
Comparison of Different Selection Strategies in Monte-Carlo Tree

Search for the Game of Tron

Pierre Perick, David L. St-Pierre, Francis Maes and Damien Ernst

Abstract—Monte-Carlo Tree Search (MCTS) techniques are
essentially known for their performance on turn-based games,
such as Go, for which players have considerable time for
choosing their moves. In this paper, we apply MCTS to the
game of Tron, a simultaneous real-time two-player game. The
fact that players have to react fast and that moves occur
simultaneously creates an unusual setting for MCTS, in which
classical selection policies such as UCB1 may be suboptimal.
In this paper, we perform an empirical comparison of a wide
range of selection policies for MCTS applied to Tron, with
both deterministic policies (UCB1, UCB1-Tuned, UCB-V, UCB-
Minimal, OMC-Deterministic, MOSS) and stochastic policies (ǫn-
greedy, EXP3, Thompson Sampling, OMC-Stochastic, PBBM).
From the experiments, we observe that UCB1-Tuned has the
best behavior shortly followed by UCB1. Even if UCB-Minimal
is ranked fourth, this is a remarkable result for this recently
introduced selection policy found through automatic discovery
of good policies on generic multi-armed bandit problems.
We also show that deterministic policies perform better than
stochastic ones for this problem.

I. INTRODUCTION

Games provide a popular and challenging platform for

research in Artificial Intelligence (AI). Traditionally, the

wide majority of work in this field focuses on turn-based

deterministic games such as Checkers [1], Chess [2] and

Go [3]. These games are characterized by the availability

of a long thinking time (e.g. several minutes), making it

possible to develop large game trees before deciding which

move to execute. Among the techniques to develop such

game trees, Monte-Carlo tree search (MCTS) is probably

the most important breakthrough of the last decade. This

approach, which combines the precision of tree-search with

the generality of random simulations, has shown spectacular

successes in computer Go [4] and is now a method of choice

for General Game Playing (GGP) [5].

In recent years, the field has seen a growing interest for

real-time games such as Tron [6] and Miss Pac-Man [7],

which typically involve short thinking times (e.g. 100 ms

per turn). Due to the real-time constraint, MCTS algorithms

can only make a limited number of game simulations, which

is typically several orders of magnitude less than the number

of simulations used in Go. In addition to the real-time con-

straint, real-time video games are usually characterized by

uncertainty, massive branching factors, simultaneous moves

and open-endedness. In this paper, we focus on the game

Tron, for which simultaneous moves play a crucial role.

Pierre Perick, David L. St-Pierre, Francis Maes and Damien Ernst
are in the Department of Electrical Engineering and Computer Sci-
ence of Liège University, Montefiore Institute, B28, B-4000 Liège,
Belgium (e-mail:pierre.perick@student.ulg.ac.be, {dlspierre, francis.maes,
dernst}@ulg.ac.be).

Applying MCTS to Tron was first proposed in [6], where

the authors apply the generic Upper Confidence bounds

applied to Trees (UCT) algorithm to play this game. In [8],

several heuristics specifically designed for Tron are proposed

to improve upon the generic UCT algorithm. In both cases,

the authors rely on the original UCT algorithm that was

designed for turn-based games. The simultaneous property

of the game is simply ignored. They use the algorithm as

if players would take turn to play. It is shown in [8] that

this approximation generates artefacts, especially during the

last turns of a game. To reduce these artefacts, the authors

propose a different way of computing the set of valid moves,

while still relying on the turn-based UCT algorithm.

In this paper, we focus on variants of MCTS that explicitly

take simultaneous moves into account by only considering

joint moves of both players. Adapting UCT in this way has

first been proposed by [9], with an illustration of the approach

on Rock-paper-scissors, a simple one-step simultaneous two-

player game. Recently, the authors of [10] proposed to

use a stochastic selection policy specifically designed for

simultaneous two-player games: EXP3. They show that this

stochastic selection policy enables to outperform UCT on

Urban Rivals, a partially observable internet card game.

The combination of simultaneous moves and short think-

ing time creates a unusual setting for MCTS algorithms and

has received little attention so far. On one side, treating

moves as simultaneous increases the branching factor and,

on the other side, the short thinking time limits the number

of simulations that can be performed during one turn. Algo-

rithms such as UCT rely on a multi-armed bandit policy to

select which simulations to draw next. Traditional policies

(e.g. UCB1) have been designed to reach good asymptotic

behavior [11]. In our case, since the ratio between the number

of simulations and the number of arms is relatively low,

we may be far from reaching this asymptotic regime, which

makes it legitimate to wonder how other selection policies

would behave in this particular setting.

This paper provides an extensive comparison of selec-

tion policies for MCTS applied to the simultaneous two-

player real-time game Tron. We consider six determinis-

tic selection policies (UCB1, UCB1-Tuned, UCB-V, UCB-

Minimal, OMC-Deterministic and MOSS) and six stochastic

selection policies (ǫn-greedy, EXP3, Thompson Sampling,

OMC-Stochastic, PBBM and Random). While some of these

policies have already been proposed for Tron (UCB1, UCB1-

Tuned), for MCTS (OMC-Deterministic, OMC-Stochastic,

PBBM) or for simultaneous two-player games (ǫn-greedy,

EXP3), we also introduce four policies that, to the knowledge

õóôrírðòóïrííõðròlíîl¨ïíXìì��îìíî�/��� îðî



Figure 1. Illustration of the game of Tron on a 20 × 20 board.

of the authors, have not been tried yet in combination with

MCTS: UCB-Minimal is a recently introduced policy that

was found through automatic discovery of good policies on

multi-armed bandit problems [12], UCB-V is a policy that

uses the estimated variance to obtain tighter upper bounds

[13], Thompson Sampling is a stochastic policy that has

recently been shown to behave very well on multi-armed

bandit problems [14] and MOSS is a deterministic policy that

modifies the upper confidence bound of the UCB1 policy.

