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Abstract—Biology can offer insight into how realistic artificial
agents and complex interactions between them can be created.
For instance, spotted hyenas of Western Africa typically hunt
alone, but cooperate once in a while to catch zebras. Using
hyenas as motivation, this paper evaluates three potential
factors that affect the evolution of cooperation in a team of game
agents: reward structure (i.e. whether fitness reward is given
to an individual agent or shared by the team), coordination
mechanism (i.e. stigmergic vs. direct communication), and net
return (i.e. the size of reward relative to the difficulty of
obtaining it). Through neuroevolution using Multi-Component
ESP [1], three predators were evolved in a field containing
multiple fixed-behavior prey. Six such experiments show that
(1) although shared reward strongly promotes cooperation, it
is not strictly necessary for evolving cooperation; (2) although
stigmergic coordination works well in simple, unambiguous
tasks (i.e. with a single prey), direct communication is more
effective in more complex tasks (i.e. with multiple prey); and
(3) the predators evolve to hunt alone or cooperatively based
on which approach results in higher net return. Insights from
these computational simulations can be used to develop more
intelligent behaviors for game agents in the future.

I. I NTRODUCTION

Scripting cooperative behavior in multi-agent games is
challenging, especially when the agent behaviors are required
to be adaptive. Nature provides abundant examples of such
behaviors whenever animals coexist as a team, such as an ant
colony, a flock of birds, or a pack of wolves. Individual and
team interests often conflict in such teams; sometimes the
individuals act by themselves, in other times they cooperate
explicitly to achieve a common goal. The origins of such
cooperation are not fully understood. While experimental
psychological research has uncovered many factors affecting
cooperation [2], the ones that can most easily be controlled
in video games are: how the rewards are distributed, how
well the individuals can communicate, how difficult the task
is and how it affects the individual’s fitness.

In particular, spotted hyenas demonstrate sophisticated
hunting behaviors, often catching small prey such as gazelles
individually and sometimes coordinating to hunt zebras
(which they cannot catch alone) [3], [4]. The rewards from
the hunt are not distributed equally but depend upon social
rank of an individual. Hyenas also use refined vocal, visual
and tactile signals to communicate during the hunt as well
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as other social interactions [4], [5], [6], [7]. The social and
hunting behaviors of hyenas are complex, however, they are
easier to analyze than those of primates. Whereas much of
primate behavior is learned and flexible, the hyena behaviors,
though not innate, are less plastic [8], [9]. Thus, evolutionary
simulations of hyena behaviors make an ideal test bed for
studying the emergence of cooperative behaviors in artificial
teams.

As a research setting, a Predator-Prey simulation environ-
ment was constructed to model hunting behaviors of hyenas.
This environment is easy to simulate with quantifiable results
and provides an abstract approximation to the hunting envi-
ronment of hyenas in the wild. The predator-prey domain has
previously been used to study the evolution of team behaviors
in game agents [10], [11]. Complex agent behaviors have
emerged through neuroevolution in games such as simulated
robot soccer [12], robotic battle [13] and Ms. Pac-Man [14].
Multi-Component ESP, a neuroevolutionary architecture, was
used to coevolve the predators in this domain. This architec-
ture was previously shown effective in evolving cooperation
and competition among predator-prey teams [1]. Here, prey
capture was considered a cooperative move on the part of
the predators because the prey cannot be caught by a single
predator on its own.

The study consisted of six experiments, where the reward
structure (i.e. whether the reward was given to the individual
who caught the prey or shared among the whole team), the
coordination mechanism (i.e. through stigmergic or direct
communication), and net return (i.e. the difficulty and payoff
of prey capture) were varied (Table I). The experiments
were motivated by hyenas, which may or may not share
kills equally, communicate in many different ways, and hunt
different kinds of prey either individually or as a team.

