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Abstract—Biology can offer insight into how realistic artificial ~ as other social interactions [4], [5], [6], [7]. The sociaida
agents and complex interactions between thgm can be created. hunting behaviors of hyenas are complex, however, they are
For instance, spotted hyenas of Western Africa typically hunt easier to analyze than those of primates. Whereas much of

alone, but cooperate once in a while to catch zebras. Using _ . . . .
hyenas as motivation, this paper evaluates three potential primate behavior is learned and flexible, the hyena behsyior

factors that affect the evolution of cooperation in a team of game though not innate, are less plastic [8], [9]. Thus, evolusity
agents: reward structure (i.e. whether fitness reward is given simulations of hyena behaviors make an ideal test bed for

to an individual agent or shared by the team), coordination studying the emergence of cooperative behaviors in adifici
mechanism (i.e. stigmergic vs. direct communication), and net teams

return (i.e. the size of reward relative to the difficulty of A h setti Predator-P imulati .
obtaining it). Through neuroevolution using Multi-Component S a research semng, a Fredator-Frey simulation environ-

ESP [:]_]7 three preda’[ors were evolved in a field Containing ment was Constructed to mOdel hunt|ng behaVIOI’S Of hyenas.
multiple fixed-behavior prey. Six such experiments show that This environment is easy to simulate with quantifiable rssul

(1) although shared reward strongly promotes cooperation, it and provides an abstract approximation to the hunting envi-
is not strictly necessary for evolving cooperation; (2) although ronment of hyenas in the wild. The predator-prey domain has

stigmergic coordination works well in simple, unambiguous . . .
tasks (i.e. with a single prey), direct communication is more previously been used to study the evolution of team behsavior

effective in more complex tasks (i.e. with multiple prey); and in game agents [10], [11]. Complex agent behaviors have
(3) the predators evolve to hunt alone or cooperatively based emerged through neuroevolution in games such as simulated
on which approach results in higher net return. Insights from  robot soccer [12], robotic battle [13] and Ms. Pac-Man [14].
these computational simulations can be used to develop more \iti-Component ESP, a neuroevolutionary architecturas w
intelligent behaviors for game agents in the future. . . . . .
used to coevolve the predators in this domain. This architec
|. INTRODUCTION ture was previously shown effective in evolving cooperatio
.and competition among predator-prey teams [1]. Here, prey

Scripting cooperative behavior in multi-agent games .'Eapture was considered a cooperative move on the part of

challengmg,. especially when_ the agent behaviors are redui the predators because the prey cannot be caught by a single
to be adaptive. Nature provides abundant examples of suﬁ dator on its own

behaviors whenever animals coexist as a team, such as an anlthe study consisted of six experiments, where the reward

colony, a flock of birds, or a pack of wolves. Individual andstructure (i.e. whether the reward was given to the indi&idu

e Lt e, sometmes Who caught e prey or shared among the whoe tea). e
exolicitly 1o achi)éve a comm;)n oal. The ori ir>1/s of F:Zc oordination mechanism (i.e. through stigmergic or direct
plicitly goal. 9 ommunication), and net return (i.e. the difficulty and dayo

cooperation are not fully understood. While experiment f prey capture) were varied (Table I). The experiments
psychological research has uncovered many factors a@ctiwere motivated by hyenas, which may. or may not share
cooperation [2], the ones that can most easily be controll%i1IS equally, communicate ir’1 many different ways, and hunt
in video games are: how the rewards are distributed, ho&\{ ' ’

I i i fferent kinds of prey either individually or as a team.
yveII the |nd|y|duals can c.om.m.umc.:;xte_, how difficult the task There were two types of prey in the experiments: zebras
is and how it affects the individual’s fitness.