The outline of this paper is as follows. Section II first

presents a brief description of the game of Tron. Section III

describes MCTS and details how we adapted MCTS to treat

simultaneous move. Section IV describes the twelve selection

policies that we considered in our comparison. Section V

shows obtained results and, finally, the conclusion and an

outlook of future search are covered in Section VI.

II. THE GAME OF Tron

This section introduces the game Tron, discusses its com-

plexity and reviews previous AI work for this game.

A. Game description

The Steven Lisberger’s film Tron was released in 1982

and features a Snake-like game. This game, illustrated in

Figure 1, occurs in a virtual world where two motorcycles

move at constant speed making only right angle turns. The

two motorcycles leave solid wall trails behind them that

progressively fill the arena, until one player or both crashes

into one of them.

Tron is played on a N ×M grid of cells in which each

cell can either be empty or occupied. Commonly, this grid is

a square, i.e. N = M . At each time step, both players move

simultaneously and can only (a) continue straight ahead, (b)

turn right or (c) turn left. A player cannot stop moving, each

move is typically very fast (e.g. 100 ms per step) and the

game is usually short. The goal is to survive his opponent

until he crashes into a wall. The game can finish in a draw

if the two players move at the same position or if they

both crash at the same time. The main strategy consists in

attempting to reduce the movement space of the opponent.

For example, in the situation depicted in Figure 1, player 1

has a bigger share of the board and will probably win.

Tron is a finite-length game: the number of steps is upper

bounded by N×M
2 . In practice, the number of moves in a

game is often much lower since one of the player can usually

quickly confine his opponent within a small area, leading to

a quick end of the game.

Tron became a popular game implemented in a lot of

variants. A well-known variant is the game “Achtung, die

kurve!”, that includes bonuses (lower and faster speed,

passing through the wall, etc.) and curve movements.

B. Game complexity

Several ways of measuring game complexity have been

proposed and studied in game theory, among which game

tree size, game-tree complexity and computational complex-

ity [15]. We discuss here the game-tree complexity of Tron.

Since moves occur simultaneously, each possible pair of

moves must be considered when developing a node in the

game tree. Given that agents have three possible moves (go

straight, turn right and turn left), there exists 32 pairs of

moves for each state, hence the branching factor of the game

tree is 9.

We can estimate the mean game-tree complexity by raising

the branching factor to the power of the mean length of

games. It is shown in [16], that the following formula is a

reasonable approximation of the average length of the game:

a =
N2

1 + log2 N

for a symmetric game N = M . In this paper, we consider

20 × 20 boards and have a ≃ 75. Using this formula, we

obtain that the average tree-complexity for Tron on a 20×20
board is O(1071). If we compare 20×20 and 32×32 Tron to

some well-known games, we obtain the following ranking:

Draughts(1054) < Tron20×20(1071) < Chess(10123)

< Tron32×32(10162) < Go19×19(10360)

Tron has been studied in graph and game complexity

theory and has been proven to be PSPACE-complete, i.e.
to be a decision problem which can be solved by a Turing

machine using a polynomial amount of space [17], [18],

[19].

C. Previous work

Different techniques have been investigated to build agents

for Tron. The authors of [20], [21] introduced a framework

based on evolutionary algorithms and interaction with human

players. At the core of their approach is an Internet server

that enables to perform agent vs. human games to construct

the fitness function used in the evolutionary algorithm. In the

same spirit, [22] proposed to train a neural-network based

îìíî�/�����}v(���v���}v��}u�µ���]}v�o�/v��oo]P�v����v��'�u���~�/'[íî� îðï



agent by using human data. Turn-based MCTS has been

introduced in the context of Tron in [6] and [16] and further

developed with domain-specific heuristics in [8].

Tron was used in the 2010 Google AI Challenge, organised

by the University of Waterloo Computer Science Club. The

aim of this challenge was to develop the best agent to play

the game using any techniques in a wide range of possible

programming languages. The winner of this challenge was

Andy Sloane who implemented an Alpha-Beta algorithm

with an evaluation function based on the tree of chambers

heuristic1.

III. SIMULTANEOUS MONTE-CARLO TREE SEARCH

This section introduces the variant of MCTS that we use

to treat simultaneous moves. We start with a brief description

of the classical MCTS algorithm.

A. Monte-Carlo Tree Search

Monte-Carlo Tree Search is a best-first search algorithm

that relies on random simulations to estimate position values.

MCTS collects the results of these random simulations in

a game tree that is incrementally grown in an asymmetric

way that favors exploration of the most promising sequences

of moves. This algorithm appeared in scientific literature

in 2006 in three different variants [23], [24], [4] and led

to breakthrough results in computer Go. Thanks to the

generality of random simulations, MCTS can be applied

to a wide range of problems without requiring any prior

knowledge or domain-specific heuristics. Hence, it became a

method of choice in General Game Playing.

The central data structure in MCTS is the game tree in

which nodes correspond to game states and edges correspond

to possible moves. The role of this tree is two-fold: it stores

the outcomes of random simulations and it is used to bias

random simulations towards promising sequences of moves.

MCTS is divided in four main steps that are repeated until

the time is up [25]:

1) Selection: This step aims at selecting a node in the tree

from which a new random simulation will be performed.

2) Expansion: If the selected node does not end the game,

this steps adds a new leaf node to the selected one and selects

this new node.