There were two types of prey in the experiments: zebras
and gazelles. The zebras had the same speed as the predators,
and thus were more difficult to catch. They could not be
caught by a single predator, but had to be surrounded before
capture. Hence, the capture of a zebra constituted an act
of cooperation among the predators, and the number of
zebras caught was a useful measure of the extent of predator
cooperation. Zebras gave more reward upon capture than
gazelles. But the gazelles were slower than the predators,
and thus, could be caught by a single predator chasing it.

First, three predators were coevolved to catch four zebras
without communication and with individual fitness rewards.
Cooperation did eventually emerge, but it was very difficult
to evolve, suggesting that there was neither sufficient pressure



TABLE I
SETUP AND RESULTS OF THEEXPERIMENTS

Experiment Reward Coordination Number and Reward for Catching Results
Number Structure Mechanism Type of Prey Each Prey

1 Individual Stigmergic 4 Zebras 150 Little cooperation
evolves slowly

2 Shared Stigmergic 4 Zebras 150 Systematic cooperation
evolves early

3 Individual Direct 4 Zebras 150 Substantially improved
communication cooperation

4 Shared Direct 4 Zebras 150 Highly effective
communication cooperation

5 For gazelles - Individual, Direct 4 Gazelles, 1 Zebra Gazelle - 100, Cooperation does not evolve,
For zebras - Shared communication Zebra - 150 gazelle-hunting preferred

6 For gazelles - Individual, Direct 4 Gazelles, 1 Zebra Gazelle - 100, Cooperation evolves,
For zebras - Shared communication Zebra - 450 zebra-hunting preferred

nor sufficient means to establish it. Second, the predators
were coevolved to share fitness in the same task; such
pressure was a sufficient incentive to establish cooperation
quickly. The predator agents did not need to communicate
directly (i.e. by observing one another) to implement this co-
operative behavior; communication through stigmergy [15]),
i.e. by observing the prey’s behavior, was enough. Next, an
experiment was performed with communication turned on,
but with individual fitness. Cooperation emerged very easily,
suggesting that direct communication is a better coordination
mechanism than stigmergy. In addition, sharing the fitness
among the predators in the next experiment made the effect
even stronger. Interestingly, this result contradicts that of
Yong and Miikkulainen [15], where cooperation without
communication was found more efficient. However, their
simulations contained only one prey as opposed to the four
prey in the experiments in this paper, which makes stigmergic
signals harder to interpret.

Two further experiments were performed with both zebras
and gazelles on the field while varying the reward for catch-
ing the zebras. The reward from zebra capture was shared
equally among the predators, but the reward from gazelle
capture went to the predator that caught it. Cooperation (i.e.
zebra hunting) turned out to emerge reliably in the predator
agents when the payoff for the zebras was sufficient to make
it worth their while; however, these agents were also able
to hunt the smaller prey (gazelles) individually when there
were no zebras available. Thus the simulations revealed a
principled interaction of the reward structure, coordination
mechanism, and net return in determining whether coopera-
tion emerged or not.

Section 2 reviews prior work on evolution of cooperation,
and section 3 defines the predator-prey problem domain.
Section 4 puts forth hypotheses about the factors affect-
ing evolution of cooperative behaviors. Section 5 includes
detailed descriptions of the experiments and the results. A
discussion of implications and future work in sections 6 and
7 concludes the paper.

II. RELATED WORK

A significant body of work exists on computational model-
ing of cooperation in nature. For instance, flocking behaviors

of birds and shoaling of fish have been modeled extensively
using rule-based approaches [16], [17], [18]. Cooperative
behavior of micro-organisms like bacteria and viruses has
been modeled with genetic algorithms [19], [20]. Ant and
bee colonies have been the subject of many studies involving
evolutionary computation as well [21], [22], [23]. Perez-
Uribe et al. [22] studied the effects of group composition
and level of selection in artificial ants. In general, ant-colony
optimization [21], [24] is a probabilistic technique that can
be used to model ants seeking shortest paths between their
colony and a food source. At a higher level, the conflicting
goals of individual versus team rewards were studied by
Keller and Floreano [25], focusing on the importance of
relatedness (kin selection) in robotic agents. Although many
mammals like hyenas demonstrate intelligent team behaviors,
their behaviors have not yet been analyzed computationally
to our knowledge.

