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Abstract— This paper presents the use of design grammars
to evolve playable 2D platform levels through grammatical
evolution (GE). Representing levels using design grammars
allows simple encoding of important level design constraints,
and allows remarkably compact descriptions of large spaces of
levels. The expressive range of the GE-based level generator is
analyzed and quantitatively compared to other feature-based
and the original level generators by means of aesthetic and
similarity based measures. The analysis reveals strengths and
shortcomings of each generator and provides a general frame-
work for comparing content generated by different generators.
The approach presented can be used as an assistive tool by
game designers to compare and analyze generators’ capabilities
within the same game genre.

I. INTRODUCTION

The design of game content is a creative activity that

consumes a lot of resources in terms of time and money.

Consequently, there has been increasing interest recently in

automatic generation of game content with or without human

designer interaction. Using these computational techniques,

it is not only possible to reduce development cost, but also

to generate an endless variation of content that provides a

unique experience with every replay. This content could even

be adapted to the preferences and skills of individual players.

Exploring vast spaces of content can support creativity in

several ways, including finding artifacts that would not have

been designed by humans due to biases in human creativity

and by allowing a designer to swiftly visualize the results of

a design idea. It is important, however, to evaluate the content

generated by each of these techniques and compare it against

content generated by other techniques. Because of the large

amount of content that can be generated, it is not feasible to

humanly judge the results, and automatic evaluation becomes

a necessity.

This paper explores and adopts an approach to Ge-

netic Programming (GP) [1] called Grammatical Evolution

(GE) [2] to evolve levels for the platform game Super
Mario Bros. GE, to the authors’ knowledge, has not been

exploited for game content creation previously. In addition

to the advantages GP provides in terms of producing com-

petitive solutions to those developed by human designers,

GE incorporates domain knowledge through its underlying

grammatical representation. This allows level designers to
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maintain greater control of the output and makes it pos-

sible to easily generalize to different types of games. The

expressivity range of the GE-based levels generator is then

analyzed and quantitatively compared to other feature-based

level generators that have been used in our previous work [3]

and the original level generator for the game. The purpose of

the work presented is to provide a framework for analyzing

and comparing the expressivity ranges of different content

generators.

II. BACKGROUND

A. Procedural Content Generation

Procedural Content Generation (PCG) is a field that has

recently emerged and proven its potential for automatically

generating different aspects of game content such as game

rulesets [4], [5], maps [6], [7], levels [8], [9], [10], racing

tracks [11], [12] or even whole games [13], [14]. PCG can

be used both offline, in order to make the game development

process more efficient, and online, to allow the generation of

endless variations of a game, make it infinitely replayable and

adapting its content to the player [15], [16]. An overview of

the state of the art can be found in [17], [18].

B. Grammatical Evolution

One of the techniques used to automatically generate

content is Evolutionary Computation (EC). Evolutionary

Design is one of the areas where EC has demonstrated

promising results that are competitive to those created by

human experts [19], [20].

GE is the result of combining an evolutionary algorithm

with a grammatical representation [2]. GE has been used

intensively recently for automatic design [21], [22], [23],

a domain where it has been shown to have a number of

strengths over more traditional optimization methods.

GE has been adopted in the paper to generate content for

Super Mario Bros because of the advantages it provides; it

maintains a simple way of describing the structure of the

levels and it enables the design of aesthetically pleasing

levels by exploring a wide space of possibilities.

C. Analyzing Content Generators

In most published papers on PCG, the focus is on the

system design and implementation, and little if any emphasis

is given to analyzing the space of possible content the gen-

erators can produce. While samples of the systems’ output

are sometimes presented, few studies include meaningful

statistical measures of the systems’ performance.
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Fig. 1. The geometric representation of the chunks used; a flat platform (a),
hills (b), a gap (c), a cannon (d), a tube (e), enemies (f), boxes (g) and
coins (h).

Smith et al. [24] suggested a framework for analyzing the

expressivity range of a level generator by defining a set of

description metrics, collecting a large number of representa-

tive samples of the generator’s capabilities, visualizing the

generative space, and finally analyzing the impact of the

generator’s parameters on the generator’s expressivity.

The work presented in this paper adopts this framework

for analyzing the expressivity range of the developed gen-

erator and extends it through: (1) defining more informative

aesthetic measures of the generators’ expressivity and (2)

applying these measures to analyze and compare the expres-

sivity ranges of three level generators of the same game.