. ... _.and gazelles. The zebras had the same speed as the predators,
In particular, spotted hyenas demonsirate SOph'St'Cat?a%d thus were more difficult to catch. They could not be

hunting behaviors, often catching S”_‘a” prey such as glWe”caught by a single predator, but had to be surrounded before

. %apture. Hence, the capture of a zebra constituted an act
(which they cannof[ C"?ltCh alone) [3], [4]. The rewards fro .0f cooperation among the predators, and the number of
the hunt are not distributed equally but depend upon som%

K of an individual. H | fined L vi bras caught was a useful measure of the extent of predator
ranx of an individual. Hyenas aiso use retined vocal, visu ooperation. Zebras gave more reward upon capture than
and tactile signals to communicate during the hunt as we

azelles. But the gazelles were slower than the predators,
Padmini Rajagopalan, Aditya Rawal, and Risto Miikkulainere a and. thus, could be CaUth by a S'ngle predator chasmg It.
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TABLE |

SETUP AND RESULTS OF THEEXPERIMENTS

Experiment Reward Coordination Number and Reward for Catching Results
Number Structure Mechanism Type of Prey Each Prey
1 Individual Stigmergic 4 Zebras 150 Little cooperation
evolves slowly
2 Shared Stigmergic 4 Zebras 150 Systematic cooperation
evolves early
3 Individual Direct 4 Zebras 150 Substantially improved
communication cooperation
4 Shared Direct 4 Zebras 150 Highly effective
communication cooperation
5 For gazelles - Individual, Direct 4 Gazelles, 1 Zebrg Gazelle - 100, Cooperation does not evolve,
For zebras - Shared | communication Zebra - 150 gazelle-hunting preferred
6 For gazelles - Individual, Direct 4 Gazelles, 1 Zebrg Gazelle - 100, Cooperation evolves,
For zebras - Shared | communication Zebra - 450 zebra-hunting preferred

nor sufficient means to establish it. Second, the predatoo$ birds and shoaling of fish have been modeled extensively
were coevolved to share fitness in the same task; suaBing rule-based approaches [16], [17], [18]. Cooperative
pressure was a sufficient incentive to establish cooperatibehavior of micro-organisms like bacteria and viruses has
quickly. The predator agents did not need to communicateeen modeled with genetic algorithms [19], [20]. Ant and
directly (i.e. by observing one another) to implement this ¢ bee colonies have been the subject of many studies involving
operative behavior; communication through stigmergy ),15] evolutionary computation as well [21], [22], [23]. Perez-
i.e. by observing the prey’s behavior, was enough. Next, ddribe et al. [22] studied the effects of group composition
experiment was performed with communication turned orand level of selection in artificial ants. In general, aniboy
but with individual fithess. Cooperation emerged very gasil optimization [21], [24] is a probabilistic technique thanc
suggesting that direct communication is a better cooritinat be used to model ants seeking shortest paths between their
mechanism than stigmergy. In addition, sharing the fithesolony and a food source. At a higher level, the conflicting
among the predators in the next experiment made the effagbals of individual versus team rewards were studied by
even stronger. Interestingly, this result contradictst thfa Keller and Floreano [25], focusing on the importance of
Yong and Miikkulainen [15], where cooperation withoutrelatedness (kin selection) in robotic agents. Althougmyna
communication was found more efficient. However, theimammals like hyenas demonstrate intelligent team behgvior
simulations contained only one prey as opposed to the fotlreir behaviors have not yet been analyzed computationally
prey in the experiments in this paper, which makes stigmergio our knowledge.
signals harder to interpret. Coevolution is defined as the simultaneous evolution of
Two further experiments were performed with both zebrasvo or more individuals whose fithesses are measured based
and gazelles on the field while varying the reward for catcten their interactions with each other [26]. In cooperative
ing the zebras. The reward from zebra capture was sharegevolution, the individuals have to evolve to cooperate to
equally among the predators, but the reward from gazelfgerform a task. They share the rewards and punishments of
capture went to the predator that caught it. Cooperatien (i.their individual actions equally. It turns out that it is et
zebra hunting) turned out to emerge reliably in the predat@asier to coevolve components that cooperate to form a so-
agents when the payoff for the zebras was sufficient to makation, rather than evolve the complete solution direc#y]|
it worth their while; however, these agents were also abl@8]. The components will thus evolve different roles in the
to hunt the smaller prey (gazelles) individually when thereooperative task.
were no zebras available. Thus the simulations revealed aFor example, in the Enforced SubPopulations (ESP) archi-
principled interaction of the reward structure, coordimat tecture [27], neurons selected from different subpoporeti
mechanism, and net return in determining whether cooperare required to form a neural network whose fitness is then
tion emerged or not. shared equally among them. Such an approach breaks a com-
Section 2 reviews prior work on evolution of cooperationplex task into easier sub-tasks, avoids competing corvesti
and section 3 defines the predator-prey problem domaiamong the component neurons and makes the search space
Section 4 puts forth hypotheses about the factors affecimaller. These effects make neuroevolution faster and more
ing evolution of cooperative behaviors. Section 5 includesfficient.
detailed descriptions of the experiments and the results. A Similarly, Multi-Component ESP extends this approach to
discussion of implications and future work in sections 6 andvolve a team of agents (Figure 1). Each agent comprises
7 concludes the paper. multiple ESP-type neural networks to sense different dbjec
in the environment. The team’s reward from fitness evalu-
ations is shared equally by the component networks of all
A significant body of work exists on computational modelthe agents [1]. The cooperative coevolution approach has
ing of cooperation in nature. For instance, flocking behavio been shown to be effective when coevolving teams of agents.