Coevolution is defined as the simultaneous evolution of
two or more individuals whose fitnesses are measured based
on their interactions with each other [26]. In cooperative
coevolution, the individuals have to evolve to cooperate to
perform a task. They share the rewards and punishments of
their individual actions equally. It turns out that it is often
easier to coevolve components that cooperate to form a so-
lution, rather than evolve the complete solution directly [27],
[28]. The components will thus evolve different roles in the
cooperative task.

For example, in the Enforced SubPopulations (ESP) archi-
tecture [27], neurons selected from different subpopulations
are required to form a neural network whose fitness is then
shared equally among them. Such an approach breaks a com-
plex task into easier sub-tasks, avoids competing conventions
among the component neurons and makes the search space
smaller. These effects make neuroevolution faster and more
efficient.

Similarly, Multi-Component ESP extends this approach to
evolve a team of agents (Figure 1). Each agent comprises
multiple ESP-type neural networks to sense different objects
in the environment. The team’s reward from fitness evalu-
ations is shared equally by the component networks of all
the agents [1]. The cooperative coevolution approach has
been shown to be effective when coevolving teams of agents.



Fig. 1. Multi-Component ESP in the predator-prey domain for predator agent in Experiment 1. A single predator agent (shown in (b)) is composed of
five neural networks. Four of these sense one of the prey agents. Their outputs are given to a fifth combiner network that outputs the next move for that
predator. Each network is evolved in a separate ESP process,where one subpopulation is evolved for each of the neurons inthe network (a). The predator
is evaluated in the domain simulation with prey and other predator agents (c). Its fitness is distributed equally among all the networks and among all the
neurons that participated in it. In this manner, evolution can discover neurons and networks that cooperate well to form an effective agent.

First, Yong and Miikkulainen [15] showed that a team of
predators that share fitness can evolve to cooperate to catch
prey with or without communication. In their experiments,
without communication, the roles the predators evolve are
more rigid but more effective; with communication, their
roles are less efficient but more flexible. Second, Rawal et
al. [1] showed that the Multi-Component ESP architecture
can coevolve a team of predators with a team of prey.
The individuals cooperate within the team, but the predator
team competes with the prey team. Therefore, the Multi-
Component ESP architecture will be used to evolve the
predators in this paper as well. In prior work, the outputs
of the neural networks within a predator or prey agent were
summed to get the final output action. However, preliminary
experiments showed that including a combiner network to
combine the outputs of these networks was more powerful
and resulted in the emergence of more complex behaviors.
Hence, this technique was used in this paper (Figure 1).
The combiner network weights were evolved using the same
technique as the other networks.

III. T HE PREDATOR-PREY DOMAIN

In the predator-prey domain, predators chase and try to
capture prey in a simulated environment. The domain is
a special case of the well-known pursuit-evasion problem
in mathematics and computer science [10]. Pursuit-evasion
problems are common in the real world as well as in arti-
ficial environments like video games. They are challenging
because they are highly dynamic and the optimal actions are
generally not known. The predator-prey domain can easily be
extended to include multiple agents acting in teams. Factors
such as reward structure, coordination mechanism and net

return are also modifiable, making this domain an ideal
platform to study hunting behaviors of hyenas.

More specifically, a predator-prey domain was constructed
in this paper to study constraints under which cooperation
emerges. A team of predators (hyenas) is evolved using
cooperative coevolution to capture fixed-behavior prey (a
gazelle or a zebra). The world in this simulation is a discrete
toroidal environment with 100 x 100 grid locations without
obstacles, where the prey and predators can move in four
directions: east, west, north and south. They move one step
at a time, and all the agents take a step simultaneously. To
move diagonally, an agent has to take two steps (one in the
east-west direction and one in the north-south direction).A
predator is said to have caught a prey if it moves into the
same location in the world as the prey. The predators are
aware of prey positions and the prey are aware of predator
positions. Direct communication among predators (in terms
of knowledge of other predators’ positions) is also introduced
in some cases. In all other cases, the predator agents can
sense only prey movements and have to use that to coordinate
their actions (stigmergic communication). There is no direct
communication among the prey. Each predator has as its
inputs thex andy offsets of all the prey from that predator.
In the case of communicating predators, they also get as
input thex andy offsets to the other predators. When fitness
rewards from prey capture are shared, all the predators gain
fitness even when only one of them actually catches the prey.
In cases with individual fitness, only the particular predator
that captures the prey gets the reward.