3) Simulation: This step starts from the state associated

to the selected leaf node, executes random moves in self-play

until the end of the game and returns the following reward:

1 for a victory, 0 for a defeat or 0.5 for a draw. The use

of an adequate simulation strategy can improve the level of

play [26].

4) Backpropagation: The backpropagation step consists

in propagating the result of the simulation backwards from

the leaf node to the root.

The main focus of this paper is on the selection step. The

way this step is performed is essential since it determines

in which way the tree is grown and how the computational

budget is allocated to random simulations. It has to deal with

1http://a1k0n.net/2010/03/04/google-ai-postmortem.html

Algorithm 1 Simultaneous two-players selection procedure

Require: The root node n0 ∈ N
Require: The selection policy π(·) ∈M

n← n0

while n is not a leaf do

α← π(P agent(n))
β ← π(P opponent(n))
n← child(n, (α, β))

end while

return n

the exploration/exploitation dilemma: exploration consists

in trying new sequences of moves to increase knowledge

and exploitation consists in using current knowledge to bias

computational efforts towards promising sequences of moves.

When the computational budget is exhausted, one of the

moves is selected based on the information collected from

simulations and contained in the game tree. In this paper,

we use the strategy called robust child, which consists in

choosing the move that has been most simulated.

B. Simultaneous moves

In order to properly account for simultaneous moves, we

follow a strategy similar to the one proposed in [9], [10]:

instead of selecting a move for the agent, updating the

game state and then selecting an action for its opponent,

we select both actions simultaneously and independently and

then update the state of the game. Since we treat both moves

simultaneously, edges in the game tree are associated to pairs

of moves (α, β) where α denotes the move selected by the

agent and β denotes the move selected by its opponent.

Let N be the set of nodes in the game tree and n0 ∈ N be

the root node of the game tree. Our selection step is detailed

in Algorithm 1. It works by traversing the tree recursively

from the root node n0 to a leaf node n ∈ N . We denote

by M the set of possible moves. Each step of this traversal

involves selecting moves α ∈ M and β ∈ M and moving

into the corresponding child node, denoted child(n, (α, β)).
The selection of a move is done in two steps: first, a set

of statistics P player(n) is extracted from the game tree to

describe the selection problem and then, a selection policy π
is invoked to choose the move given this information. The

remainder of this section details these two steps.

For each node n ∈ N , we store the following quantities:

• t(n) is the number of simulations involving node n,

which is known as the visit count of node n.

• r(n) is the empirical mean of the rewards the agent

obtained from these simulations. Note that because it is

a one-sum game, the average reward for the opponent

is 1− r(n).
• σ(n) is the empirical standard deviation of the rewards

(which is the same for both players).

Let Lagent(n) ⊂ M (resp. Lopponent(n) ⊂ M) be the

set of legal moves for the agent (resp. the opponent) in the

game state represented by node n. In the case of Tron, legal

îìíî�/�����}v(���v���}v��}u�µ���]}v�o�/v��oo]P�v����v��'�u���~�/'[íî� îðð



moves are those that do not lead to an immediate crash: e.g.

turning into an already existing wall is not a legal move2.

Let player ∈ {agent, opponent}. The function

P player(·) computes a vector of statistics S =
(m1, r1, σ1, t1, . . . ,mK , rK , σK , tK) describing the

selection problem from the point of view of player.

In this vector, {m1, . . . ,mK} = Lplayer(n) is the set of

valid moves for the player and ∀k ∈ [1, K], rk, σk and

tk are statistics relative to the move mk. We here describe

the statistics computation in the case of P agent(·). Let

C(n, α) be the set of child nodes whose first action is α,

i.e. C(n, α) = {child(n, α, β)|β ∈ Lopponent(n)}. For each

legal move mk ∈ Lagent(n), we compute:

tk =
∑

n
′∈C(n,mk)

t(n′),

rk =

∑

n
′∈C(n,mk) t(n′)r(n′)

tk
,

σk =

∑

n
′∈C(n,mk) t(n′)σ(n′)

tk
.

P opponent(·) is simply obtained by taking the symmet-

ric definition of C: i.e. C(n, β) = {child(n, α, β)|α ∈
Lplayer(n)}.

The selection policy π(·) ∈M is an algorithm that selects

a move mk ∈ {m1, . . . ,mK} given the vector of statistics

S = (m1, r1, σ1, t1, . . . ,mK , rK , σK , tK). Selection poli-

cies are the topic of the next section.

IV. SELECTION POLICIES

This section describes the twelve selection policies that

we use in our comparison. We first describe deterministic

selection policies and then move on stochastic selection

policies.

A. Deterministic selection policies

We consider deterministic selection policies that belong

to the class of index-based multi-armed bandit policies.

These policies work by assigning an index to each candi-

date move and by selecting the move with maximal index:

πdeterministic(S) = mk∗ with

k∗ = argmax
k∈[1,K]

index(tk, rk, σk, t)

where t =
∑K

k=1 tk and index is called the index function.

Index functions typically combine an exploration term to

favor moves that we already know perform well with an

exploitation term that aims at selecting less-played moves

that may potentially reveal interesting. Several index-policies

have been proposed and they vary in the way they define

these two terms.

2If the set of legal moves is empty for one of the players, this player
looses the game.

1) UCB1: The index function of UCB1 [11] is:

index(tk, rk, σk, t) = rk +

√

C
ln t

tk
,

where C > 0 is a parameter that enables to control the

exploration/exploitation trade-off. Although the theory sug-

gest a default value of C = 2, this parameter is usually

experimentally tuned to increase performance.