Il. RELATED WORK
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Fig. 1. Multi-Component ESP in the predator-prey domain fadator agent in Experiment 1. A single predator agent (show(b)) is composed of
five neural networks. Four of these sense one of the prey fig€heir outputs are given to a fifth combiner network that otgghe next move for that
predator. Each network is evolved in a separate ESP prostsse one subpopulation is evolved for each of the neurotiseimetwork (a). The predator
is evaluated in the domain simulation with prey and other pgrrdagents (c). Its fitness is distributed equally among alrnbtworks and among all the
neurons that participated in it. In this manner, evolution da&scover neurons and networks that cooperate well to farrefiective agent.

First, Yong and Miikkulainen [15] showed that a team ofreturn are also modifiable, making this domain an ideal
predators that share fitness can evolve to cooperate to capthtform to study hunting behaviors of hyenas.
prey with or without communication. In their experiments,

W'thOUt. qommumcaﬂon, thg roles. the predatqrs _evolve a8 this paper to study constraints under which cooperation
more rigid but more effective; with communication, their

. ) emerges. A team of predators (hyenas) is evolved using
roles are less efficient but more flexible. Second, Rawal . . ' ;
. . I fixed-beh
al. [1] showed that the Multi-Component ESP arch|tecturggéperatlve coevolution to capture fixed-behavior prey (a

More specifically, a predator-prey domain was constructed

can. coevol te of predato ih a team of ore azelle or a zebra). The world in this simulation is a digeret
coevolve a team precators: wi cea P'¥%roidal environment with 100 x 100 grid locations without

The individuals cogperate within the team, but the predat%rbstacles where the prey and predators can move in four

team competes with the prey team. Therefore, the I\/Iumdirections: east, west, north and south. They move one step

Component ESP architecture will be used to evolve thgt a time, and all the agents take a step simultaneously. To

predators in this paper as _weII. In prior work, the Outpm?nove diagonally, an agent has to take two steps (one in the
of the neural networks within a predator or prey agent werg

dt t the final output action. H imi ast-west direction and one in the north-south directién).
summed fo get the Tinal output action. HOWEVET, preliminary o yaror s said to have caught a prey if it moves into the
exper!ments showed that including a combiner network t me location in the world as the prey. The predators are
C(r)lrdnl?lne Iihz iOnUItFr)1UtS r?1f trheie netfwr:)]rkrs Wafn Toiebpgw\ﬁrfrg are of prey positions and the prey are aware of predator
a esufte € emergence ot more complex BENaVIOs,qiions. Direct communication among predators (in terms
Hence, this technique was used in this paper (Figure

The combiner network weights were evolved using the sam fknowledge of other predators’ positions) is also intreei
: iff some cases. In all other cases, the predator agents can
technique as the other networks. sense only prey movements and have to use that to coordinate
their actions (stigmergic communication). There is no cire
Il. THE PREDATOR-PREY DOMAIN communication among the prey. Each predator has as its
In the predator-prey domain, predators chase and try thUtS thex andy offsets 0 f 6!" the prey from that predator.
the case of communicating predators, they also get as

capture prey in a simulated environment. The domain i )

a special case of the well-known pursuit-evasion problerwpm thex andy offsets to the other predators. When fltness_
in mathematics and computer science [10]. Pursuit-evasi(?.‘rn‘lw"’lrdS from prey capture are shared, all the predators gain
problems are common in the real world as well as in arti_|tness even when only one of them actually catches the prey.