There are two types of prey in the environment - a smaller
prey (gazelle) that moves with 0.75 times the speed of the
predator and a larger prey (zebra) that has the same speed



as the predator. The prey behaviors in these experiments are
hard-coded and do not evolve. Each prey simply moves di-
rectly away from the current nearest predator. The predators
can therefore catch the smaller prey individually, but cannot
catch the larger prey by just following the prey around,
because their grid world is toroidal. The predators have to
surround a zebra from different directions before they can
catch it. In cases where both types of prey exist in the field
simultaneously, the predators need to decide whether to catch
the small prey individually or to coordinate and hunt the
larger prey together. The larger prey give more reward than
the smaller prey, and the relative reward amounts can be
varied.

Thus, three parameters are progressively modified in these
experiments: (1) whether only the individual actually catch-
ing the prey receives the fitness, or whether it is shared by
all individuals, (2) whether the predators can observe one
another or not (direct vs. stigmergic communication), and
(3) the size of the fitness reward from catching a prey. These
experiments are used to contrast the role of each of these
parameters in the evolution of cooperation.

IV. H YPOTHESES

The main goal is to discover what factors influence
whether the predators evolve to cooperate in their hunt or not.
Spotted hyenas in the wild usually prefer to hunt small prey
alone even though bigger, more difficult-to-catch prey such
as zebras would give them more food. Only rarely, do they
team up to hunt zebras [3], [4]. What are the reasons behind
these seemingly suboptimal hunting habits? The following
hypotheses about the evolution of cooperative behaviors in
hyenas will be tested in the simulations:

1) Sharing the fitness reward is an incentive for the
predators to cooperate.
If only the predator that catches a prey gets the reward,
there is no reason for the other predators to help in the
capture. If they all share the rewards, there is a benefit
to cooperation, and it should emerge in evolution.

2) If cooperation is easy to establish, e.g. through com-
munication, it is more likely to emerge.
Evolving to cooperate just through stigmergy (sensing
of clues from the environment) is a difficult task. If
the predators can communicate directly (i.e. by sensing
each others’ positions), the cost of cooperation is
significantly lower because it becomes easier for the
predators to coordinate their actions. Cooperation is
thus more likely to emerge.

3) Evolution of cooperation depends on payoff upon prey
capture.
Hyenas can both communicate and share fitness re-
wards, but they still typically hunt on their own.
Perhaps the energy necessary to coordinate their hunt-
ing behaviors to catch larger prey is not off-set by
the higher rewards they get upon catching it. If the
reward was higher, cooperation would be more likely
to emerge.

These hypotheses will be tested in the computational
experiments outlined next.

V. EXPERIMENTS

The experiments were designed to observe cooperation in
predators hunting prey that are difficult for a single predator
to catch on its own. The goal is to test whether predator
communication, fitness distribution and size of the fitness
reward influence evolution of cooperation in hypothesized
ways.

