
Adjutant Bot: An Evaluation of Unit
Micromanagement Tactics

Nicholas Bowen
Department of EECS

University of Central Florida
Orlando, Florida USA

Email: nicholas.bowen@knights.ucf.edu

Jonathan Todd
Department of EECS

University of Central Florida
Orlando, Florida USA

Email: jonathan.todd@knights.ucf.edu

Gita Sukthankar
Department of EECS

University of Central Florida
Orlando, Florida USA

Email: gitars@eecs.ucf.edu

Abstract—Constructing an effective real-time strategy bot
requires multiple interlocking elements including a well-designed
architecture, efficient build order, and good strategic and tactical
decision-making. However even when the bot’s high-level strategy
and resource allocation is sound, poor battlefield tactics can result
in unnecessary losses. This paper focuses on the problem of avoid-
ing troop loss by identifying good tactical groupings. Banding
separated units together using UCT (Upper Confidence bounds
applied to Trees) along with a learned reward model outperforms
grouping heuristics at winning battles while preserving resources.
This paper describes our findings in the context of the Adjutant
bot design which won the best Newcomer honor at CIG 2012 and
is the basis for our 2013 entry.

I. INTRODUCTION

An oft-quoted military proverb “for want of a nail the
shoe was lost” illustrates how small choices can have large
consequences [1]. The morale of the story is that cumulative
small losses lead inexorably to resource deficits that can
ultimately result in larger defeats due to troop shortages.
Hence avoiding superfluous small losses can be as important
to designing a real-time strategy bot as rapidly constructing
units or anticipating the opponent’s strategy. One common
cause of unnecessary losses in real-time strategy games is poor
spatial allocation of units; separated units can be eliminated
more easily by enemies and contribute less toward winning
the battle.

In this paper, we examine the impact of different tactical
grouping approaches on post-battle resource value and demon-
strate an application of the UCT (Upper Confidence bounds
applied to Trees) algorithm [2] for identifying good tactical
groupings in real-time. Due to the high variability of RTS
games, we do not attempt to learn any specific action plans
offline. Instead, our bot formulates decisions on the fly so
that we are able to adapt to actions of the opponent as they
happen. For turn-based games like cards or Go [3], it is obvious
when an agent must decide on its next action. However in
continuous RTS games like StarCraft, it is not feasible to re-
evaluate our current actions at every frame of game execution.
Instead, we identify key points in the game where troops are
under-utilized and focus the state exploration on these time
steps. The reward model used by the UCT rollouts is learned
during an offline data collection phase. We demonstrate that the
tactical groupings discovered with UCT result in higher post-
battle resource values, measured in terms of the health and
the construction costs of the surviving troops, than commonly

used allocation heuristics such as attacking the closest or most
isolated group of enemies.

The next section provides a high-level description of our
domain, bot development for real-time strategy games. Sec-
tion III provides an overview of related work in the area of
StarCraft and RTS bot development. The design of the Adjutant
bot is described in Section IV. Section V describes our
approach for learning grouping tactics, and Section VI presents
a comprehensive evaluation of the unit micromanagement and
overall bot performance.

II. BACKGROUND

This paper describes the design of the Adjutant bot, which
is designed to compete against other opponents in the real-
time strategy (RTS) game StarCraft: Brood War. Players in
RTS games operate in a simultaneous, rather than turn-based
fashion, which poses specialized metacontrol challenges for AI
systems, since there is a definite opportunity cost incurred by
delaying action in favor of thinking. This time restriction favors
the development of lightweight bot architectures capable of
displaying bounded rationality [4] on complex problems. The
cost of adding additional components to the reasoning process
needs to be weighed carefully against the potential benefits of
optimizing, rather than satisficing, decision-making.

The aim of most RTS games is to gather resources in
order to construct buildings and military units which are then
used to defeat the opponent’s military units. Typically, RTS
games have multiple types of specialized units such as Gatherer
Units, Worker Units, and Military Units. Gatherer Units collect
the resources needed to create other units and additional
buildings. Worker Units are generally the units that physically
construct additional buildings, while the Military Units are
used for offensive and defensive strategies. By fabricating
additional buildings and conducting research, the player can
progress to more advanced technologies. These technological
advancements can be represented on a tech-tree to show the
prerequisites needed to achieve a particular technology. Early
decisions on building and resource gathering limit the potential
military strategies available to the player.

In general, opponents can begin a game with one of fol-
lowing three strategies: Gathering, Economical, or Rushing. In
a Gathering Strategy, the player will attempt to gather as many
resources as possible while producing military units because
these resources and units will be needed throughout the game.

978-1-4673-5311-3/13/$31.00 ©2013 IEEE

In an Economical Strategy a player will forgo producing
military units in an attempt to create more buildings and
progress down the tech-tree faster. Finally, in a Rush Strategy
the player will attempt to create a small military force and send
everything they have at the opponent early in the game in an
effort to take them off-guard. Each of these strategies can work,
but only if the situation is right for it. The game is ultimately
won when one player defeats their opponent by destroying
all their units/buildings or by completing some predefined
goal first. Uncertainty is introduced into the decision-making
process by shrouding the map in a fog of war which prevents
the player from seeing objects and events not within sight
range of a friendly unit.

