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Reinforcement Learning for the Soccer Dribbling Task

Arthur Carvalho and Renato Oliveira

Abstract—We propose a reinforcement learning solution to shooting). Nevertheless, a successful policy learned ey th

the soccer dribbling task, a scenario in which a soccer agent dribbler can be used in the complete soccer domain whenever

has to go from the beginning to the end of a region keeping a soccer agent faces a dribbling situation.
possession of the ball, as an adversary attempts to gain pession.

While the adversary uses a stationary policy, the dribbler éarns Since our focus is on the dribbler's learning process, an
the best action to take at each decision point. After defining Omniscient coach agent is used to manage the play. At the
meaningful variables to represent the state space, and higlevel beginning of each trialgpisodg, the coach resets the location
macro-actions to incorporate domain knowledge, we describour  of the ball and of the players within @raining field The

application of the reinforcement learning algorithm Sarsa with ; ; ; _ ;
CMAC for function approximation. Our experiments show that, dribbler is placed in the center-left region together witle t

after the training period, the dribbler is able to accomplish its Pall- The adversary is placed in a random position with the
task against a strong adversary around58% of the time. constraint that it does not start with possession of the Ball
example of a starting configuration is shown in Figure 1.
Whenever the adversary gains possession for a set period
Soccer dribbling consists of the ability of a soccer ageof time or when the ball goes out of the training field by
to go from the beginning to the end of a region keepingrossing either the left line or the top line or the bottonelin
possession of the ball, while an adversary attempts to gdliee coach declares the adversary as the winner of the episode
possession. In this work, we focus on the dribbler’s leagninf the ball goes out of the training field by crossing the right
processi.e. the learning of an effective policy that determinefine, then the winner is the first player to intercept the ball
a good action for the dribbler to take at each decision poin&fter declaring the winner of an episode, the coach resets th
We study the soccer dribbling task using the RoboCudpcation of the players and of the ball within the traininddie
soccer simulatoi’[1]. Specific details of this simulatorgase and starts a new episode. Thus, the dribbler’s goal is tchreac
the complexity of the learning process. For example, bssidde right line that delimits the training field with the balle
the adversarial and real-time environment, agents’ péimep call this task thesoccer dribbling task
and actions are noisy and asynchronous. We argue that the soccer dribbling task is an excellent
We model the soccer dribbling task asreinforcement benchmark for comparing different machine learning tech-
learning problem. Our solution to this problem combinesiques since it involves a complex problem, and it has a
the Sarsa algorithm with CMAC for function approximationwell-defined objective, which is to maximize the number of
Despite the fact that the resulting learning algorithm is nepisodes won by the dribbler. We study the soccer dribbling
guaranteed to converge to the optimal policy in all casesymatask using the RoboCup soccer simulafdr [1].
lines of evidence suggest that it converges to near-optimalThe RoboCup soccer simulator operates in discrete time
policies (for example, se€l[2].[[3].][4].][5]). steps, each representing 100 milliseconds of simulated. tim
Besides this introductory section, the rest of this paper $pecific details of this simulator increase the complexitthe
organized as follows. In the next section, we describe thearning process. For example, random noise is injected int
soccer dribbling task. In Section 3, we show how to map thél perceptions and actions. Further, agents must sensacand
task onto an episodic reinforcement learning framework. bBsynchronously. Each soccer agent receives visual inf@ma
Section 4 and 5, we present, respectively, the reinforcéemahout other objects every 150 milliseconds, its distance
learning algorithm and its results against a strong adwersa
In Section 6, we review the literature related to our work. In
Section 7, we conclude and present future research dinsctio Fig. 1. Example of a starting configuration.