UCB1 has appeared the first time in the literature in 2002

and is probably the best known index-based policy for multi-

armed bandit problem [11]. It has been popularized in the

context of MCTS with the Upper confidence bounds applied

to Trees (UCT) algorithm [23], which is the instance of

MCTS using UCB1 as selection policy.

2) UCB1-Tuned: In their seminal paper, the authors of

[11] introduced another index-based policy called UCB1-

Tuned, which has the following index function:

index(tk, rk, σk, t) = rk +

√

min{ 1
4 , V (tk, σk, t)} ln t

tk
,

where

V (tk, σk, t) = σ2
k +

√

2 ln t

tk
.

UCB1-Tuned relies on the idea to take empirical standard

deviations of the rewards into account to obtain a refined

upper bound on rewards expectation. It is analog to UCB1

where the parameter C has been replaced by a smart upper

bound on the variance of the rewards, which is either 1
4 (an

upper bound of the variance of Bernouilli random variable)

or V (tk, σk, t) (an upper confidence bound computed from

samples observed so far).

Using UCB1-Tuned in the context of MCTS for Tron has

already been proposed by [6]. This policy was shown to

behave better than UCB1 on multi-armed bandit problems

with Bernouilli reward distributions, a setting close to ours.

3) UCB-V: The index-based policy UCB-V [13] uses

the following index formula:

index(tk, rk, σk, t) = rk +

√

2
σ2

kζ ln t

tk
+ c

3ζ ln t

tk
.

UCB-V has two parameters ζ > 0 and c > 0. We refer the

reader to [13] for detailed explanations of these parameters.

UCB-V is a less tried multi-armed bandit policy in the

context of MCTS. As UCB1-Tuned, this policy relies on the

variance of observed rewards to compute tight upper bound

on rewards expectation.

4) UCB-Minimal: Starting from the observation that

many different similar index formulas have been proposed

in the multi-armed bandit literature, it was recently proposed

in [12], [27] to explore the space of possible index formulas

in a systematic way to discover new high-performance bandit

policies. The proposed approach first defines a grammar

made of basic elements (mathematical operators, constants

and variables such as rk and tk) and generates a large set of

candidate formulas from this grammar. The systematic search

îìíî�/�����}v(���v���}v��}u�µ���]}v�o�/v��oo]P�v����v��'�u���~�/'[íî� îðñ



for good candidate formulas is then carried out by a built-

on-purpose optimization algorithm used to navigate inside

this large set of candidate formulas towards those that give

high performance on generic multi-armed bandit problems.

As a result of this automatic discovery approach, it was found

that the following simple policy behaved very well on several

different generic multi-armed bandit problems:

index(tk, rk, σk, t) = rk +
C

tk
,

where C > 0 is a parameter to control the explo-

ration/exploitation tradeoff. This policy corresponds to the

simplest form of UCB-style policies. In this paper, we

consider a slightly more general formula that we call UCB-

Minimal:

index(tk, rk, σk, t) = rk +
C1

tC2

k

,

where the new parameter C2 enables to fine-tune the decrease

rate of the exploration term.

5) OMC-Deterministic: The Objective Monte-

Carlo (OMC) selection policy exists in two variants:

stochastic (OMC-Stochastic) [24] and deterministic

(OMC-Deterministic) [28]. The index-based policy for

OMC-Deterministic is computed in two steps. First, a value

Uk is computed for each move k:

Uk =
2√
π

∫

∞

α

e−u2

du,

where α is given by:

α =
v0 − (rktk)√

2σk

,

and where

v0 = max(riti) ∀i ∈ [1, K].

After that, the following index formula is used:

index(tk, rk, σk, t) =
tUk

tk
K
∑

i=1

Ui

.

6) MOSS: Minimax Optimal Strategy in the Stochastic

Case (MOSS) is an index-based policy proposed in [29]

where the following index formula is introduced:

index(tk, rk, σk, t) = rk +

√

max
(

log
(

tk

Kt

)

, 0
)

t
.

This policy is inspired from the UCB1 policy. The index

of a move is the mean of rewards obtained from simulations

if the move has been selected more than tk

K
. Otherwise,

the index value is an upper confidence bound on the mean

reward. This bound holds with a high probability according

the Hoeffding’s inequality. Similarly to UCB1-Tuned, this

selection policy has no parameters to tune thus facilitating

its use.

B. Stochastic selection policies

In the case of simultaneous two-player games, the oppo-

nent’s moves are not immediately observable, and following

the analysis of [10], it may be beneficial to also consider

stochastic selection policies. Stochastic selection policies

π are defined through a condition distribution pπ(k|S) of

moves given the vector of statistics S:

πstochastic(S) = mk, k ∼ pπ(·|S).

We consider six stochastic policies:

1) Random: This baseline policy simply selects moves

with uniform probabilities:

pπ(k|S) =
1

K
, ∀k ∈ [1, K].

2) ǫn-greedy: The second baseline is ǫn-greedy [30].

This policy consists in selecting a random move with low

probability ǫt or the empirical best move according to rk:

pπ(k|S) =

{

1− ǫt if k = argmaxk∈[1,K] rk

ǫt/K otherwise.

The amount of exploration ǫt is chosen to decrease with time.

We adopt the scheme proposed in [11]:

ǫt =
c K

d2 t
,

where c > 0 and d > 0 are tunable parameters.

3) Thompson Sampling: Thompson Sampling adopts a

Bayesian perspective by incrementally updating a belief state

for the unknown reward expectations and by randomly se-

lecting actions according to their probability of being optimal

according to this belief state.

