c ·F − z|| < ǫ
for some real valuec > 0.

IV. T ERNARY CODES

In this section, we study graph-cover pseudocodewords of
codes overF = F3. Assume thatC is a ternary linear code
with a parity-check matrixH .

Definition 4.1: A ternary fundamental coneof H , de-
noted byK3(H), is defined as the set of2 × n matrices



F = (f
(α)
i )α∈F∗, i∈I with entries in R that satisfy the

following set of inequalities

∀j ∈ J , ∀ℓ ∈ Ij :

2
∑

i∈Ij\{ℓ}

f
(2Hj,i)
i +

∑

i∈Ij\{ℓ}

f
(Hj,i)
i ≥ 2f

(Hj,ℓ)
ℓ + f

(2Hj,ℓ)
ℓ (6)

2
∑

i∈Ij\{ℓ}

f
(Hj,i)
i +

∑

i∈Ij\{ℓ}

f
(2Hj,i)
i ≥ 2f

(2Hj,ℓ)
ℓ + f

(Hj,ℓ)
ℓ (7)

and,

∀j ∈ J , ∀k, ℓ ∈ Ij :

2
∑

i∈Ij\{k,ℓ}

f
(Hj,i)
i +

∑

i∈Ij

f
(2Hj,i)
i ≥ f

(Hj,k)
k + f

(Hj,ℓ)
ℓ (8)

2
∑

i∈Ij\{k,ℓ}

f
(2Hj,i)
i +

∑

i∈Ij

f
(Hj,i)
i ≥ f

(2Hj,k)
k + f

(2Hj,ℓ)
ℓ (9)

and, finally,

∀i ∈ I, ∀α ∈ F
∗ : f

(α)
i ≥ 0 (10)

Here, all multiplications of type “2Hj,i” are assumed to be
over F3. If for someF all inequalities (6)-(10) are satisfied
(with respect to someH), we say thatF ∈ K3(H).

Example 4.1:Consider the code in Example 2.1. The
corresponding fundamental cone is given by the set of the
following 32 inequalities.

From the second row ofH, inequalities (6) and (7) we
have:

2f
(2)
1 + f

(1)
1 ≤ 2(f

(2)
3 + f

(1)
4 ) + (f

(1)
3 + f

(2)
4 )

2f
(1)
1 + f

(2)
1 ≤ 2(f

(1)
3 + f

(2)
4 ) + (f

(2)
3 + f

(1)
4 )

2f
(1)
3 + f

(2)
3 ≤ 2(f

(1)
1 + f

(1)
4 ) + (f

(2)
1 + f

(2)
4 )

2f
(2)
3 + f

(1)
3 ≤ 2(f

(2)
1 + f

(2)
4 ) + (f

(1)
1 + f

(1)
4 )

2f
(2)
4 + f

(1)
4 ≤ 2(f

(1)
1 + f

(2)
3 ) + (f

(2)
1 + f

(1)
3 )

2f
(1)
4 + f

(2)
4 ≤ 2(f

(2)
1 + f

(1)
3 ) + (f

(1)
1 + f

(2)
3 )

From the second row ofH , inequalities (8) and (9):

f
(2)
1 + f

(1)
3 ≤ 2f

(2)
4 + (f

(1)
1 + f

(2)
3 + f

(1)
4 )

f
(1)
1 + f

(2)
3 ≤ 2f

(1)
4 + (f

(2)
1 + f

(1)
3 + f

(2)
4 )

f
(2)
1 + f

(2)
4 ≤ 2f

(1)
3 + (f

(1)
1 + f

(2)
3 + f

(1)
4 )

f
(1)
1 + f

(1)
4 ≤ 2f

(2)
3 + (f

(2)
1 + f

(1)
3 + f

(2)
4 )

f
(1)
3 + f

(2)
4 ≤ 2f

(2)
1 + (f

(1)
1 + f

(2)
3 + f

(1)
4 )

f
(2)
3 + f

(1)
4 ≤ 2f

(1)
1 + (f

(2)
1 + f

(1)
3 + f

(2)
4 )

From the first row ofH, inequalities (6) and (7):