I. INTRODUCTION

Il. SOCCERDRIBBLING

Soccer dribbling is a crucial skill for an agent to become .
a successful soccer player. It consists of the ability of a Drlbbler
soccer agent, henceforth called ttgbbler, to go from the Y.
beginning to the end of a region keeping possession of the
ball, while an adversary attempts to gain possession. We can

Adver;a ry

(O]

A
see soccer dribbling as a subproblem of the complete soccer =
domain. The main simplification is that the players involved

are only focused on specific goals, without worrying about Training Field
team strategies or unrelated individual skiksg, passing and
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from other players in its current field of view. Each agent Formally, an SMDP is a 5-tuple S, A, P,r, F >, where
has also a body sensor, which detects its current “physicals a countable set of stated,is a countable set of actions,
status” every 100 milliseconds.g, that agent's stamina P(s|s,a), for s’,s € S, anda € A, is a probability distribu-
and speed. Agents may execute a parameterized primittien providing the transition model between statés, a) € R
action every 100 milliseconds.g, turn(angle),dasi{power), is a reward associated with the transitiena), and F(7|s, a)
and kick(power, angle). Full details of the RoboCup soccas a probability distribution indicating the sojourn time a
simulator are presented by Chenal. [6]. given states € S, i.e, the time before transition provided that
Since possession is not well-defined in the RoboCup soceetiona was taken in stats.
simulator, we consider that an agent has possession of the balet a;, € A be theith macro-action selected by the dribbler.
whenever the ball is close enough to be kickiegl, it is in a Thus, several simulator’'s time steps may elapse betwgen
distance less thah.085 meters from the agent. anda;11. Let 5,01 € S andr;;1 € R be, respectively, the
state and the reward following the macro-actign From the
dribbler’'s point of view, an episode consists of a sequence
of SMDP stepsj.e., a sequence of states, macro-actions, and
In the soccer dribbling task, an episode begins when thewards:sg, ag, 71,51, -+, 84, G, Tit1, Sitls---sAn-1,Tn, Sn,
dribbler may take the first action. When an episode endéereq; is chosen based exclusively on the stateands,, is
(e.g, when the adversary gains possession for a set periterminal state in which either the adversary or the dribisle
of time), the coach starts a new one, thereby giving rise todgclared the winner of the episode by the coach. In the former
series of episodes. Thus, the interaction between the ldriblcase, the dribbler receives the reward= —1, while in the
and the environment naturally breaks down into a sequerlagier case its reward is, = 1. The intermediate rewards are
of distinct episodes. This point, together with the facttthalways equal to zerd,e, r; = ro = --- = 1,1 = 0. Thus,
the RoboCup soccer simulator operates in discrete times,stepur objective is to find a policy that maximizes the driblder’
allows the soccer dribbling task to be mapped onto a discreteward,i.e., the number of episodes in which it is the winner.
time, episodic reinforcement-learning framework. .
Roughly speaking, reinforcement learning is concernel wi‘tA" Dribbler
how an agent must take actions in an environment so as tolhe dribbler must take a decision at each SMDP step by
maximize the expected long-term reward [7]. Like in a trialselecting an available macro-action. Besides the madrorac
and-error search, the learner must discover which actitimeis HoldBall, the set of actions available to the dribbler contains
most rewarding one in a given state of the world. Thus, sglvidour instances of the macro-actiddribble: Dribble(30°, 5),
a reinforcement learning problem means finding a functidaribble(330°,5), Dribble(0°,5), and Dribble(0°, 10). Thus,
(policy) that mapsstatesto actions so that it maximizes besides hiding the ball from the adversary, the dribbler can
a reward over the long run. As a way of incorporatingkick the ball forward (strongly and weakly), diagonally up-
domain knowledge, the actions available to the dribbler avéard, and diagonally downward. If at some time step the
the following high-levelmacro-actionswhich are built on the dribbler has not possession of the ball and the current state
simulator’sprimitive actiond: is not a terminal state, then it usually means that the deibbl
« HoldBall(): The dribbler holds the ball close to its bodyC0S€ an instance of the macro-actianibble before and it is

keeping it in a position that is difficult for the adversanfurréntly moving to intercept the ball. _
to gain possession; We turn now to the state representation used by the dribbler.