ficial environments like video games. They are chalIengin?Z'é cases with individual fitness, only the particular predat
because they are highly dynamic and the optimal actions a pt captures the prey gets the reward.

generally not known. The predator-prey domain can easily be There are two types of prey in the environment - a smaller
extended to include multiple agents acting in teams. Factoprey (gazelle) that moves with 0.75 times the speed of the
such as reward structure, coordination mechanism and rgedator and a larger prey (zebra) that has the same speed



as the predator. The prey behaviors in these experiments ar&hese hypotheses will be tested in the computational
hard-coded and do not evolve. Each prey simply moves déxperiments outlined next.

rectly away from the current nearest predator. The presdator

can therefore catch the smaller prey individually, but cdnn V. EXPERIMENTS

catch the larger prey by just following the prey around, The experiments were designed to observe cooperation in
because their grid world is toroidal. The predators have Qe qators hunting prey that are difficult for a single predat
surround a zebra from different directions before they capy 4ich on its own. The goal is to test whether predator

catch it. In cases where both types of prey exist in the fieldymmynication, fitness distribution and size of the fitness
simultaneously, the predators need to decide whether &b caje\ arq influence evolution of cooperation in hypothesized
the small prey individually or to coordinate and hunt ttha

larger prey together. The larger prey give more reward than
the smaller prey, and the relative reward amounts can ke Experimental Setup

varied. . .
Thus, three parameters are progressively modified in theseMultl—Component ESP [1] is used to evolve the predators

experiments: (1) whether only the individual actually tatc with the following parameter se_ttings: Each predator caissi
ing the prey receives the fitness, or whether it is shared j one netwo_rk for th_e Comb'”e“ a_nd one for each prey
all individuals, (2) whether the predators can observe o d predator it tracks: four in Expgrlments .1 and 2, six in
another or not (direct vs. stigmergic communication), an xperiments 3 and 4, and seven in Expenmt_—ants 5 and 6.
(3) the size of the fitness reward from catching a prey. Thesé1e QUtpUtS (.)f the predator af‘d prey tracking ngtworks
experiments are used to contrast the role of each of theQF® gven as input to the combiner network to dec_:lde the
parameters in the evolution of cooperation. next move for that predator. Eac_h networl_< (mcl_udmg the
combiner) has a feedforward architecture with a singlerlaye
IV. HYPOTHESES of 10 hidden neurons and sigmoidal activation function;.
Each hidden neuron is evolved in a separate subpopulation
The main goal is to discover what factors influenceonsisting of 100 neurons; each neuron is represented as a
whether the predators evolve to Cooperate in their hunt br N@oncatenation of real-valued numbers representing fpumn
Spotted hyenas in the wild usually prefer to hunt small pre}nd output connections. During each evolutionary germati
alone even though bigger, more difficult-to-catch prey such 000 trials are run wherein the neurons are randomly chosen
as zebras would give them more food. Only rarely, do theyyith replacement) from their subpopulations to form a
team up to hunt zebras [3], [4]. What are the reasons behifgural network. In each trial, the predators are evaluated
these seemingly suboptimal hunting habits? The followingix times, with the prey and predators starting at random
hypotheses about the evolution of cooperative behaviors jBcations each time. The fithesses over the six evaluatiens a

hyenas will be tested in the simulations: averaged, and assigned to all the neurons that constitu¢ed t
1) Sharing the fitness reward is an incentive for thenetwork. After the trials, the top 25 of neurons within each
predators to cooperate. subpopulation are recombined using one-point crossover. T