We consider here the variant of Thompson Sampling pro-

posed in [14] in which the reward expectations are modeled

using a beta distribution. The sampling procedure works as

follows: it first draw a stochastic score

s(k) ∼ beta
(

C1 + rkt, C2 + (1− rk)tk
)

for each candidate move k ∈ [1, K] and then selects the

move maximizing this score:

pπ(k|S) =

{

1 if k = argmaxk∈[1,K] s(k)

0 otherwise.

C1 > 0 and C2 > 0 are two tunable parameters that reflect

prior knowledge on reward expectations.

Thompson Sampling has recently been shown to perform

very well on Bernouilli multi-armed bandit problems, in both

context-free and contextual bandit settings [14]. The reason

why Thompson Sampling is not very popular yet may be

due to his lack of theoretical analysis. At this point, only the

convergence has been proved [31].

îìíî�/�����}v(���v���}v��}u�µ���]}v�o�/v��oo]P�v����v��'�u���~�/'[íî� îðò



4) EXP3: This stochastic policy is commonly used in

simultaneous two-player games [32], [10], [33] and is proved

to converge towards the Nash equilibrium asymptotically.

EXP3 works slightly differently from our other policies since

it requires storing two additional vectors in each node n ∈ N
denoted wagent(n) and wopponent(n). These vectors contain

one entry per possible move m ∈ Lplayer, are initialized to

wplayer
k (·) = 0,∀k ∈ [1, K] and are updated each time a

reward r is observed, according to the following formulas:

wagent
k (n)← wagent

k (n) +
r

pπ(k|P agent(n))
,

wopponent
k (n)← wopponent

k (n) +
1− r

pπ(k|P opponent(n))
.

At any given time step, the probabilities to select a move are

defined as:

pπ(k|S) = (1− γ)
eηw

player

k
(n)

∑

k′∈[1,K]

eηw
player

k′

+
γ

K
,

where η > 0 and γ ∈]0; 1] are two parameters to tune.

5) OMC-Stochastic: The OMC-Stochastic selection pol-

icy [24] uses the same Uk quantities than OMC-

Deterministic. The stochastic version of this policy is defined

as following:

pπ(k|S) =
Uk

K
∑

i=1

Ui

∀k ∈ [1, K].

The design of this policy is based on the Central Limit

Theorem and EXP3.

6) PBBM: Probability to be Better than Best Move

(PBBM) is a selection policy [4] with a probability propor-

tional to

pπ(k|S) = e−2.4α ∀k ∈ [1, K].

The α is computed as:

α =
v0 − (rktk)

√

2(σ2
0 + σ2

k)
,

where

v0 = max(riti) ∀i ∈ [1, K],

and where σ2
0 is the variance of the reward for the move

selected to compute v0.

This selection policy was successfully used in Crazy

Stone, a computer Go program [4]. The concept is to select

the move according to its probability of being better than the

current best move.

V. EXPERIMENTS

In this section we compare the selection policies π(·)
presented in Section IV on the game of Tron introduced

previously in this paper. We start this section by first de-

scribing the strategy used for simulating the rest of the game

when going beyond a terminal leaf of the tree (Section V-A).

Afterwards, we will detail the procedure we adopted for

tuning the parameters of the selection policies (Section V-B).

And, finally, we will present the metric used for comparing

the different policies and discuss the results that have been

obtained (Section V-C).

A. Simulation heuristic

It has already been recognized for a long time that using

pure random strategies for simulating the game beyond a

terminal leaf node of the tree built by MCTS techniques is a

suboptimal choice. Indeed, such a random strategy may lead

to a game outcome that poorly reflects the quality of the

selection procedure defined by the tree. This in turn requires

to build large trees in order to compute high-performing

moves. To define our simulation heuristic we have therefore

decided to use prior knowledge on the problem. Here, we

use a simple heuristic developed in [16] for the game on

Tron that, even if still far from an optimal strategy, lead

the two players to adopt a more rationale behaviour. This

heuristic is based on a distribution probability Pmove(·) over

the moves that associates a probability of 0.68 to the “go

straight ahead” move and a probability of 0.16 to each of

the two other moves (turn left or right). Afterwards, moves

are sequentially drawn from Pmove(·) until a move that is

legal and that does not lead to self-entrapment at the next

time step is found. This move is the one selected by our

simulation strategy.

To prove the efficiency of this heuristic, we performed

a short experiment. We confronted two identical UCT op-

ponents on 10 000 rounds: one using the heuristic and the

other making purely random simulations. The result of this

experiment is that the agent with the heuristic has a winning

percentage of 93.42± 0.5% in a 95% confidence interval.

Note that the performance of the selection policy depends

on the simulation strategy used. Therefore, we cannot ex-

clude that if a selection policy is found to behave better than

another one for a given simulation strategy, it may actually

behave worse for another one.

B. Tuning parameter

The selection policies have one or several parameters to

tune. Our protocol to tune these parameters is rather simple

and is the same for every selection policy.

First, we choose for the selection policy to tune reference

parameters that are used to define our reference opponent.

These reference parameters are chosen based on default

values suggested in the literature. Afterwards, we discretize

the parameter space of the selection policy and test for every

element of this set the performance of the corresponding

agent against the reference opponent. The element of the

discretized space that leads to the highest performance is

then used to define the constants.

To test the performance of an agent against our reference

opponent, we used the following experimental protocol. First,

we set the game map to 20 × 20 and the time between

two recommendations to 100 ms on a 2.5Ghz processor.

Afterwards we perform a sequence of rounds until we have

10,000 rounds that do not end by a draw. Finally, we set the

performance of the agent to its percentage of winnings.