« Dribble(©, k): The dribbler turns its body towards thelt consists of a set of state variables which are based on
global angleO, kicks the ballk meters ahead of it, and information related to the ball, the adversary, and thebdeib
moves to intercept the ball. itself. Let ang(x) be the global angle of the objeat and

The global angled is in the rangel0, 360]. In detail, the ang(x,y) gnd dist(z,y) be, respeptively, the relative angle

center of the training field has been chosen as the origineof t%ng f:hbe d|stance_beltwehen thdehobjzttﬁndhy._ l;urtrf]e;, Ietw_ .
system, where the zero-angle points towards the middleeof Y © respectively, the widt an t. € heig tof the training
right line that delimits the training field, and it increaseshe leld. Finally, letposY'(z) be a function indicating whether the

clockwise direction. Those macro-actions are based on-hi %bjectx Is close to (less than 1 meter away from) the top line

level skills used by the UvA Trilearn 2003 teali [8]. The firs r the bottom I|_ne th?]t del|m!ts t:e Itralmng field. In th_erftnrr
one maps directly onto the primitive acti@itk. Consequently Case!posY(fv) = 1, whereas in the latter cagesY (x) = _.1’
' and otherwis@osY (z) = 0. Table 1 shows the state variables

it usually takes a single time step to be performed. The skc r(])gether with their ranges.

one, however, requires an extended sequence of the pIEﬁmmvThe first three variables help the dribbler to locate itself

actionsturn, k'.Ck’ gnddash To han_dle this situation, we treatand the adversary inside the training field. Together, tise la
the soccer dribbling task as semi-Markov decision process . : s .
: two variables can be seen as a point describing the position
(SMDP) [9]. k |
of the adversary in a polar coordinate system, where the ball
IHenceforth, we use the termation and macro-actioninterchangeably, is the poIe. Thus, thege variables are used bY t.he.drlbbler to
while always distinguishingrimitive actions locate the adversary with respect to the ball. It is inténgdio

IIl. THE SOCCERDRIBBLING TASK AS A
REINFORCEMENTLEARNING PROBLEM



TABLE |
DESCRIPTION OF THE STATE REPRESENTATION L #1
State Variable Range ayer
posY (dribbler) {-1,0,1}
ang(dribbler) [0, 360] ®
ang(dribbler, adversary [0, 360] Y
ang(ball, adversary [0, 360] |
dist(ball, adversary [0, Vw2 + h2] 4 Layer #2

X

note thfat a more mformatllve state representation can bet u%—% 2. Example of two layers overlaid over a two-dimensiastate space.
by adding more state variables.g, the current speed of the any input vector (state) activates two receptive fields, fmen each layer.
ball and the dribbler's stamina. However, large domains c&ar example, the state represented by the black dot actitatehighlighted
be impractical due to the “curse of dimensionaliti/., the recePtive fields.

general tendency of the state space to grow exponentially in

the number of state variables [10]. Consequently, we focus

. . . . Rcontinuall estimateg)™, for the current policyr, and at the
a state representation that is as concise as possible. y & poliCyr

same time changes towards greediness with respectd@d.
B. Adversary A typical policy derived from theQ-function is ane-greedy