If only the predator that catches a prey gets the rewardffspring replace the bottom %0 of the neurons in the
there is no reason for the other predators to help in thgorresponding subpopulation, and they are then mutatdd wit
capture. If they all share the rewards, there is a benefitprobability of 0.4 on one randomly-chosen weight on each
to cooperation, and it should emerge in evolution. chromosome, by adding a Cauchy-distributed random value
2) If cooperation is easy to establish, e.g. through comto it. Small changes to these parameters lead to similar
munication, it is more likely to emerge. results.
Evolving to cooperate just through stigmergy (sensing A summary of different experiments was given in Table I.
of clues from the environment) is a difficult task. If In short, the first, i.e. the control experiment, includesno
the predators can communicate directly (i.e. by sensingpmmunicating predators with individual fitness. The secon
each others’ positions), the cost of cooperation igxperiment adds shared fitness rewards, while the third
significantly lower because it becomes easier for thexperiment adds communication instead. The predators in
predators to coordinate their actions. Cooperation e fourth experiment both communicate and share fitness

thus more likely to emerge. rewards.
3) Evolution of cooperation depends on payoff upon prey The fifth and the sixth experiment focus on the hyena
capture. environment more specifically by having both zebras and

Hyenas can both communicate and share fithess rgazelles on the field. The predators can both communicate
wards, but they still typically hunt on their own. and share the reward from zebra capture. They still prefer
Perhaps the energy necessary to coordinate their huhtinting individually for smaller animals (gazelles) thae a
ing behaviors to catch larger prey is not off-set byless rewarding. Cooperative hunting of big prey such as
the higher rewards they get upon catching it. If theebras is rare. Perhaps the cost of cooperation is higher
reward was higher, cooperation would be more likelyhan the reward obtained? Experiments 5 and 6 evaluate this
to emerge. hypothesis.
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Fig. 2. Average number of prey (zebras) caught (out of fousibe) in Experiments 1, 2, 3 and 4. The total number of prey kibyg the three predators
was averaged over 6000 trials for each generation. Cooperiatslow to evolve with individual rewards and without commmation, and is less efficient
(Experiment 1). Introduction of reward sharing results ietéa and more effective evolution of cooperation (Experin@ntKnowledge of positions of

other predators makes it easier to evolve coordinated tmustimtegies (Experiment 3). Evolution of cooperation isrggest when reward sharing and
communication are combined (Experiment 4).

In each study, there are three predators; the number wimber of zebras caught in each generation in Experiments 1
prey varies from experiment to experiment. In Experiments &nd 2 are contrasted in Figure 2.
through 4, there are four zebras, and each one gives a fitnesSimilarly, adding communication to predators with in-
of 150 points to each of the three predators upon capture. diividual fithess in Experiment 3 results in the predators
Experiments 5 and 6, there are four gazelles and one zebeasily evolving to cooperate, leading to more prey captures
and each gazelle gives a fitness of 100 to the predator th&igure 2). This effect is even stronger with both communi-
catches it. In Experiment 5, catching the zebra gives a kkwacation and fitness sharing enabled (Experiment 4; Figure 2),
of 150 points to each predator, while in Experiment 6, thisuggesting that these two factors affect different aspects
reward is increased to 450 points (Table I). of the evolution process, i.e. how easy it is to establish

The output neurons represent different actions that @operation, and how worthwhile it is.
predator agent can take. Each prey has four possible action€gExperiments 5 and 6 were designed to answer the question:
in each time step (move east, west, north, or south) and tHethere are both gazelles, which can be caught easily but
predators have five (move east, west, north, south, or idlgive a lower fitness, and zebras, which need all the predators
To evolve blocking strategies in predators, the idle acigon to cooperate to catch them but give higher fithess, which

often important. one is preferred? In Experiment 5, the predators prefer to
hunt gazelles instead of evolving to cooperate to capture th
B. Results zebra. The reward for catching the zebra is not large enough