2f
(1)
1 + f

(2)
1 ≤ 2(f

(1)
2 + f

(1)
3 + f

(2)
4 ) + (f

(2)
2 + f

(2)
3 + f

(1)
4 )

2f
(2)
1 + f

(1)
1 ≤ 2(f

(2)
2 + f

(2)
3 + f

(1)
4 ) + (f

(1)
2 + f

(1)
3 + f

(2)
4 )

2f
(2)
2 + f

(1)
2 ≤ 2(f

(2)
1 + f

(1)
3 + f

(2)
4 ) + (f

(1)
1 + f

(2)
3 + f

(1)
4 )

2f
(1)
2 + f

(2)
2 ≤ 2(f

(1)
1 + f

(2)
3 + f

(1)
4 ) + (f

(2)
1 + f

(1)
3 + f

(2)
4 )

2f
(2)
3 + f

(1)
3 ≤ 2(f

(2)
1 + f

(1)
2 + f

(2)
4 ) + (f

(1)
1 + f

(2)
2 + f

(1)
4 )

2f
(1)
3 + f

(2)
3 ≤ 2(f

(1)
1 + f

(2)
2 + f

(1)
4 ) + (f

(2)
1 + f

(1)
2 + f

(2)
4 )

2f
(1)
4 + f

(2)
4 ≤ 2(f

(2)
1 + f

(1)
2 + f

(1)
3 ) + (f

(1)
1 + f

(2)
2 + f

(2)
3 )

2f
(2)
4 + f

(1)
4 ≤ 2(f

(1)
1 + f

(2)
2 + f

(2)
3 ) + (f

(2)
1 + f

(1)
2 + f

(1)
3 )

Finally, from the first row ofH, inequalities (8) and (9),
we obtain additional 12 inequalities, which we will omit here.

Take, for example, a graph-cover pseudocodeword matrix
in (3). It can be easily checked that this pseudocodeword
matrix satisfies all 32 inequalities above.

Let C be a linear code of lengthn over F, and letH be
its parity-check matrix. SupposeCj (for all j ∈ J ) is a code,
whose parity-check matrix is given byHj .

Lemma 4.1:The following connection holds:

K3(H) = K3(H1) ∩ K3(H2) ∩ · · · ∩ K3(Hm)

Lemma 4.2:Let F = (f
(α)
i )α∈F∗, i∈I be an unscaled

graph-cover pseudocodeword matrix ofCj (with respect to
Hj) for all j ∈ J . Then,F is a graph-cover pseudocodeword
matrix of C (with respect toH).

For j ∈ J , define the mappingψH j
: R2×n → R

2×n as
follows. For allF ∈ R

2×n, all α ∈ F
∗ and i ∈ I, the entry

in row α and columni of F̂
△

= ψHj
(F ) is

f̂
(α)
i =

{

f
(−α)
i if Hj,i = 2

f
(α)
i otherwise

where the upper indices−α andα are taken overF. In other
words, we exchange entriesf (1)

i andf (2)
i wheneverHj,i is 2.

Let Hs be an1 × n matrix obtained by replacing every
nonzero entry inHj by a unity in F. Then, we have the
following lemma.

Lemma 4.3:Let Cj, Hj andHs be as defined above.
Let F ∈ R

2×n. Then,

1) F ∈ K3(Hj) if and only if ψH j
(F ) ∈ K3(Hs);

2) F is a graph-cover pseudocodeword matrix of the code
Cj with respect to the parity-check matrixHj if and
only if ψHj

(F ) is a graph-cover pseudocodeword
matrix of the code defined by the parity-check matrix
Hs.

Example 4.2:Consider the matrixH in Example 2.1.
Let C2 be the code overF checked byH2 (the second row of
H). Then,

F =

(

2 2 2 2
2 2 0 0

)

is a graph-cover pseudocodeword matrix ofC2 with respect to
H2, and

F̂ = ψH2

(F ) =

(

2 2 2 0
2 2 0 2

)

is a graph-cover pseudocodeword matrix of the code checked
by the1× 4 matrixHs = [1 0 1 1].