The adversary uses a fixed, pre-specified policy. Thus, \Hglicy. Give|_'1.the state,, this _polic;y selects a random a}ction
can see it as part of the environment in which the dribbl¥‘f_'th probat_>|l|tye and, o_therW|se, it selects the action with the
is interacting with. When the adversary has possessioneof {§ohest estimated valueg., a = argmax, Q(s:, a).
ball, it tries to maintain possession for another time stgp B ~\iac
invoking the macro-actioRloldBall. If it maintains possession _ _ )
for two consecutive time steps, then it is the winner of the [N tasks with a small number of state-action pairs, we can
episode. When the adversary does not have the ball, it u§@gresent the action-value functi@p™ as a table with one
an iterative scheme to compute a near-optimal intercepti§Rtry for each state-action pair. However, this is not tree
point based on the ball's position and velocity. Thereaftéh® soccer dribbling task. For illustration’s sake, sugptheat
the adversary moves to that point as fast as possible. Talkvariables in Table 1 are discrete. If we consideritagtions
procedure is the same used by the dribbler when it is movi§ilable to the dribbler and a 20m x 20m training field, we end
to intercept the ball after invoking the macro-actibribble, ~UP With more thari.9x 10 state-action pairs. This would not
More details about this iterative scheme can be found in tRBlY require an unreasonable amount of memory, but also an

description of the UvA Trilearn 2003 tear [8]. enormous amount of data to fill up the table accurately. Thus,
we need togeneralizefrom previously experienced states to
IV. THE REINFORCEMENTLEARNING ALGORITHM ones that have never been seen. For dealing with this task, we

Our solution to the soccer dribbling task combines the reibise a techniqgue commonly known fasction approximation
forcement learning algorithm Sarsa with CMAC for function By using a function approximation, the action-value func-
approximation. In what follows, we briefly introduce both ofion Q™ is now represented as a parameterized functional
them before presenting the final learning algorithm. form [7]. Now, whenever we make a change in one parameter

value, we also change the estimated value of many stateracti
A. Sarsa pairs, thus obtaining generalization. In this work, we Use t

The Sarsa algorithm works by estimating the action-val@erebellar Model Arithmetic Computer (CMAC) for function
function Q™ (s, a), for the current policyr and for all state- approximation[[11],[[12].
action pairs(s, a) [7]. The Q-function assigns to each state- CMAC works by partitioning the state space into multi-
action pair the expected return from it. Given a quintuple efimensionateceptive fieldseach of which is associated with
events, (s, a, 741, S¢41, a¢+1), that make up the transitiona weight In this work, receptive fields are hyper-rectangles
from the state-action pais;, a;) to the next one(s;;1,a:+1), in the state space. Nearby states share receptive fields, Thu
the Q-value of the first state-action pair is updated accordingneralization occurs between them. Multiple partitiohthe

to the following equation: state spaceldyerg are usually used, which implies that any
input vector falls within the range of multipkxcited receptive
Q(st, ar) + Q(st,ar) + ady, (1) fields one from each layer.

Layers are identical in organization, but each one is offset
relative to the others so that each layer cuts the state $pace
a different way. By overlapping multiple layers, it is pddsi
0r =T + AQ(se41, ar41) = sy, ar), @) o achieve qu?/ck éeneraligaptioi Whilep mair{taining thF; igbil
« is the learning rate parameter, akds a discount rate gov- to learn fine distinctions. Figure 2 shows an example of two
erning the weight placed on future, as opposed to immediaggid-like layers overlaid over a two-dimensional space.
rewards. Sarsa is an on-policy learning method, meanirtg thaThe receptive fields excited by a given statemake up the

whered; is the traditionaltemporal-difference errqr



feature seff",;, with each actioru indexing their weights in a  2) RLstep: This routine is run on each SMDP step, when-
different way. In other words, each macro-action is assedia ever the dribbler has to choose a macro-action. Given the
with a particular CMAC. Clearly, the number of receptiveurrent states, it starts by calculating part of the temporal-
fields inside each feature set is equal to the number of layedffference error (Equation 2), namely the difference betwve
The CMAC's response to a feature $&tis equal to the sum the intermediate reward and the expected return of the
of the weights of the receptive fields . Formally, letd, (i) previous SMDP step 1.stAction- IN lines 2 to 5, this routine
be the weight of the receptive fieldindexed by the action finds the receptive fields excited byand uses their weights to
a. Thus, the CMAC’s response 1, is equal toy ;. 0.(i), compute the estimated value of each actiom s. In line 6,
which represents th@-value Q(s, a). the next action to be taken by the dribbler is selected aaegrd
CMAC is trained by using the traditionalelta rule (also to an e-greedy policy. In line 7, this routine finishes to
known as the least mean square). In detail, after selecting@mpute the temporal-difference error by adding the distou
actiona, the weight of an excited receptive fieldndexed by rate A times the expected return of the current SMDP step,
a, 0,(i), is updated according to the following equation:  Qcurrentaction- NEXY, in lines 8 to 10, this routine adjusts the
weights of the receptive fields excited in the previous SMDP
0.(7) + 0,(7) + o, (3) step by the learning factas: times the temporal-difference