A. Experimental Setup

Multi-Component ESP [1] is used to evolve the predators
with the following parameter settings: Each predator consists
of one network for the combiner, and one for each prey
and predator it tracks: four in Experiments 1 and 2, six in
Experiments 3 and 4, and seven in Experiments 5 and 6.
The outputs of the predator and prey tracking networks
are given as input to the combiner network to decide the
next move for that predator. Each network (including the
combiner) has a feedforward architecture with a single layer
of 10 hidden neurons and sigmoidal activation functions.
Each hidden neuron is evolved in a separate subpopulation
consisting of 100 neurons; each neuron is represented as a
concatenation of real-valued numbers representing full input
and output connections. During each evolutionary generation,
1,000 trials are run wherein the neurons are randomly chosen
(with replacement) from their subpopulations to form a
neural network. In each trial, the predators are evaluated
six times, with the prey and predators starting at random
locations each time. The fitnesses over the six evaluations are
averaged, and assigned to all the neurons that constituted the
network. After the trials, the top 25% of neurons within each
subpopulation are recombined using one-point crossover. The
offspring replace the bottom 50% of the neurons in the
corresponding subpopulation, and they are then mutated with
a probability of 0.4 on one randomly-chosen weight on each
chromosome, by adding a Cauchy-distributed random value
to it. Small changes to these parameters lead to similar
results.

A summary of different experiments was given in Table I.
In short, the first, i.e. the control experiment, includes non-
communicating predators with individual fitness. The second
experiment adds shared fitness rewards, while the third
experiment adds communication instead. The predators in
the fourth experiment both communicate and share fitness
rewards.

The fifth and the sixth experiment focus on the hyena
environment more specifically by having both zebras and
gazelles on the field. The predators can both communicate
and share the reward from zebra capture. They still prefer
hunting individually for smaller animals (gazelles) that are
less rewarding. Cooperative hunting of big prey such as
zebras is rare. Perhaps the cost of cooperation is higher
than the reward obtained? Experiments 5 and 6 evaluate this
hypothesis.



Fig. 2. Average number of prey (zebras) caught (out of four possible) in Experiments 1, 2, 3 and 4. The total number of prey caught by the three predators
was averaged over 6000 trials for each generation. Cooperation is slow to evolve with individual rewards and without communication, and is less efficient
(Experiment 1). Introduction of reward sharing results in faster and more effective evolution of cooperation (Experiment2). Knowledge of positions of
other predators makes it easier to evolve coordinated hunting strategies (Experiment 3). Evolution of cooperation is strongest when reward sharing and
communication are combined (Experiment 4).

In each study, there are three predators; the number of
prey varies from experiment to experiment. In Experiments 1
through 4, there are four zebras, and each one gives a fitness
of 150 points to each of the three predators upon capture. In
Experiments 5 and 6, there are four gazelles and one zebra,
and each gazelle gives a fitness of 100 to the predator that
catches it. In Experiment 5, catching the zebra gives a reward
of 150 points to each predator, while in Experiment 6, this
reward is increased to 450 points (Table I).

The output neurons represent different actions that a
predator agent can take. Each prey has four possible actions
in each time step (move east, west, north, or south) and the
predators have five (move east, west, north, south, or idle).
To evolve blocking strategies in predators, the idle actionis
often important.

B. Results

The results are summarized in the rightmost column of
Table I. Here, the number of zebras caught by the predators
is taken as the metric indicating the extent of cooperation
because zebras need to be surrounded by more than one
predator before they can be caught. This requires active
movement coordination on the part of the predators.

In the control experiment (Experiment 1), the predators
neither communicate nor share fitness. Cooperation does not
evolve initially and as a result, they rarely catch any zebras.
On the other hand, adding reward sharing (Experiment 2) in-
creases the number of prey caught as the predators efficiently
evolve to cooperate over the early generations. The average

number of zebras caught in each generation in Experiments 1
and 2 are contrasted in Figure 2.

Similarly, adding communication to predators with in-
dividual fitness in Experiment 3 results in the predators
easily evolving to cooperate, leading to more prey captures
(Figure 2). This effect is even stronger with both communi-
cation and fitness sharing enabled (Experiment 4; Figure 2),
suggesting that these two factors affect different aspects
of the evolution process, i.e. how easy it is to establish
cooperation, and how worthwhile it is.