The last three lemmas allows us to simplify the task of char-
acterization of the graph-cover pseudocodewords. Lemmas 4.1
and 4.2 indicate that we can considerm codesCj, j ∈ J , each
code is checked by a single parity-check rowHj of H. The



characterization of the pseudocodewords corresponding toH

is derived from the characterizations of pseudocodewords of
each ofHj ’s. Lemma 4.3 suggests, in turn, that in order to
characterize the graph-cover pseudocodewords of a code, itis
enough to consider only matricesHs with entries equal zero
and one only (but not two).

The next lemma refers toF containing an all-zero row.
Lemma 4.4:Let F = (f

(α)
i )α∈F∗, i∈I be a2×n integer

matrix with nonnegative entries. Assume thatHs is 1 × n
matrix with entries in{0, 1} ⊂ F, andF ∈ K3(Hs). W.l.o.g.
suppose thatf (2)

i = 0 for all i ∈ I and
∑

i∈I f
(1)
i = 0

mod 3 (for case wheref (1)
i = 0 for all i ∈ I, switch

betweenf (1)
i and f

(2)
i for all i). Then there exist sets of

indices S1, S2, · · · , SM ⊆ I, such that for every setSµ,
µ = 1, 2, · · · ,M , it holds

|Sµ| = 0 mod 3

and for every indexi ∈ I, the number of setsSµ in which i

appears equals tof (1)
i .

The next lemma is a generalization of Lemma 4.4 for the
case when bothf (1)

i andf (2)
i are possibly nonzero (for some

i’s).
Lemma 4.5:Suppose thatF = (f

(α)
i )α∈F∗, i∈I is a2×n

integer matrix with nonnegative entries. Assume thatHs is
1 × n matrix with entries in{0, 1} ⊂ F, and it serves as a
parity-check matrix of the ternary linear codeCs. Let F ∈
K3(Hs), and

Hs · (F
T
1 + 2F T

2 ) = 0 mod 3 (11)

whenHs is regarded as an integer matrix, andF 1 andF 2

are the first and the second rows ofF , respectively. Then
F is an (unscaled) graph-cover pseudocodeword matrix ofCs
corresponding to (some graph cover of)Hs.

Before we discuss the proof of Lemma 4.5, we first intro-
duce a new definition.

Definition 4.2: Let (f
(α)
i )α∈F∗, i∈I be a graph-cover

pseudocodeword matrix corresponding to a codeCj checked
by the 1 × n parity-check matrixHj over F, and letIj =
supp(Hj).
• If for someℓ ∈ Ij ,

∑

α∈F∗ f
(α)
ℓ ≥ 1 and

2
∑

i∈Ij\{ℓ}

f
(2H1,i)
i +

∑

i∈Ij\{ℓ}

f
(H1,i)
i < 2f

(H1,ℓ)
ℓ + f

(2H1,ℓ)
ℓ + 3

then this equation iscritical and the coordinateℓ is critical of
type one.
• Similarly, if for someℓ ∈ Ij ,

∑

α∈F∗ f
(α)
ℓ ≥ 1 and

2
∑

i∈Ij\{ℓ}

f
(H1,i)
i +

∑

i∈Ij\{ℓ}

f
(2H1,i)
i < 2f

(2H1,ℓ)
ℓ + f

(H1,ℓ)
ℓ + 3

then this equation iscritical and the coordinateℓ is critical of
type two.
• If for somek, ℓ ∈ Ij , f

(H1,k)
k ≥ 1 andf (H1,ℓ)

ℓ ≥ 1 and

2
∑

i∈Ij\{k,ℓ}

f
(H1,i)
i +

∑

i∈Ij

f
(2H1,i)
i < f

(H1,k)
k + f

(H1,ℓ)
ℓ + 3

then this equation iscritical and the pair of coordinates{k, ℓ}
is critical of type one.
• If for somek, ℓ ∈ Ij , f

(2H1,k)
k ≥ 1 andf (2H1,ℓ)

ℓ ≥ 1 and

2
∑

i∈Ij\{k,ℓ}

f
(2H1,i)
i +

∑

i∈Ij

f
(H1,i)
i < f

(2H1,k)
k + f

(2H1,ℓ)
ℓ + 3

then this equation iscritical and the pair of coordinates{k, ℓ}
is critical of type two.