for cooperative behaviors to be selected during evolution.
The results are summarized in the rightmost column agf contrast, in Experiment 6, it is large enough, and the
Table 1. Here, the number of zebras caught by the predatqsgedators slowly evolve to team up to capture this more
is taken as the metric indicating the extent of cooperatiogifficult prey, thus verifying the hypothesis that net retur
because zebras need to be surrounded by more than @oe&important in the evolution of cooperation (Figure 3).
predator before they can be caught. This requires activeterestingly, they are still able to hunt gazelles as well,
movement coordination on the part of the predators. but only do it when there are no zebras around. This result
In the control experiment (Experiment 1), the predators important because it suggests that cooperative stestegi
neither communicate nor share fithess. Cooperation does matlude individual strategies as a special case.
evolve initially and as a result, they rarely catch any zebra i
On the other hand, adding reward sharing (Experiment 2) ifz- Evolved Behaviors
creases the number of prey caught as the predators efficientl These overall results show that communication among the
evolve to cooperate over the early generations. The averageedators, reward distribution when a prey is caught, and
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Fig. 3. Average number of zebras caught in Experiments 5 anché.tdtal number of prey (out of one possible) caught by theetimedators was

averaged over 6000 trials for each generation. When the pagyafapturing a zebra is low with respect to the difficulty aefching it (Experiment 5), the

predators prefer to hunt the easy-to-catch gazelles mhaaliy. When the net return for capturing the zebra is highugho(Experiment 6), the predators
evolve to discover cooperative strategies to hunt it. Ohée ¢aught, they continue by hunting gazelles.

[Blocker 1 T Attacker 1

2] et
@ 99 OF [0

Blocker 1 Attacker 2

Blocker 1

Attacker 1 Attacker 2

Frame 1 Frame 2

Frame 1 Frame 2

. . . ) Fig. 5. Role switching between the hunting of two prey (Expent 4).
Fig. 4. Collaboration during a zebra hunt (frequently ofedrin Exper-  he predators assume certain roles (attackers, blockely Wwhiting a prey

iments 2, 3 and 4). Tw_o predators assume the role of attackeclaase (Frame 1). These roles can change when hunting the next pramér2).
the prey towards the third predator, which acts as blockean(e 1). They

surround the prey from three directions and capture it (Frajne

cooperate to catch the prey. These roles are rigid enough

net return from capturing a prey are important factors in thi& not require communication. The predators act like a well-
evolution of coordinated hunting, as hypothesized. Exanitained team that knows exactly how each team member will
ples of evolved behaviors are shown at http:/nn.cs.utexddehave in any given scenario: Usually one team member
edu/?cooperation and described below. In Figures 4, 5,63ys in place while the other two chase the prey towards
and 7, the circles represent predators, the trianglessepre it (Figure 4, Video 2).
large prey (zebras) and the squares represent smaller preyWhen comparing the control experiment to predators that
(gazelles). can communicate, predators are again found to evolve co-

When the predators neither communicated nor sharé@eration much faster (Figure 4, Video 2). Communication
fitness, they performed very poorly on the prey-capture.taskiakes it easier for a predator to sense what the other
Initially, they did not evolve to cooperate to catch the preypredators are doing and act accordingly, thus reducing the
and the prey easily eluded any individual predators. NgOst of evolving to cooperate. Further, as expected, eoolut
predator knows where the other predators are, and thereoicooperation was strongest in predators that both communi
no fitness incentive to cooperate when it senses (througate and share fitness rewards. While the non-communicating
stigmergy) other predators hunting the same prey (Video 19redators develop fixed roles, communication allows them to
Eventually, the predators do evolve to coordinate througdapt to the current situation (cf. [15]). These predattss a
stigmergy, but this is not easy or efficient. Once fitnesses afave more flexible behaviors, i.e. they can change roles in
shared, the predators have a direct incentive to collaborathe middle of the hunt (Figure 5, Video 3).
and this leads to their quickly evolving specific roles to It is interesting to note that this result directly contiadi



= -0, A a *Q
A B B @I é') m@ s - mé
oG A @ g

Attacker 1 Attacker 2 Blocker 1

Frame 1 Frame 2 Frame 1 Frame 2

Fig. 6. Predators prefer to hunt gazelles (Experiment 5). Whennet Fig. 7.  Predators prefer to hunt the zebra (Experiment 6). When

return from capturing a zebra is low, the predators prefesitty the slower net return from capturing a zebra is high enough, the presiaweolve to

gazelles (Frame 1). They successfully catch them on their (Breme 2).  cooperatively hunt the zebra first (Frame 1). After the zebraaptured,
they return to hunting gazelles individually (Frame 2).