wheres is the temporal-difference error. A major issue whefi' 0 (see Equation 3). Since the weights have changed,
using CMAC is that the total number of receptive fie|gdve must recalculate the expected return of the current SMDP

required to span the entire state space can be very la fep. Qcurrentaction (line 11). Finally, the chpsen actl_on
Consequently, an unreasonable amount of memory may the .current state are stored, respectively, in thehlaga
needed. A technique commonly used to address this isddfstAction and LastState.

is called pseudo-random hashinfy]. It produces receptive Algorithm 2 RLstep

fields consisting of noncontiguous, disjoint regions ranjo 0 7 — Qrastaon

spread throughout the state space, so that only informatiof) ¢ aach ag:ior(;zzano

about receptive fields that have been excited during previou3: F, « receptive fields excited by

training is actually stored. .
g y 4 Qg Zier 0.(7)
C. Linear, Gradient-Descent Sarsa 5: end for

Our solution to the soccer dribbling task combines the Sars& CurrentAction { random action W/ proke
algorithm with CMAC for function approximation. We use ;. 5 . 8+ AQCurrent Avtion
an e-greedy policy for action selection. Sutton and Baftd [7]g. for eachi ¢ FostSare dO
provide a complete description of this algorithm under the, O1ast Action (i) < OLastAction (i) + ad
name oflinear, gradient-descent Sars®ur implementation 5. and for
follows the solution proposed by Stoee al. [13]. It consists ;.

) . ) : QcurrentAction < ) _icr, OCurrentAction
of three routinesRLstartEpisodeto be run by the dribbler . urrentAction € s, B0urrentction ()

U : : LastAction < CurrentAction
at the beginning of each episodef.step run on each SMDP 5. 1 ior0te s

step; andRLendEpisodeto be run when an episode ends. In

what follows, we present each routine in detail.

1) RLstartEpisode:Given an initial statesq, this routine

argmax, @, W/ prob.1 —e¢

3) RLendEpisode:This routine is run when an episode
starts by iterating over all available actions. In line 2firids ends. Initially, it calculates the appropriate reward biase

the receptive fields excited by, which compose the feature®" who won the episode. Next, it calculates the temporal-

setF,,. Next, in line 3, the estimated value of each macr&l_lfferencede[rorér:j t:;]e actlon-tvzﬂuetestlm?t;s (line G)fg/IDP
action a in sg is calculated as the sum of the weights of No need fo a € expected return of the curren

the excited receptive fields. In line 5, this routine selemtsStep.QC“"”"MC”O”) since this yalue IS defined tq efor
macro-action by following an-greedy policy and sends it totermlnal states. Lastly, this routine adjusts the weiglitthe

the RoboCup soccer simulator. Finally, the chosen actiah affcePtive fields excited in the previous SMDP step.
the initial states, are stored, respectively, in the variable%‘Ig orithm 3 RLendEpisode
LastAction and LastState.