Our research centers on bot development for StarCraft:
Brood War, a science-fiction themed RTS which was orig-
inally created by Blizzard Entertainment. Since its release,
StarCraft has become a very popular title and one of the most
competitive RTS games, with many international competitions
such as the World Cyber Games, Electronic Sports World
Cup, and Blizzard’s BlizzCon challenge. In addition to the
human vs. human competitions, there are bot vs. bot and
also man-machine competitions that take place annually at AI
conferences. StarCraft contains three races (Protoss, Terran,
and Zerg) that are significantly different in terms of units, tech-
trees and game playing styles. Adjutant was created for playing
the Terran faction and finished in 4th place (out of 10 bots)
in the CIG 2012 StarCraft RTS competition and won the best
Newcomer award for the highest placing first-time entry [5].

III. RELATED WORK

Each StarCraft bot must make a set of interdependent de-
cisions regarding resource gathering, building/unit fabrication,
map exploration, opponent modeling, strategic planning, and
tactical maneuvering. In this paper, we specifically analyze
the problem of avoiding material loss through improved unit
micromanagement since it can be evaluated in a decoupled
fashion from the rest of the bot’s design. Our proposed “waste
not, want not” battle approach is applicable to bots playing any
high-level strategy and can be implemented without substantial
changes to other elements of a bot’s architecture.

However, there are several other important elements to
designing an effective StarCraft bot. Since early construction
decisions constrain all military decisions, identifying build
orders for rapidly constructing the desired units from available
resources is critical to a bot’s success. Churchill and Buro de-
veloped a set of heuristics and abstractions for approximating
the build order planning problem, some of which are used in
the 2nd place UAlbertaBot bot [6]. It can be equally valuable
to predict what the opponent is building since certain units
are especially good at countering the abilities of other units.
The 7th place finisher BroodwarBotQ makes extensive use of
opponent modeling; the authors of that bot demonstrated an
unsupervised Bayesian approach for tech-tree prediction [7]
and also a similar technique for predicting the opponent’s
general opening strategy [8]. Even with perfect knowledge
of the opponent’s intentions, coupling opponent modeling
with planning can be challenging. Weber et al. illustrate how
reactive planning can be used to respond to unexpected game
events using a Goal-Driven Autonomy paradigm [9].

Fig. 1. Architecture of Adjutant bot, CIG 2012 best Newcomer

At the tactical level, kiting, utilizing a unit’s mobility and
firing range to inflict damage without taking damage in return,
is a specialized technique for avoiding unnecessary losses.
The NOVA bot, that took 5th place in the CIG competition,
uses influence maps to kite enemy units [10]. Grouping is
more generally applicable than kiting, which cannot always be
performed, depending on the opposing units and the terrain.
Reinforcement learning algorithms, such as Q-learning and
SARSA, have been applied to learning kiting policies for a
single unit but it is unclear whether it is possible to scale this
single-unit approach to large StarCraft battles [11].

Our work is based on Balla and Fern’s approach to learning
tactical decision-making for the Wargus RTS [12]. Rather than
trying to reduce risk by retreating as is done in kiting, idle
units have the option of joining with other groups or attacking
directly. Our work extends on the previous Wargus work by
introducing different types of units in the test scenarios. This
provides another layer of complexity that we confront by using
offline learning to learn a reward model for confrontations
between different unit types. Although we use a group ab-
straction for decision-making, confrontations are tracked and
simulated at the unit level within UCT rollouts. Furthermore,
our test cases include computer opponents that are controlled
by the built-in AI unlike the simplified stationary bots used in
previous work.

IV. BOT DESIGN

Figure 1 shows the architecture of our Adjutant bot which
utilizes the preexisting Broodwar API and can be downloaded
at http://code.google.com/p/adjutantbot/.

Adjutant employs several modules to handle different as-
pects of the decision-making process: World Manager, In-

formation Manager, Unit Manager, Build Manager, Scouting
Manager, Military Manager. The output of these modules
is an opponent model, build order, the current build task,
and unit tactics. The general philosophy behind Adjutant’s
design is as follows. First, a predetermined strategy is used to
decide on unit creation and building construction. As needed,
adjustments are made in response to the opponent’s playing
style using a set of reactive plans. Our bot scouts aggressively
throughout the game and also utilizes a Terran-specific ability
to reveal a specified area of the map.

We maintain an opponent forces model that helps deter-
mine what composition of units our agent should produce. Ad-
jutant is pre-loaded with an empirically-determined matrix that
outlines one-to-one unit counters and the associated strength.
For instance, the Terran unit Firebat is proficient at fighting the
Zerg unit Zergling, so in the matrix, the Zergling row would list
Firebat with a high countering strength. Although a one-to-one
relationship is an imperfect model since it does not represent
the synergies between different allied units, this simplified
structure is used in the Adjutant agent when deciding which
type of unit to create.