III. TESTBED PLATFORM GAME

The testbed platform game used for our study is a modified

version of Markus “Notch” Persson’s Infinite Mario Bros
(IMB). Several features make Super Mario Bros particularly

interesting from PCG perspective. The most important of

these is the potentially very rich environment representation.

For more details about the game and its use as a bench-

mark for research, the reader may refer to [25].

IV. LEVEL REPRESENTATION

The internal representation of the levels in Infinite Mario

Bros is a two-dimensional array of objects, such as brick

blocks, coins and enemies. In “small” state, Mario is one

block wide and one blocks high. In the work presented in

this paper we construct short levels, only 100 blocks wide,

which take roughly 30 seconds to play. This is in order to be

able to compare the generated levels with the ones generated

in our previous work [26].

The levels can also be represented as a set of chunks.

The list of chunks that has been considered in this work

includes platforms, gaps, tubes, cannons, boxes, coins, and

enemies. Each of these chunks has a distinguishable ge-

ometry and properties. Fig. 1 presents the different chunks

that collectively constitute a level. In order to allow more

variations in the design, we distinguish between two types

of platforms; obstruct-platforms which block the path and

enforce the player to perform a jump action (Fig. 1.(a) ), and

hills that give the player the option to either pass through or

jump over them (Fig. 1.(b) ).

We assume that the level initially contains a flat platform

that spans the whole x-axis. This assumption ensures that all

chunks in the resulted design will be connected and explains

the need of defining gaps as one of the chunks.

V. GE-BASED LEVEL GENERATOR

GE is a grammar-based form of GP that specifies the

syntax of possible solutions through a context-free grammar,

which is then used to map integer strings to syntactically

correct solutions. Those integer strings can therefore be

created by any search algorithm.

GE employs a genotype-to-phenotype mapping process:

the population of the evolutionary algorithm consists of

variable-length integer vectors. Each vector is used to choose

production rules from a grammar, which creates a pheno-

typic program, syntactically correct for the problem domain.

Finally, this program is evaluated, and its fitness returned to

the evolutionary algorithm.

A. Design Grammar

The process in which the level is constructed is represented

in the input grammar that GE uses in the construction of a

solution (in this case a level design). Several methods for

specifying the design grammar have been discussed during

the development process, however, due to the context-free

nature of the grammar used by GE and since we wanted

to keep the grammar as simple as possible to ease designer

interaction with the system; the solution proposed, inspired

by the work of Morel et al. [27], is to add a chunk to the 2D

level array regardless of the positioning of the other chunks.

With this solution, however, arises a number of conflicts in

level design that should be resolved. Section V-B discusses

this issue in details.

The early version of the grammar that has been designed

is presented in Fig. 2. The level is constructed by placing a

number of chunks each assigned with two or more properties,

the x and y parameters specify the coordinates of the chunk

starting point position in the 2D level array and are limited to

the ranges [5..95] and [3..5], respectively. The first and last

five blocks in the x dimension are reserved for the starting

platform and the ending gate, while the y values have been

constrained in a way that insures playability (the existence

of a path from the start to the end position) and that all items

are placed in areas reachable by Mario by performing jumps.

The wg parameter specifies the width of gaps, wb defines the

number of boxes, we determines the number of enemies, wc

defines the number of coins, and h indicates the height of

the flower tubes and cannons.

An example phenotype that results from the grammar in

Fig. 2 can be hill(10, 4, 4)platform(74, 3, 4)tube(62, 4, 3).
Note that the genotype to phenotype mapping is a deter-

ministic process guided by the grammar specified. This also

includes the assignment of the parameters for each chunk

since the parameters are also part of the grammar. Note

also that because of the context-free nature of the grammar,

the chunks generated in the phenotype are not necessarily

ordered in x or y dimensions.

An example of a resulting level is depicted in Fig. 3.