Lemma 4.6:Let Hj be 1 × n parity-check matrix of a
linear code overF, and letF ∈ K3(Hj) be a2×n nonnegative
integer matrix, such that (11) holds (with respect toHj).
Assume that some of inequalities (6)-(9) are critical. Then, all
the critical inequalities can be rewritten as equalities without
“+3” term in the right-hand side.

Sketch of the Proof of Lemma 4.5.
DenoteIs

△

= supp(Hs). LetF ∈ K3(Hs) be a2×n integer
nonnegative matrix satisfying (11). We construct a graph cover
G̃ = (Ṽ , Ẽ), corresponding to thisF .

For initialization, we take

M ′ △

= max
i∈I

{

∑

α∈F∗

f
(α)
i

}

, M
△

= 3M ′ − 2

and

U = {u1,1, u1,2, · · · , u1,M , u2,1, u2,2, · · · , u2,M ,

un,1, un,2, · · · , vn,M}

V = {v1, v2, · · · , vM}, Ṽ = U ∪ V, Ẽ = ∅

For all ui,µ ∈ U , i ∈ Is, we set labelsλ(ui,µ) = 0. For
i ∈ I\Is we set labelsλ(ui,µ) = α (α ∈ F

∗) for f (α)
i arbitrary

verticesui,µ ∈ U . For the remaining verticesui,µ ∈ U (with
i ∈ I\Is) we setλ(ui,µ) = 0.

The algorithm for construction of the graph cover works in
steps. On each step, we reduce two (or three) entries inF by
one, and at the same time add two (or three) corresponding
edges toẼ . We do it in a way such that the newF is in
K3(Hs) and also satisfies (11).

The definition of critical coordinates implies that if thereis
a critical coordinateℓ (of either type one or two), then either
entryf (1)

ℓ or f (2)
ℓ has to be reduced (otherwise, some of critical

inequalities in (6)-(9) might be violated after the reduction).
Moreover, if there is a critical pair of coordinates{k, ℓ} of
type α (α ∈ F

∗), then eitherf (α)
k or f (α)

ℓ has to be reduced
(due to the same reason). Any non-critical inequalities remain
valid after any such reduction.

The formal description of the algorithm for reduction ofF
appears in Figure 2. We use notationSc ⊆ I for a set of all
critical coordinates,T1 for a set of critical pairs of coordinates
of type one, andT2 for a set of critical pairs of coordinates
of type two. These sets are assumed to be updated in the
beginning of each iteration in Stage 2 of the algorithm.

The main challenge in the proof of the algorithm correctness
is to show that for anyF ∈ K3(Hs) satisfying (11), and for
any possible combination of critical coordinates, the reduction



Input: Hs, F = (f
(α)
i )α∈F∗, i∈I .

1. Initialize: M , U , V , G̃ = (Ṽ, Ẽ), andλ(ui,µ) for all ui,µ ∈ U .
2. While

∑
i∈Is

f
(α)
i 6= 0 for all α ∈ F

∗ do:
Find k and ℓ such that:

1) f
(1)
k ≥ 1 andf (2)

ℓ ≥ 1;
2) for all i ∈ Sc : either i = k or i = ℓ;
3) for all {i1, i2} ∈ T1: either i1 = k or i2 = k;
4) for all {i1, i2} ∈ T2: either i1 = ℓ or i2 = ℓ.

µk ←
∑

α∈F∗
f
(α)
k , µℓ ←

∑
α∈F∗

f
(α)
ℓ .

f
(1)
k ← f

(1)
k −1, f

(2)
ℓ ← f

(2)
ℓ −1, λ(vk,µk

)← 1, λ(vℓ,mℓ
)← 2

Takevµ not connected touk,η, uℓ,η for any η = 1, · · · ,M .
Ẽ ← Ẽ ∪ {{uk,µk

, vµ}, {uℓ,µℓ
, vµ}}.