Experiments 5 and 6 were designed to answer the question:
If there are both gazelles, which can be caught easily but
give a lower fitness, and zebras, which need all the predators
to cooperate to catch them but give higher fitness, which
one is preferred? In Experiment 5, the predators prefer to
hunt gazelles instead of evolving to cooperate to capture the
zebra. The reward for catching the zebra is not large enough
for cooperative behaviors to be selected during evolution.
In contrast, in Experiment 6, it is large enough, and the
predators slowly evolve to team up to capture this more
difficult prey, thus verifying the hypothesis that net return
is important in the evolution of cooperation (Figure 3).
Interestingly, they are still able to hunt gazelles as well,
but only do it when there are no zebras around. This result
is important because it suggests that cooperative strategies
include individual strategies as a special case.

C. Evolved Behaviors

These overall results show that communication among the
predators, reward distribution when a prey is caught, and



Fig. 3. Average number of zebras caught in Experiments 5 and 6. The total number of prey (out of one possible) caught by the three predators was
averaged over 6000 trials for each generation. When the payoff on capturing a zebra is low with respect to the difficulty of catching it (Experiment 5), the
predators prefer to hunt the easy-to-catch gazelles individually. When the net return for capturing the zebra is high enough (Experiment 6), the predators
evolve to discover cooperative strategies to hunt it. Once it is caught, they continue by hunting gazelles.

Fig. 4. Collaboration during a zebra hunt (frequently observed in Exper-
iments 2, 3 and 4). Two predators assume the role of attacker andchase
the prey towards the third predator, which acts as blocker (Frame 1). They
surround the prey from three directions and capture it (Frame2).

net return from capturing a prey are important factors in the
evolution of coordinated hunting, as hypothesized. Exam-
ples of evolved behaviors are shown at http://nn.cs.utexas.
edu/?cooperation and described below. In Figures 4, 5, 6
and 7, the circles represent predators, the triangles represent
large prey (zebras) and the squares represent smaller prey
(gazelles).

When the predators neither communicated nor shared
fitness, they performed very poorly on the prey-capture task.
Initially, they did not evolve to cooperate to catch the prey,
and the prey easily eluded any individual predators. No
predator knows where the other predators are, and there is
no fitness incentive to cooperate when it senses (through
stigmergy) other predators hunting the same prey (Video 1).
Eventually, the predators do evolve to coordinate through
stigmergy, but this is not easy or efficient. Once fitnesses are
shared, the predators have a direct incentive to collaborate,
and this leads to their quickly evolving specific roles to

Fig. 5. Role switching between the hunting of two prey (Experiment 4).
The predators assume certain roles (attackers, blocker) while hunting a prey
(Frame 1). These roles can change when hunting the next prey (Frame 2).

cooperate to catch the prey. These roles are rigid enough
to not require communication. The predators act like a well-
trained team that knows exactly how each team member will
behave in any given scenario: Usually one team member
stays in place while the other two chase the prey towards
it (Figure 4, Video 2).

When comparing the control experiment to predators that
can communicate, predators are again found to evolve co-
operation much faster (Figure 4, Video 2). Communication
makes it easier for a predator to sense what the other
predators are doing and act accordingly, thus reducing the
cost of evolving to cooperate. Further, as expected, evolution
of cooperation was strongest in predators that both communi-
cate and share fitness rewards. While the non-communicating
predators develop fixed roles, communication allows them to
adapt to the current situation (cf. [15]). These predators also
have more flexible behaviors, i.e. they can change roles in
the middle of the hunt (Figure 5, Video 3).

It is interesting to note that this result directly contradicts



Fig. 6. Predators prefer to hunt gazelles (Experiment 5). Whenthe net
return from capturing a zebra is low, the predators prefer chasing the slower
gazelles (Frame 1). They successfully catch them on their own(Frame 2).

that of Yong and Miikkulainen [15]. They found that adding
communication to predators that already shared fitness re-
wards made the evolution of cooperation more difficult
and less robust; role-based cooperation based on stigmergy
was more efficient. However, their experiment had only a
single prey, which means the stigmergic signals based on its
behavior are easy to interpret. All the predators attempt to
capture the same prey, therefore the movements of this prey
can be easily used to infer what the other prey are doing.
Four prey, in contrast, all respond to the three predators
simultaneously, which makes it hard to infer which ones are
being closely chased and which ones are not. Such ambiguity
makes cooperative strategies harder to evolve.