Visualizing samples of the outputs and thoroughly examining

the design grammar reveal limitations in the design exposed

by the grammar. The definition of gaps, tubes, and cannons
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<chunks> ::= <chunk> |<chunk> <chunks>
<chunk> ::= gap(<x>,<y>,<wg>)

| platform(<x>,<y>,<w>)
| hill(<x>,<y>,<w>)
| cannon_hill(<x>,<y>,<h>)
| tube_hill(<x>,<y>,<h>)
| coin(<x>,<y>,<wc>)
| cannon(<x>,<y>,<h>)
| tube(<x>,<y>,<h>)
| boxes(<x>,<y>,<wb>)
| enemy(<x>,<y>,<we>)

<x> :: = [5..95] <y> ::= [3..5]
<wg> ::= [2..5] <w> ::= [3..15]
<h> ::= [2..3] <wb> ::= [2..7]
<we> ::= [1..7]

Fig. 2. The first version of the grammar employed to specify the design
of the level.

in the grammar only specifies the width of the gaps and the

height of the tubes and cannons. As a result of this definition,

each one of these elements will be generated with equal-

width platform surrounding it (Fig. 3). According to game

designers, the width of the platform before and after these

elements plays an important role in the gameplay experience.

For example, the width of platform before a gap affect

the difficulty of the game since speeding up is sometimes

required to launch a wide jump to overcome a wide gap.

Therefore, two parameters have been introduced specifying

the width of the platform before wbefore and after wafter

each of these chunks. The addition of these parameters also

accommodates for more control and variation in the design.

The other limitations concern the generation of boxes and

enemies. The definition proposed in the grammar results in

generation of groups of only rocks or only blocks. In IMB

boxes are usually presented as groups of rocks and blocks

collectively, each of which may contain a coin, a powerup

or it can be empty. For this to be allowed a refinement of

the grammar has been made as can be seen in the second

version of the grammar (Fig. 4). The same argument holds

for enemies and a similar solution has been adopted to allow

for different types of enemies to be introduced.

The final limitation relates to the placement of enemies;

in the first version of the grammar, enemies are spawned

in groups, and to make sure enemies are always placed on

a platform, whenever an enemy is generated, an associate

platform on which the enemy is placed is created. This

produced groups of enemies of the same type to be always

placed on a separate platform (Fig. 3). To support more vari-

abilities, the grammar has been improved to allow enemies

of different types to be placed on any generated platform

(around gaps, tubes, etc.). This has been accomplished by (1)

constructing the physical structure of the level, (2) calculating

the possible positions on which an enemy can be placed (this

includes all positions where a platform has been generated)

and (3) placing each generated enemy in one of the possible

positions. The place on which the enemy is placed has also

been defined as a parameter in the grammar to maintain

the deterministic genotype to phenotype mapping. The final

<level> ::= <chunks> <enemy>
<chunks> ::= <chunk> |<chunk> <chunks>
<chunk> ::= gap(<x>,<y>, <wg>,<wbefore>,<wafter>)
| platform(<x>,<y>,<w>)
| hill(<x>,<y>,<w>)
| cannon_hill(<x>,<y>,<h>,<wbefore>,<wafter>)
| tube_hill(<x>,<y>,<h>,<wbefore>,<wafter>)
| coin(<x>,<y>,<wc>)
| cannon(<x>,<y>,<h>,<wbefore>,<wafter>)
| tube(<x>,<y>,<h>,<wbefore>,<wafter>)
| <boxes>

<boxes> ::= <box_type> (<x>,<y>)2 | ...
| <box_type> (<x>,<y>)6

<box_type> ::= blockcoin | blockpowerup

| rockcoin | rockempty

<enemy> ::= (koopa | goompa)(<x>) 2 | ...
| (koopa | goompa)(<x>) 10

<x> :: = [5..95] <y> ::= [3..5]

Fig. 4. A simplified version of the final grammar employed to specify
the design of the level. The superscripts (2, 6 and 10) are shortcuts for the
number of repetition.

version of the grammar can be seen in Fig. 4.

B. Conflict Resolution

There are a number of inherent conflicts in the design

approach followed. According to the design approach, each

chunk generated can be assigned any x and y values

from the ranges [5..95] and [3..5], respectively, depending

on the genotype. This means that it is very likely that

there will be an overlap between the coordinates of the

generated chunks. For example: hill(65, 4, 5) hill(25, 4, 4)
cannon hill(67, 4, 4, 4, 3) coin(22, 4, 6) platform(61, 4, 4)
is a phenotype that has been generated by the grammar and

contains a number of conflicts; for example, hill(65, 4, 5)
and cannon hill(67, 4, 4, 4, 3) have been assigned the same

y value, and an overlapping x values.