1: if the dribbler is the winnethen
r<«1

Algorithm 1 RLstartEpisode
1: for each actioru do : else
F,, < receptive fields excited by, < —1

2
3
4
Qa = 2icr,, 0a(i) :: end if
7
8
9

argmax, @, W/ prob.1 —e¢

: for eachi e F do
. LastAction + i t € I LastState
random action w/ proke

eLastAction (Z) — eLastAction(i) + ad

2
3

4: end for 0 6 1 — QLastAction
5

6 - end for

. LastState + sg
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In this section, we report our experimental results witt #
2.

the soccer dribbler task. In all experiments, we used th
standard RoboCup soccer simulator (version 14.0.3, pobtoc g ;.
9.3) and a 20m x 20m training region. In that simulator & s
agents typically have limited and noisy visual sensors. F¢ @ 125
example, each player can see objects withfiaview cone, !

and the precision of an object’s sensed location degradés w o i“|
distance. To simplify the learning process, we removedeho: II
restrictions. Both the dribbler and the adversary weremgive

. .. 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000
360° of noiseless vision to ensure that they would always hav
complete and accurate knowledge of the environment.

Episodes
Related to parameters of the reinforcement learning algdg. 3. Histogram of the average number of episodes won bydttubler

: _ _ _ (success) during the training process (50,000 episodésy.d 500 episodes
”thnﬁ’ we sete = 0.01, a = 0.125, and,)‘ = 1. By no means were used, and 5 independent simulations were performed.
do we argue that these values are optimal. They were set based

on results of brief, informal experiments.

The weights of first-time excited receptive fields were S%ﬁwgle between it and the adversary is in the rajge270]

to 0. The bounds of the receptive fields were set according ereafter, it starts to advance by kicking the ball forwad
the generalization that we desired: angles were given wid ILfstration of this rule can be seen in Figure 5

of abqut 20 degrees, and distances were given W'dths O'atter the training process, we randomly generated 10,000
approximately 3 meters. We used 32 layers. Each dlmen3|on"9| ial configurations to test our solution. This time, the
every layer was offset from the others by32 of the desired | . [P i
width in that dimension. We used the CMAC implementatioﬂrlbbler always selected the macro-action with the highest

: . estimated valuei.e, we sete = 0. Further, the weights of
proposed by Miller and Glanz_114], which uses pseudgﬁe receptive fields were not updatée,, we seta = 0. We

e e ot s, AL, b h receptve el weigts esting o n sk
P q ' Where the dribbler obtained the highest success rate. Bt re

CO'III':)SIEP;.tte episodes as realistic as possible, agents wereoﬂco his experiment was even better. The dribbler won 5,795
P . . P a9 A eE| odes, thus obtaining a success rate of approxima&&ly
allowed to recover their staminas by themselves. This tas

was done by the coach after five consecutive episodes. Thi
enabled agents to start episodes with different staminzegal
We ran this experiment 5 independent times, each one lasti
50,000 episodes, and taking, on average, approximately
hours. Figure 3 shows the histogram of the average numb{ =S
of episodes won by the dribbler during the training proces @'J
Bins of 500 episodes were used.
Throughout the training process, the dribbler won, on av
erage,23, 607 episodes# 47%). From Figure 3, we can see
that it greatly improves its average performance as the mamb
of episodes increases. At the end of the training process, it
winning slightly less thar53% of the time.
Qualitatively, the dribbler seems to learn two major rules.
the first one, when the adversary is at a considerable distand
the dribbler keeps kicking the ball to the opposite side i
which the adversary is located until the angle between the
is in the range[90, 270], i.e., when the adversary is behind
the dribbler. After that, the dribbler starts to kick the Ibal
forward. An illustration of this rule can be seen in Figure
4,

o N
S u

o
S

~
%

N
@

The second rule seems to occur when the adversary
relatively close to and in front of the dribbler. Since thése
ig. 4. Example of the first major rule learned by the dribb{@op Left)

no vyay for the dnbbl,er to mpve forward or diagonally Wlth_ouihe adversary is at a considerable distance from the dribfilep Right) The
putting the possession at risk, it then holds the ball uh& t gripbler starts to kick the ball to the opposite side in whibk adversary is
located. (Bottom Left) The angle between the adversary heditibbler is in