3. While f
(α)
i 6= 0 for some i ∈ Is, α ∈ F

∗ do:
Let f (β)

ℓ1
, f (β)

ℓ2
, f (β)

ℓ3
be three largest entries inF .

µ1 ← f
(β)
ℓ1

, µ2 ← f
(β)
ℓ2

, µ3 ← f
(β)
ℓ3

.

For i = 1, 2, 3 : f
(β)
ℓi
← f

(β)
ℓi
− 1, λ(uℓi,µi

)← β.
Takevµ not connected touℓi,η, for i = 1, 2, 3, η = 1, · · · ,M .
Ẽ ← Ẽ ∪ {{uℓ1,µ1

, vµ}, {uℓ2,µ2
, vµ}, {uℓ3,µ3

, vµ}}.

4. For all i ∈ Is and µ1 = 1, · · · ,M such that λ(ui,µ1
) = 0 :

1) Pickµ s.t. {ui,η, vµ} /∈ Ẽ for any η = 1, 2, · · · ,M ;
2) Ẽ ← Ẽ ∪ {{ui,µ1

, vµ}}.
Output: G̃.

Fig. 2. Algorithm for constructing the graph cover̃G.

of the entries ofF as above is always possible. We omit further
details due to the luck of space.

Example 4.3:To illustrate the algorithm, consider the
parity-check matrixHs in Example 4.2 and the corresponding
pseudocodeword matrix̂F . ThenM ′ = 4 (and soM = 10,
althoughM = 4 would be sufficient). It can be easily seen
that the coordinateℓ = 1 is critical of both types one and two.
In addition, the pairs of coordinates{k1, ℓ1} = {1, 3} and
{k2, ℓ2} = {1, 4} are critical of type one and two, respectively.
Therefore, the algorithm has to reducef (α)

1 for someα ∈ F
∗.

Suppose thatf (2)
1 (ℓ = 1, α = 2) was selected for reduction.

This implies, in turn, thatk = 3. Thus, the algorithm sets
λ(u1,4) = 2 and λ(u3,2) = 1. The edges{u1,4, v1} and
{u3,2, v1} are added tõE . The newF̂ is:

F̂ =

(

2 2 1 0
1 2 0 2

)

For this F̂ , the same critical conditions hold as before, and
so f

(α)
1 (for someα ∈ F

∗) is reduced again. Suppose that
the sameα, k andℓ were selected again, and soλ(u1,3) = 2
andλ(u3,1) = 1, and the edges{u1,3, v2} and{u3,1, v2} are
added toẼ . We obtain

F̂ =

(

2 2 0 0
0 2 0 2

)

At this point, the coordinatesk = 1 andℓ = 4 are both critical.
Therefore, we setλ(u1,2) = 1 andλ(u4,2) = 2, and the edges
{u1,2, v3} and{u4,2, v3} are added tõE . The entriesf (1)

1 and
f
(2)
4 are reduced.
Then, again,λ(u1,1) = 1 andλ(u4,1) = 2, and the edges

{u1,1, v4} and{u4,1, v4} are added tõE , and the entriesf (1)
1

andf (2)
4 are reduced. To this endf (α)

i = 0 for all α ∈ F
∗ and

i ∈ Is. Additional 22 edges connecting zero-labeled vertices
with the parity-check vertices are added toẼ . The algorithm
outputs the resulting̃G and stops.

The following two theorems are the main result of this
paper.

Theorem 4.7:Let C be a linear ternary code of lengthn
over F, andH is its parity-check matrix. LetF be a2 × n
matrix with non-negative integer entries. Then, the following
two conditions are equivalent.

1) F is an (unscaled) graph-cover pseudocodeword matrix
of C corresponding to (the graph cover of)H .

2) F ∈ K3(H) and

H · (F T
1 + 2F T

2 ) = 0 mod 3

whereH is regarded as an integer matrix.

Theorem 4.8:Let C be a ternary linear code with the
parity-check matrixH . Let Z ∈ K3(H) be a 2 × n real
matrix. Then, for anyǫ > 0, there is an unscaled graph-cover
pseudocodeword matrixF such that||c ·F −Z|| < ǫ for some
real valuec > 0.
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