To resolve these conflicts, a priority value has been defined

and assigned to each of the chunks. Whenever two chunks

overlap, the one with the higher priority value is maintained

and the other is removed. Nevertheless, to allow more

diversity, some of the chunks are allowed to overlap such

as hills of different height (Fig. 1. 1(b)), and coins or boxes

with hills (hills here refer to all types of hills; cannon-hills,

tube-hills and flat hills).

C. Implementation and Experimental Setup

The existing GEVA software [28] has been used as a core

to implement the needed functionalities. The experimental

parameters used are the following: 1000 runs each ran for

10 generations with a population size of 100 individuals, the

ramped half-and-half initialization method. The maximum

derivation tree depth was set at 100, tournament selection

of size 2, int-flip mutation with probability 0.1, one-point

crossover with probability 0.7, and 3 maximum wraps were

allowed. Since this is a preliminary experiment on level
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Fig. 3. An example level generated by the first version of the grammar. The design illustrates a number of limitations in the grammar such as the
placement of enemies and the generation of boxes.

construction using GE, the main objective of the fitness

function is to create levels with an acceptable number of

chunks. Thus, the fitness function used is a weighted sum of

two normalized measures; the first one, fp, is the difference

between the number of chunks placed in the level and a

predefined threshold that specifies the maximum number of

chunks that can be placed. The second, fc, is the number of

different conflicting chunks found in the design. Apparently,

the two fitness functions partially conflict since optimizing

fp by placing more chunks implicitly increases the chance

of creating overlapping chunks (fc).

VI. OTHER GENERATORS

In order to test the generator’s capabilities and expressive

range, we investigate two other generators for the same game

and compare the content generated by the GE-generator with

those generated by the other generators.

A. Notch Level Generator

The Notch level generator is the one that comes originally

with the game. It constructs levels by incrementally placing

different chunks according to certain heuristics. The level

generation can be parameterized by defining the level of dif-

ficulty which affects the number of generated gaps, enemies

and the type of enemies. For the experiments presented in

the paper and for comparison purposes, the difficulty of all

generated levels has been set to 2.

B. Parameterized Level Generator

In our previous studies [3], [26] we conducted experiments

based on a heavily modified version of the Notch level

generator. The level generator of the game has been modified

to generate content according to the six content features; the

number of gaps in the level, G; the average width of gaps,

Ḡw; the number of enemies, E; enemies placement, Epwhich

has been determined by three probabilities which sum to one:

on or under a set of horizontal blocks, Px; within a close

distance to the edge of a gap, Pg and randomly placed on a

flat space on the ground, Pr; the number of powerups, Nw;

and the number of boxes, B, which specify the number of

the different types of boxes that exist.

The generator is allowed to randomly generate the other

aspects of game content such as the number of cannon and

flower tubes, the number of coins, the differences in platform

height, and the number of hills.

Gaps Gaps width Enemies Enemies placement Powerups Cannon&Flowers Coins Boxes
0

0.2

0.4

0.6

0.8

1

1.2
GE−generator
Parametrized generator
Notch generator

Fig. 5. Average and standard deviation values of eight statistical features
that have been extracted from all generated levels across all generators.

VII. EXPRESSIVITY ANALYSIS

To analyze the design and the expressivity of the gener-

ators, several statistics have been extracted from the 1000

levels generated by the different generators. Fig. 5 presents

a comparison between the average values of eight key

statistical features that have been extracted from the data

of all levels across each generator: numbers of coins, boxes,

powerups, enemies and gaps, the average gap width, as well

as the enemy placements which measure how enemies are

placed in the level; around gaps, around boxes or randomly

scattered. All feature values are normalized to the range [0,1]

using max-min normalization.

As can be seen from Fig. 5, the GE generator appears

to generate more features for all aspects of game content

except for the number and width of gaps. This might be the

result of defining a rather high threshold for the total number

of chunks that can be placed in the level when designing

the fitness function. The generator appears to be biased

towards generating a low number of gaps, a large number of

enemies and boxes and placing enemies around boxes. The

standard deviations are roughly comparable, though the GE

generator appears to have less variation in enemy numbers

and placement.