îìíî�/�����}v(���v���}v��}u�µ���]}v�o�/v��oo]P�v����v��'�u���~�/'[íî� îðó



Tuning of UCB-Minimal agent

value of C1

va
lu
e
o
f
C

2

�

�

� � � � � � � � �

���

���

���

���

�

���

���

���

���

�

���

Tuning of Thompson Sampling agent

value of C1

va
lu
e
o
f
C

2

�

�

� � � � �� �� �� �� ��

���

�

���

�

���

�

���

�

���

Tuning of UCB-V agent

value of c

va
lu
e
o
f
ζ

�

�

��� ��� ��� ��� � ��� ��� ���

���

���

���

���

���

���

���

���

���

Tuning of ǫn-greedy agent

value of c

va
lu
e
o
f
d

�

�

��� ��� ��� ��� � ��� ���

���

���

���

���

���

���

���

���

���

� � � � �� �� �� ��
�

��

��

��

��

��

��

��

��

��

���

Tuning of UCB1 agent

value of C

v
ic
to
ry
(%

)

��� ��� ��� ��� ��� ��� ��� ��� ���
�

��

��

��

��

��

��

��

��

��

���

Tuning of EXP3 agent

value of γ

v
ic
to
ry
(%

)

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Figure 2. Tuning of constant for selection policies over 10 000 rounds.
Clearer areas represent a higher winning percentage.

Figure 2 reports the performances obtained by the selec-

tion policies on rather large discretized parameter spaces.

The best parameters found for every selection policy as well

as the reference parameters are given in Table I. Some side

simulations have shown that even by using a finer disretiza-

tion of the parameter space, significantly better performing

agents cannot not be found.

It should be stressed that the tuned parameters reported in

this table point towards higher exploration rates than those

usually suggested for other games, such as for example the

game of Go. This is probably due to the low branching factor

of the game of Tron.

C. Results

To compare the selection policies, we perform a round-

robin to determine which one gives the best results. Table

II presents the outcome of the experiments. In this double

entry table, each data represents the victory ratio of the

row selection policy against the column one. Results are

expressed in percent ± a 95% confidence interval. The

last column shows the average performance of the selection

policies.

Table I
REFERENCE AND TUNED PARAMETERS FOR SELECTION POLICIES

Agent Reference constant Tuned

UCB1 C = 2 C = 3.52

UCB1-Tuned – –

UCB-V c = 1.0, ζ = 1.0 c = 1.68, ζ = 0.54

UCB-Minimal C1 = 2.5, C2 = 1.0 C1 = 8.40, C2 = 1.80

OMC-Deterministic – –

MOSS – –

Random – –

ǫn-greedy c = 1.0, d = 1.0 c = 0.8, d = 0.12

Thompson Sampling C1 = 1.0, C2 = 1.0 C1 = 9.6, C2 = 1.32

EXP3 γ = 0.5 γ = 0.36

OMC-Stochastic – –

PBBM – –

The main observations can be drawn from this table:

UCB1-Tuned is the winner. The only policy that wins

against all other policies is UCB1-Tuned. This is in line

with what was reported in the literature, except perhaps with

the result reported in [6] where the authors conclude that

UCB1-Tuned performs slightly worse than UCB1. However,

it should be stressed that in their experiments, they only

perform 20 rounds to compare both algorithms, which is

not enough to make a statistically significant comparison.

Additionally, their comparison was not fair since they used

for the UCB1 policy a thinking time that was greater than

for the UCB1-Tuned policy.

Stochastic policies are weaker than deterministic ones.

Although using stochastic policies have some strong the-

oretical justifications in the context of simultaneous two-

player games, we observe that our three best policies are

deterministic. Whichever selection policy, we are probably

far from reaching asymptotic conditions due to the real-time

constraint. So, it may be the case that stochastic policies

are preferable when a long thinking-time is available, but

disadvantageous in the context of real-time games. Moreover,

for the two variants of OMC selection policy, we show that

the deterministic one outperforms the stochastic.

UCB-V performs worse. Surprisingly, UCB-V is the only

deterministic policy that performs bad against stochastic

policies. Since UCB-V is a variant of UCB1-Tuned and

the latter performs well, we expected UCB-V to behave

similarly yet it is not the case. From our experiments, we

conclude that UCB-V is not an interesting selection policy

for the game of Tron.

UCB-Minimal performs quite well. Even if ranked fourth,

UCB-Minimal gives average performances which are very

close to those UCB1 and MOSS ranked second and third, re-

spectively. This is remarkable for a formula found automati-

cally in the context of generic bandit problems. This suggests

that an automatic discovery algorithm formula adapted to our

specific problem may actually identify very good selection

policies.

VI. CONCLUSION

We studied twelve different selection policies for MCTS

applied to the game of Tron. Such a game is an unusual

setting compared to more traditional testbeds because it is

îìíî�/�����}v(���v���}v��}u�µ���]}v�o�/v��oo]P�v����v��'�u���~�/'[íî� îðô



Table II
PERCENTAGE OF VICTORY ON 10 000 ROUNDS BETWEEN SELECTION POLICIES

h
h

h
h

h
h

h
h

h
h

h
h

h
h

Selection policies

Selection policies
UCB1-Tuned UCB1 MOSS UCB-Minimal EXP3 Thompson Sampling ǫn-greedy OMC-Deterministic UCB-V OMC-Stochastic PBBM Random Average

UCB1-Tuned – 60.11 ± 0.98% 59.14 ± 0.98% 53.14 ± 1.00% 91.07 ± 0.57% 80.79 ± 0.80% 86.66 ± 0.68% 90.20 ± 0.60% 79.82 ± 0.80% 84.48 ± 0.72% 87.08 ± 0.67% 98.90 ± 0.21% 85.11 ± 0.71%