2The implementation of the learning algorithm can be found athe rang€g90, 270]. Consequently, the dribbler starts to kick the ball forward
http://sites.google.com/site/soccerdribbling/ (Bottom Right) The dribbler keeps kicking the ball forward.
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Fig. 6. Histogram of the average number of episodes won bydthubler
(success) during the training process (50,000 episodegnwlsing one-
dimensional CMACs. Bins of 500 episodes were used, and Spermtent
simulations were performed.

obtaining a success rate of approximat&i.

Qualitatively, the dribbler seems to learn a rule similathi®
one shown in Figure 4. The major difference is that it always
a5 E e of th 4 maor rule | 4 by the dsibifTop Left kicks the ball to the opposite side in which the adversary is
Tlr?é a.clver);zrr];/pi;9 c?o;eetszl%?inin ?:S#?rorfﬂﬁe%?{gbeler. {‘I’to;IﬁQiTEec:jpribgle)r Iocatgd, it does not mat_te_r ItS_ dIStanC_e from the adversary’
holds the bali so as not to lose possession. (Bottom Left)drtbler keeps location. Consequently, it is highly unlikely that the drier
holding the ball. (Bottom Right) The angle between the asimr and the succeeds when the adversary is close to it.
g;'bkti’(':irin'g ihe EZ“gfg?\?vﬁg.o]' Consequently, the dribbler starts to advance v copjecture that one of the main reasons for such a poor

performance of the reinforcement learning algorithm when
using one-dimensional CMACs is that it does not take into

A. One-Dimensional CMACs account dependence between variabigs, they are treated
o __individually. Hence, such approach may throw away valuable

For comparisons sake, we repeated the above experimgpl,mation. For example, the variablesg(ball, adversary
using the original solution proposed by Stoeeal. [13]. It 4ng ;4 (ball, adversary together describe the position of

consists of the same learning algorithm presented in SectiQyyarsary with respect to the ball. However, they do not make
3, but using one-dimensional CMACs. In detail, each layer I 1\ ,ch sense when considered individually.

an interval along a state variable. In this way, the featete s
IF, is now composed b$2 x 5 = 160 excited receptive fields, VI. RELATED WORK
i.e., 32 excited receptive fields for each state variable. Reinforcement learning has long been applied to the robot
One of the main advantages of using one-dimensiongdccer domain. For example, Andou[15] uses “observational
CMACs is that it is possible to circumvent the curse of dimeneinforcement learning” to refine a function that is used by
sionality. In detail, the state space does not grow expd@nt the soccer agents for deciding their positions on the field.
in the number of state variables because dependence betwRiimiller et al. [16] use reinforcement learning to learn
variables is not taken into account. low-level soccer skills, such as kicking and ball-intertbep.
Figure 6 shows the histogram of the average number Wbkashimeet al. [17] propose a reinforcement learning meth-
episodes won by the dribbler during the training processd called “fuzzy Q-learning”, where an agent determines its
Each simulation took, on average, approximately 43 houksction based on the inference result of a fuzzy rule-based
Throughout the training process, the dribbler won, on ay&ra system. The authors apply the proposed method to the sce-
16,278 episodesA 33%). From Figure 6, we can see that thenario where a soccer agent learns to intercept a passed ball.
learning algorithm converges much faster when using one-Arguably, the most successful application is due to Stone
dimensional CMACs. However, its average performance é al. [13]. They propose the “keepaway task”, which consists
considerably worse. At the end of the training process, tlo¢ two teams, the keepers and the takers, where the former
dribbler is winning, on average, less tha®% of the time.  tries to keep control of the ball for as long as possible, &hil
After the training process, we tested this solution usirie latter tries to gain possession. Our solution to the esocc
the same 10,000 initial configurations previously generatedribbling task follows closely the solution proposed bygeo
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