The Notch generator and the parameterized generator, on

the other hand, appear to generate around the same number

of boxes, coins, powerups, and gaps. The main differences

between these two generators are in the number of enemies

created and the width of gaps. A larger number of enemies

(including flower-tubes and cannons) and wider gaps have

been generated in the parameterized levels compared to the

ones generated by the random generator.

The statistical analysis draws a picture of the generators’

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 307



(a) Example level with high linearity value, linearity = 0.99

(b) Example level with low linearity value, linearity = 0

Fig. 6. Two example levels with different linearity values.

capabilities but a more in-depth analysis is required, if we

are to examine the space of possibilities the generators’

output cover and the density of the levels generated along

different aspects of expressivity measures. For this reason,

we have defined several more complex level design metrics

and employed them to evaluate the generated levels. In

the following sections, we describe these measures and the

results of applying them to examine the qualities of the

generators’ output. Two of these measures are similar to the

ones proposed by Smith et al. [24]. Since the expressivity of

some of the generators have constrained along some aspect of

content generation (such as the parameterized generator), we

tried to define expressivity measures that allow us to compare

the generators’ outputs along dimensions orthogonal to the

ones directly controlled by the parameters.

A. Linearity

Linearity in IMB is affected by the existence of different

types of hills along the level, as well as the differences in

the platform height. A highly non-linear level is the one with

frequent changes in the platform height or the one containing

hills scattered around. A level with such characteristics

requires the player to perform more jumps, gives him the

possibility to reach higher places and/or presents more than

one possible path to reach the end of the level. Two levels

of very high and low linearity values are depicted in Fig. 6.

We follow the approach proposed in [24] to measure

linearity by calculating the linear regression for each level.

This has been calculated by traversing the level from left to

right and accumulating the values of the absolute differences

between the center-point of the highest platform or hill and

the corresponding point on a predefined line. The results are

then uniformly normalized to [0,1].

Fig. 8 presents the average values of the linearity measure

obtained from ranking the levels generated by all generators.

The results show that the levels generated by the GE gener-

ator are, on average, less linear than the ones generated by

Notch generator, which are in turn less linear than the ones

generated by the parametrized generator.

B. Density

In IMB, hills of different height can be stacked on top

of each other allowing Mario to reach higher places and

introducing new patterns in the level design. We defined a

density measure that ranks the levels according to the number

(a) Example level with low density value, density = 0

(b) Example level with high density value, density = 0.85

(c) Example level with high density value, density = 1

Fig. 7. Three example levels with different density values.

Linearity Density Leniency NCD
0

0.2

0.4

0.6

0.8

1 GE−generator
Parametrized generator
Notch generator

Fig. 8. The average and standard deviation values for the expressivity
measures for all generators.

of density chunks occurrences. The density is calculated by

assigning a density value to each point along the width of

the level according to the number of platform stacked at

that point. The density of the level is the normalization of

the sum of these values. Fig. 7 presents three levels having

extreme density values. Note that since normalization has

been performed based on the density values obtained from

all the levels generated, Fig. 7.(c) is assigned a density value

equals to 1 because it has the maximum density value of all

the levels generated.

The density measure taken together with the linearity

measure give an indication of the distribution of hills along

the level. A level with a high density value can either contain

hills scattered along the level or they can be stacked in

one or more segments. Fig. 7.(b) and Fig. 7.(c) present two

example levels with high density, yet having a very different

distribution of hills. The linearity values assigned for these

two levels, however, are 0.4 and 0.9 for the former and latter

level, respectively, indicating a wide range of differences in

the structure of the levels. The level with hills compressed

in a small segment is assigned with a higher linearity value

than the one with hills spread along the level since linearity

takes into account only the highest platform at each position.

As can be seen from Fig. 8, the GE-generator constructs

levels with higher density than the parameterized and Notch

generator. It’s also worth noting that all generators construct

levels with low average density (less than 0.5).
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(a) Example level with high leniency value, leniency = 1

(b) Example level with low leniency value, leniency = 0

Fig. 9. Two example levels of different leniency values.