that of Yong and Miikkulainen [15]. They found that adding

communication to predators that already shared fitness eays a cost for another individual to receive a benefit [29].
wards made the evolution of cooperation more difficulfhis is a useful working definition in artificial settings as
and less robust; role-based cooperation based on stigmeMy§!l. Thus in Experiment 3, though not all the predators
was more efficient. However, their experiment had only &ain by coordinating their behaviors, it is still considere
single prey, which means the stigmergic signals based on ggoperation.

behavior are easy to interpret. All the predators attempt to Interestingly, a similar situation arises in hyenas as .well
capture the same prey, therefore the movements of this preyenas have a complex social structure that is based on
can be easily used to infer what the other prey are doinfereditary social ranking [6]. Higher ranked hyenas have
Four prey, in contrast, all respond to the three predatorgore offspring and are given a bigger share of the prey that
simultaneously, which makes it hard to infer which ones ar caught through cooperation. Rewards are thus not shared
being closely chased and which ones are not. Such ambiguggually, but higher ranked hyenas use lower ranked hyenas
makes cooperative strategies harder to evolve. to gain individual fitness.

With two different types of prey, whether cooperation The reasons for such a rank-based society are unknown;
evolves or not depends on the value of the prey relativié anything, rank-based evolution should be less efficient
to the difficulty of catching it. When the zebra rewardthan evolution based on actual fitness evaluations. To z@aly
was not much higher than the gazelle reward, the predatdhgse paradoxical behaviors, future experiments can be de-
did not evolve cooperation, preferring to catch gazelles osigned to simulate rank-based social structure in reptazuc
their own (Figure 6, Video 4). The reward for catching theand hunting. When fitness evaluations are costly, rank-based
zebra is much higher in Experiment 6, and the predato@/mution may be more efficient, even when it result in para-
evolve to cooperate to catch it first (with some interferencgoxical hunting behaviors. If confirmed, this principle may
from nearby gazelles; Figure 3). Once the zebra is caugftgad to the construction of better evolutionary computatio
the predators return to hunting the gazelles individualljechniques for domains where fitness evaluation is expensiv
(Figure 7, Video 5). Thus, increasing the net return on theuch as intelligent agents in games.
zebra leads to multiple (i.e. both individual and coopegiti Another future direction would be to evaluate these factors
hunting strategies in the predators. These results theref@ffecting cooperation in the presence of evolving prey.hSuc
show how reward structure, coordination mechanism, and né@mpetitive coevolution between predators and prey could
return interact in producing cooperative behavior. lead to complex behaviors in both. In the wild, hyenas

have to coordinate to hunt zebras partly because the zebras
VI. DisCUSSION ANDFUTURE WORK themselves cooperate to defend their herd against hyenas.

The principles of reward structure, coordination mechaSimulations of evolving predators and prey can help un-
nism, and net return can be manipulated to evolve mokerstand such predator-prey dynamics better. They may also
realistic and intelligent agents and teams for video gamds alead to techniques that result in more complex behaviors for
robotics applications. Such opportunities constitute atmoartificial agents, as well as agents that adapt in response to
interesting long-term direction, demonstrating how complayer actions.
putational insights into biology can benefit computational
engineering as well. VII. CONCLUSION

The simulations also lead to insights into cooperation The predator-prey domain was used in this paper to
in nature. For instance, the predators in Experiment 3 (irdetermine the reasons for complex behaviors observed in
dividual rewards with communication) evolve cooperativanature. The experiments confirmed that predator coordinati
hunting strategies efficiently, but they do not have any $isne mechanism, reward structure, and net return on prey capture
incentive for cooperation. Instead, they use one another &e important factors in the evolution of efficient coopismat
improve individual fitness. Is this real cooperation? In-biohunting behaviors. When hyenas survive on gazelles, they do
logical literature, a cooperator is defined as an individutad not need to cooperate. However, if the zebras are available



and tasty enough, they will. These results are intuitivg13]
but this is the first time easily replicable experiments were
constructed to verify them. The same factors that wergy
established to be important in the evolution of cooperation

in this domain can be manipulated in more complex artificial

environments to build interesting behaviors for game agen
in the future.
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