UCB1 39.89 ± 0.98% – 55.66 ± 0.99% 35.76 ± 0.96% 84.36 ± 0.73% 85.57 ± 0.70% 81.18 ± 0.78% 94.02 ± 0.47% 81.02 ± 0.75% 91.24 ± 0.57% 87.38 ± 0.67% 99.47 ± 0.15% 75.69 ± 0.86%

MOSS 40.86 ± 0.98% 44.34 ± 0.99% – 63.34 ± 0.96% 34.10 ± 0.95% 83.08 ± 0.75% 82.24 ± 0.76% 93.38 ± 0.50% 91.02 ± 0.57% 89.00 ± 0.63% 87.88 ± 0.65% 98.98 ± 0.21% 72.24 ± 0.90%

UCB-Minimal 46.86 ± 1.00% 64.24 ± 0.96% 36.66 ± 0.96% – 80.79 ± 0.79% 85.27 ± 0.71% 82.15 ± 0.77% 88.12 ± 0.65% 87.71 ± 0.66% 32.64 ± 0.94% 89.82 ± 0.61% 99.37 ± 0.16% 70.40 ± 0.91%

EXP3 8.93 ± 0.57% 15.64 ± 0.73% 65.90 ± 0.95% 19.21 ± 0.79% – 59.01 ± 0.98% 84.19 ± 0.73% 68.28 ± 0.93% 39.89 ± 0.98% 77.72 ± 0.83% 72.30 ± 0.90% 54.18 ± 0.99% 53.24 ± 0.99%

Thompson Sampling 19.21 ± 0.79% 14.43 ± 0.70% 16.92 ± 0.75% 24.73 ± 0.86% 40.99 ± 0.98% – 62.40 ± 0.97% 69.08 ± 0.92% 49.68 ± 1.00% 84.62 ± 0.72% 83.42 ± 0.74% 95.80 ± 0.40% 50.80 ± 1.00%

ǫn-greedy 13.34 ± 0.68% 18.82 ± 0.79% 17.76 ± 0.76% 17.85 ± 0.77% 15.81 ± 0.73% 37.60 ± 0.97% – 68.24 ± 0.93% 66.62 ± 0.94% 80.16 ± 0.80% 83.12 ± 0.75% 91.45 ± 0.56% 46.16 ± 1.00%

OMC-Deterministic 9.80 ± 0.60% 5.98 ± 0.47% 6.62 ± 0.50% 11.88 ± 0.65% 11.72 ± 0.93% 30.92 ± 0.92% 31.76 ± 0.73% – 87.60 ± 0.66% 69.12 ± 0.92% 83.18 ± 0.75% 64.14 ± 0.96% 35.07 ± 0.95%

UCB-V 20.18 ± 0.80% 18.99 ± 0.78% 8.98 ± 0.57% 12.29 ± 0.66% 60.11 ± 0.98% 50.32 ± 1.00% 33.38 ± 0.94% 12.40 ± 0.66% – 39.16 ± 0.98% 46.02 ± 0.99% 65.60 ± 0.95% 34.43 ± 0.95%

OMC-Stochastic 15.52 ± 0.72% 8.76 ± 0.57% 11.00 ± 0.63% 67.36 ± 0.94% 22.28 ± 0.83% 15.38 ± 0.72% 19.84 ± 0.80% 30.88 ± 0.92% 60.84 ± 0.98% – 60.04 ± 0.98% 52.50 ± 1.00% 31.72 ± 0.93%

PBBM 12.92 ± 0.67% 12.62 ± 0.66% 12.12 ± 0.65% 10.18 ± 0.61% 27.70 ± 0.90% 16.58 ± 0.74% 16.88 ± 0.75% 16.82 ± 0.75% 53.98 ± 0.99% 39.96 ± 0.98% – 52.76 ± 1.00% 23.98 ± 0.85%

Random 1.10 ± 0.21% 0.53 ± 0.15% 1.02 ± 0.21% 0.63 ± 0.16% 45.82 ± 0.99% 4.20 ± 0.40% 8.55 ± 0.56% 35.86 ± 0.96% 34.40 ± 0.95% 47.50 ± 1.00% 47.24 ± 1.00% – 19.09 ± 0.79%

a fast-paced real-time simultaneous two-player game. There

is no possibility of long thinking-time or to develop large

game trees before choosing a move and the total number of

simulations is typically small.

We performed an extensive comparison of selection poli-

cies for this unusual setting. Overall the results showed a

stronger performance for the deterministic policies (UCB1,

UCB1-Tuned, UCB-V, UCB-Minimal, OMC-Deterministic

and MOSS) than for the stochastic ones (ǫn-greedy, EXP3,

Thompson Sampling, OMC-Stochastic and PBBM). More

specifically, from the results we conclude that UCB1-Tuned

is the strongest selection policy, which is in line with the

current literature. It was closely followed by the recently

introduced MOSS and UCB-Minimal policies.

The next step in this research is to broaden the scope of the

comparison by adding other real-time testbeds that possess a

higher branching factor to further increase our understanding

of the behavior of these selection policies.

REFERENCES

[1] A. Samuel, “Some Studies in Machine Learning using the Game of
Checkers,” IBM Journal of research and development, vol. 44, no. 1.2,
pp. 206–226, 2000.

[2] M. Campbell, A. Hoane, and F. Hsu, “Deep Blue,” Artificial intelli-

gence, vol. 134, no. 1, pp. 57–83, 2002.

[3] M. Müller, “Computer Go,” Artificial Intelligence, vol. 134, no. 1, pp.
145–179, 2002.

[4] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-
Carlo Tree Search,” Computers and Games, pp. 72–83, 2007.