C. Leniency

We adopt a leniency measure, similar to the one proposed

in [24], to account for how tolerant the level is in terms of

how easy it is for the player to complete the level. We assign

a lenience value for different chunks as follows:

• Gaps: -0.5

• Average gap width: -1

• enemies ( goompas and koopas): -1

• Cannon and flower tubes: -0.5

• Powerups (mushrooms and flowers which make Mario

grow Big or turn him turn into Fire mode): +1

Different types of enemies are given different lenience

values according to their characteristics. The leniency of the

level is the weighted sum of the leniency of each of the

chunks presented in the level. The leniency values for all

generated levels are normalized to [0,1]. Two levels with

different leniency values are presented in Fig. 9. Note that

despite the fact that the level presented in Fig 9.(a) contains

four enemies, this level have been assigned a very high

leniency value because 85% of the boxes presented in that

level hide powerups.

The average leniency values obtained for the generators

are presented in Fig. 8. Notch generator constructs the most

lenient levels followed by the parametrized generator, while

the levels generated by the GE-generator are the least lenient.

D. Compression Distance

In order to measure the overall structural similarity be-

tween the outputs of each generator, we converted all levels

into sequences of numbers representing the existence of

different types of content items as well as changes in the

level geometry (see [3] for more details and examples). The

following content events as well as their possible combina-

tion have been considered when converting the levels into

sequences:

• Increase/decrease in platform height

• The existence/non-existence of enemies and items

(coins or boxes)

• The beginning/ending of a gap

The diversity of the resulting levels sequences for each

generator is measured using the normalized compression

distance (NCD) measure [29]. The results of applying this

measure on each pair of the content sequences for each

generator showed a high dissimilarity between the sequences;

Fig. 10. The histograms of the linearity, leniency and density measures
for the 1000 levels generated by the GE-generator.

NCD was found to be higher than 0.6 in 93%, 91% and 89%

of the cases for the levels generated by the GE-generator,

the parameterized generator and the Notch generator, respec-

tively (Fig. 8).

E. Histogram comparison

The expressive range of a generator can be analyzed by

plotting the histogram that illustrates the distribution of the

generated levels along the expressivity measure. The 1000

levels generated by each generator have been processed

and ranked by the linearity, leniency and density measures.

Fig. 10, 11 and 12 present the expressivity ranges obtained

for the GE-generator, the parameterized generator and Notch

generator, respectively.

Different distributions have been obtained for each mea-

sure across the generators. The GE-generator, as can be seen

from Fig. 10 and the parameterized generators (Fig. 11) ap-

pear to be slightly biased according to the linearity measure;

while the GE-generator constructs levels that are slightly

non-linear, the parametrized generator appears to be gener-

ating more linear levels. On the other hand, both generators

appear to be biased towards generating non lenient levels.

It is interesting to note, however, that the Notch generator

(Fig. 12) constructs levels with a distribution for the linearity

that approximates the normal distribution around 0.5. This

generator appears to be very biased towards generating

averagely lenient levels (more than 80% of the levels have a

lenience value between 0.3 and 0.5). Very small percentage

of the levels generated by all generators fall in the extreme

ranges of the expressivity measures.

We anticipated the bias towards generating linear levels

by the parametrized generator since in IMB levels, the flat

platform is the basic element when designing the levels

and the addition of hills and the changes in the height are

supplementary requirements in order to allow richer design

diversity and gameplay experience. Also, this generator has

been designed to generate levels according to a predefined set

of features that resulted in highly condensed levels, leaving

a few number of segments where a hill can be generated.

Unsurprisingly, the parametrized and Notch generators

appear to generate similar levels according to linearity com-

pared to the levels generated by the GE-generator. This was

anticipated since the parametrized generator is a modified
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Fig. 11. The histograms of the linearity, leniency and density measures
for the 1000 levels generated by the parameterized generator.

Fig. 12. The histograms of the linearity, leniency and density measures
for the 1000 levels generated by Notch generator.

version of Notch generator. However, the shift in the cen-

ter of the distribution of the levels generated by the GE-

generator along the linearity dimension, compared to the

ones obtained from the parameterized and Notch generator,

can be explained by the different methodology used by this

generator when constructing the levels.

The level distribution along the density dimension varies

among the three generators with all of them generating low

to average density levels. The shift in the density values

obtained from the levels generated by the GE-generator can

be explained by a design choice which is implicitly imposed

by the design grammar; the range of possible height for each

chunk generated has been constrained in a way that the chunk

will be reachable by Mario.