With two different types of prey, whether cooperation
evolves or not depends on the value of the prey relative
to the difficulty of catching it. When the zebra reward
was not much higher than the gazelle reward, the predators
did not evolve cooperation, preferring to catch gazelles on
their own (Figure 6, Video 4). The reward for catching the
zebra is much higher in Experiment 6, and the predators
evolve to cooperate to catch it first (with some interference
from nearby gazelles; Figure 3). Once the zebra is caught,
the predators return to hunting the gazelles individually
(Figure 7, Video 5). Thus, increasing the net return on the
zebra leads to multiple (i.e. both individual and cooperative)
hunting strategies in the predators. These results therefore
show how reward structure, coordination mechanism, and net
return interact in producing cooperative behavior.

VI. D ISCUSSION ANDFUTURE WORK

The principles of reward structure, coordination mecha-
nism, and net return can be manipulated to evolve more
realistic and intelligent agents and teams for video games and
robotics applications. Such opportunities constitute a most
interesting long-term direction, demonstrating how com-
putational insights into biology can benefit computational
engineering as well.

The simulations also lead to insights into cooperation
in nature. For instance, the predators in Experiment 3 (in-
dividual rewards with communication) evolve cooperative
hunting strategies efficiently, but they do not have any fitness
incentive for cooperation. Instead, they use one another to
improve individual fitness. Is this real cooperation? In bio-
logical literature, a cooperator is defined as an individualwho

Fig. 7. Predators prefer to hunt the zebra (Experiment 6). Whenthe
net return from capturing a zebra is high enough, the predators evolve to
cooperatively hunt the zebra first (Frame 1). After the zebra is captured,
they return to hunting gazelles individually (Frame 2).

pays a cost for another individual to receive a benefit [29].
This is a useful working definition in artificial settings as
well. Thus in Experiment 3, though not all the predators
gain by coordinating their behaviors, it is still considered
cooperation.

Interestingly, a similar situation arises in hyenas as well.
Hyenas have a complex social structure that is based on
hereditary social ranking [6]. Higher ranked hyenas have
more offspring and are given a bigger share of the prey that
is caught through cooperation. Rewards are thus not shared
equally, but higher ranked hyenas use lower ranked hyenas
to gain individual fitness.

The reasons for such a rank-based society are unknown;
if anything, rank-based evolution should be less efficient
than evolution based on actual fitness evaluations. To analyze
these paradoxical behaviors, future experiments can be de-
signed to simulate rank-based social structure in reproduction
and hunting. When fitness evaluations are costly, rank-based
evolution may be more efficient, even when it result in para-
doxical hunting behaviors. If confirmed, this principle may
lead to the construction of better evolutionary computation
techniques for domains where fitness evaluation is expensive,
such as intelligent agents in games.

Another future direction would be to evaluate these factors
affecting cooperation in the presence of evolving prey. Such
competitive coevolution between predators and prey could
lead to complex behaviors in both. In the wild, hyenas
have to coordinate to hunt zebras partly because the zebras
themselves cooperate to defend their herd against hyenas.
Simulations of evolving predators and prey can help un-
derstand such predator-prey dynamics better. They may also
lead to techniques that result in more complex behaviors for
artificial agents, as well as agents that adapt in response to
player actions.

VII. C ONCLUSION

The predator-prey domain was used in this paper to
determine the reasons for complex behaviors observed in
nature. The experiments confirmed that predator coordination
mechanism, reward structure, and net return on prey capture
are important factors in the evolution of efficient cooperative
hunting behaviors. When hyenas survive on gazelles, they do
not need to cooperate. However, if the zebras are available



and tasty enough, they will. These results are intuitive,
but this is the first time easily replicable experiments were
constructed to verify them. The same factors that were
established to be important in the evolution of cooperation
in this domain can be manipulated in more complex artificial
environments to build interesting behaviors for game agents
in the future.
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