[5] Y. Björnsson and H. Finnsson, “CadiaPlayer: A Simulation-Based
General Game Player,” IEEE Transactions on Computational Intel-

ligence and AI in Games, vol. 1, no. 1, pp. 4–15, 2009.

[6] S. Samothrakis, D. Robles, and S. Lucas, “A UCT Agent for Tron:
Initial Investigations,” in Proceedings of the IEEE Symposium on

Computational Intelligence and Games, 2010, pp. 365–371.

[7] S. Lucas, “Evolving a Neural Network Location Evaluator to Play Ms.
Pac-Man,” in Proceedings of the IEEE Symposium on Computational

Intelligence and Games. Citeseer, 2005, pp. 203–210.

[8] N. Den Teuling, “Monte-Carlo Tree Search for the Simultaneous Move
Game Tron,” Univ. Maastricht, Netherlands, Tech. Rep, 2011.

[9] M. Shafiei, N. Sturtevant, and J. Schaeffer, “Comparing UCT versus
CFR in Simultaneous Games,” in Proceedings of the General Game

Playing workshop at IJCAI’09, 2009.

[10] O. Teytaud and S. Flory, “Upper Confidence Trees with Short Term
Partial Information,” in Proceedings of the 2011 international confer-

ence on Applications of evolutionary computation - Volume Part I, ser.
EvoApplications’11, 2011, pp. 153–162.

[11] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine learning, vol. 47, no. 2, pp.
235–256, 2002.

[12] F. Maes, L. Wehenkel, and D. Ernst, “Automatic discovery of ranking
formulas for playing with multi-armed bandits,” in 9th European

workshop on reinforcement learning (EWRL’11), Athens, Greece,
September 2011.

[13] J. Audibert, R. Munos, and C. Szepesvári, “Tuning bandit algo-
rithms in stochastic environments,” in Algorithmic Learning Theory.
Springer, 2007, pp. 150–165.

[14] O. Chapelle and L. Li, “An Empirical Evaluation of Thompson
Sampling,” in Neural Information Processing Systems (NIPS), 2011.

[15] L. Allis et al., Searching for Solutions in Games and Artificial

Intelligence. Ponsen & Looijen, 1994.
[16] B. Saverino, “A Monte-Carlo Tree Search for playing Tron,” Master’s

thesis, Montefiore, Department of Electrical Engineering and Com-
puter Science, Université de Liège, 2011.

[17] H. Bodlaender, “Complexity of Path-Forming Games,” RUU-CS, no.
89-29, 1989.

[18] H. Bodlaender and A. Kloks, “Fast Algorithms for the Tron Game on
Trees,” RUU-CS, no. 90-11, 1990.

[19] T. Miltzow, “Tron, a combinatorial Game on abstract Graphs,” Arxiv

preprint arXiv:1110.3211, 2011.
[20] P. Funes, E. Sklar, H. Juillé, and J. Pollack, “The Internet as a

Virtual Ecology: Coevolutionary Arms Races Between Human and
Artificial Populations,” Computer Science Technical Report CS-97-

197, Brandeis University, 1997.
[21] ——, “Animal-Animat Coevolution: Using the Animal Population as

Fitness Function,” From Animals to Animats 5: Proceedings of the

Fifth International Conference on Simulation of Adaptive Behavior,
vol. 5, pp. 525–533, 1998.

[22] A. Blair, E. Sklar, and P. Funes, “Co-evolution, Determinism and
Robustness,” Simulated Evolution and Learning, pp. 389–396, 1999.

[23] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Planning,”
Machine Learning: ECML 2006, pp. 282–293, 2006.

[24] G. Chaslot, J. Saito, B. Bouzy, J. Uiterwijk, and H. Van Den Herik,
“Monte-Carlo Strategies for Computer Go,” in Proceedings of the 18th

BeNeLux Conference on Artificial Intelligence, Namur, Belgium, 2006,
pp. 83–91.

[25] G. Chaslot, “Monte-Carlo Tree Search,” Ph.D. dissertation, Ph. D.
thesis, Department of Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands.[19, 20, 22, 31], 2010.

[26] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT
with Patterns in Monte-Carlo Go,” INRIA, Research Report, 2006.

[27] F. Maes, L. Wehenkel, and D. Ernst, “Learning to play K-armed
bandit problems,” in International Conference on Agents and Artificial

Intelligence, Vilamoura, Algarve, Portugal, February 2012.
[28] G. Chaslot, S. De Jong, J. Saito, and J. Uiterwijk, “Monte-Carlo Tree

Search in Production Management Problems,” in Proceedings of the

18th BeNeLux Conference on Artificial Intelligence, 2006, pp. 91–98.
[29] J. Audibert and S. Bubeck, “Minimax policies for adversarial and

stochastic bandits,” 2009.
[30] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.

Cambridge Univ Press, 1998, vol. 1, no. 1.
[31] B. May and D. Leslie, “Simulation Studies in Optimistic Bayesian

Sampling in Contextual-Bandit Problems,” Technical Report 11: 02,
Statistics Group, Department of Mathematics, University of Bristol,
Tech. Rep., 2011.

[32] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “Gambling
in a rigged casino: The adversarial multi-armed bandit problem,” in
Foundations of Computer Science, 1995. Proceedings., 36th Annual

Symposium on. IEEE, 1995, pp. 322–331.
[33] D. St-Pierre, Q. Louveaux, and O. Teytaud, “Online Sparse bandit for

Card Game,” in Proceedings of Advanced in Computer Games 2011

(ACG’11), 2011.

îìíî�/�����}v(���v���}v��}u�µ���]}v�o�/v��oo]P�v����v��'�u���~�/'[íî� îðõ