The Notch generator appears to cover a narrower expres-

sivity range for all measures than the other generators. None

of the generators was able to express a uniform distribution of

levels along the expressivity measures defined. Nevertheless,

it is not clear whether this is desirable and necessitates

covering a wider range of player preferences.

The statistical analysis of these measures across all levels

generated by each generator (Table I) showed strong positive

correlations between linearity and leniency for the levels

generated by all generators, while strong negative correla-

tions have been obtained between linearity and density and

leniency and density.

The positive correlation between linearity and leniency

can be explained by the interconnection between the con-

tent elements involved when measuring these scores. The

presence of gaps and enemies (cannon and flower tubes)

which mostly implies changes in the platform height lead

to generating levels with low linear and lenient score. The

negative correlation between linearity and density, on the

other hand, points out a bias in the generators towards

generating levels with hills spread along them rather than

stacked on top of each other.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents the use of Grammatical Evolution to

evolve the design of Super Mario Bros levels. The structure

of the levels has been defined in a grammar that GE uses to

evolve levels. The paper demonstrates the process followed to

implement the GE level generator. A number of expressivity

measures have been defined to test the generator’s capabil-

ities and the space of content the generator’s output cover.

A framework for comparing content generated by different

generators has been presented by employing two other level

generators for the same game with different generation

methods. The expressivity range of each generator has been

analyzed and quantitatively compared to the other generators

by plotting the histograms of 1000 levels generated by each

generator across the expressivity scales defined. The results

obtained showed different characteristics of each generator

and a wide variety in the space of content each generator

covers. The approach proposed can be potentially used by

game designers to test and compare different generators

within the same game genre.

Future work on automatic level design using GE includes

incorporating player experience in the design process in a

closed loop manner. A model of player experience can be

used as a fitness function in the evolutionary process to

rank the generated content. The content evolution can be

guided by the fitness function towards generating content

that maximizes specific player experience according to player

playing style. Personalizing the design grammar is another

interesting approach towards tailoring content generation to

specific player needs and characteristics.

The expressivity analysis highlights limitations in the

expressivity of each generator. For example, the design

grammar in the GE-generator is unable to generate levels

with high density due to the height constraint defined in the

grammar forcing the generated chunks to be placed within

a predefined height limit to ensure playability. One possible

solution is to define a constraint-free grammar and play-test

the generated levels to check for the playability. This can be

done automatically by exploiting the use of AI agents that

pass through the levels and check for possible path from the

start to the end, and/or check whether all chunks generated

are reachable. Another solution is to adopt context-sensitive

grammar such as attribute grammars to control the parameter

values of the solutions as they are being generated during the

mapping process [30].

Another future direction includes defining more in-depth

expressivity measure along which content quality can be

analyzed and compared. The measures presented in the

paper provide a mean to compare content but covering a
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TABLE I

TESTING FOR CORRELATION BETWEEN THE OBTAINED SCORES FOR EACH MEASURE ACCROSS THE THREE GENERATORS. THE SIGNIFICANT

DIFFERENCES (p− value < 0.01) ARE PRESENTED IN BOLD. THE SIGN OF THE CORRELATION IS PRESENTED IN PARENTHESES.

GE-generator Parametrized generator Notch generator
Leniency Density Leniency Density Leniency Density

Linearity 2.86 ∗ 10−51 (−)2.29 ∗ 10−155 19.85 ∗ 10−6 (−)2.99 ∗ 10−21 1.52 ∗ 10−29 (−)3.61 ∗ 10−20

Leniency (−)6.15 ∗ 10−23 (−)4.88 ∗ 10−11 (−)4.32 ∗ 10−51

wider range along these measures doesn’t necessarily mean

better content quality. Designers knowledge or the player

experience models constructed in [3] (that map game content

to players reported affect) can be used as content quality

measures to rank the content generated according to the

gameplay experience it provides. Another direction would be

to ask players to rank different levels generated by different

generators.

The generator’s parameters highly influence its expressiv-

ity range. For example, the fitness function and the design

grammar used by the GE-generator can bias the search

towards different kinds of maps. Analyzing this effect consti-

tutes a future direction. The framework presented for analyz-

ing the expressivity range of a generator can potentially be

used by game designers or players to generate content with

user defined expressivity parameters. This could be done by

biasing the content generated according to these parameters.
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