We examine the known enemy forces that our forces have
encountered and choose to produce the unit types that best
counter the enemy units. Some basic planning techniques are
used to prioritize a given set of actions and a goal; the bot
then follows a sequence of actions in an attempt to reach the
goal state from the current state. This plan affects the strategies
employed and the type of units created throughout the game.

The aspect of timing when to make offensive maneuvers
plays a key role in the game of StarCraft. At the strategic level,
we follow the assumption that our agent should only attack
when we believe our army outnumbers the opponent’s army.
To get an estimate of the value of each army, we sum the total
mineral and gas cost of each of our units and use the known
enemy forces model to estimate their current value. If our
agent’s army value is significantly higher than the opponents,
then we launch an offensive strike towards the enemy’s base.
This method not only aids in attacking, but also helps when
knowing when to retreat. For example, if our army value has
fallen too low compared to the enemy, our units will retreat in
order to build up new forces.

The Military Manager handles all military unit activities,
including unit micromanagement which is the focus of this
paper. Based on the information received from the World
Manager and Information Manager, the Military Manager
determines what strategy to perform throughout the game.
Depending on the situation, this component will perform either
an attack or a counter-offensive against the enemy units. When
enemy units are in close proximity to our military units, low-
level logic is employed to target specific units to attack or
retreat if necessary. Military decisions are updated every frame
to help determine the best up to the minute action to take.

V. LEARNING GROUPING TACTICS

Based on our initial development experiences, we con-
cluded that the grouping tactics encoded in the low-level logic
of the Military Manager had an impact on unit attrition rates.
Since these could be modified without substantial changes to

the other bot components, we experimented with learning this
aspect of the tactical model using UCT.

A. UCT

UCT (Upper Confidence bounds applied to Trees) is an
algorithm that was first suggested in [2] as a more efficient
alternative in Monte Carlo planning. The idea requires the
problem to be represented by a set of states with associated
actions to take. By guiding the sampling of possible actions
towards the most promising end node, UCT can discover a
high-reward action for a given state. In our case, we use UCT
to help decide between the possible join and attack actions to
assign to idle unit groups. Whenever we reach a decision point,
we generate a tree using the UCT algorithm starting with the
root node and game state.

UCT typically requires a large amount of rollouts, or action
trajectories, to learn the best policy. Because of the incurred
overhead cost, it is usually either performed offline with a large
set of rollouts, but rollouts can be conducted with simpler
simulation models for real-time performance [13]. UCT is
designed to select the action with the highest known reward
much of the time, but also awards an exploration bonus based
on the number of node and action visits.

B. Representation

The basic idea behind our implementation is to combine
UCT with offline training and simulation to estimate the best
way to maneuver units in a real-time strategy game. The
dynamic nature of the game genre and the volatile nature of
the opponent make this an interesting problem. UCT imple-
mentations have primarily been applied to programs that have
discrete states and actions. Adapting UCT to work in a real-
time environment requires several alterations to the canonical
operation. In our implementation, the information about the
current game state is stored separately from the node in the
UCT tree. The transitions between each node are completed
using one of actions: Join(G) and Attack(f,e), as
suggested in [12]. The Join(G) action takes as input a set
of groups, G, and causes all groups in G to move towards
the centroid of their current locations. Once they are within a
certain threshold of their target location, all groups are merged
to form one large group. This is useful in RTS games because
there is typically an advantage awarded to the group with more
units in a confrontation. This action ensures that all groups are
close together before launching an attack. The Attack(f,e)
action requires one friendly group, f , and one enemy group,
e, as input parameters. When executed, the friendly group will
move towards and attack the enemy group until one of the
groups no longer has any units left. Figure 2 shows an example
game tree.

The edges between each node in the tree represent the
different individual join and attack actions that can be taken.
This means that it is likely that several edges will need to
be traversed before all groups have been assigned actions.
While this potentially leads to several paths through the
tree, representing the same set of actions, it also avoids the
exponential number of action combinations needed for each
node otherwise. Furthermore, the guiding aspect of the UCT
algorithm should cause rollouts to quickly converge beyond
duplicate action sequences.

Fig. 2. An example UCT game tree. The root game state contains the current list of friendly and enemy groups. Attack and/or join actions are assigned until
all friendly groups are utilized. At this point, simulation occurs. The remaining groups are reassigned actions, and simulation resumes until one side has no
remaining units.

In RTS applications, there are a sufficiently large number
variables affecting the outcome of the game that executing the
same sequence actions from the same starting position does not
always produce the same results. The design of the game state
representation must account for this. We did this by decoupling
the game state of the current rollout from the current UCT
node. Each node keeps a list of all actions that could possibly
be executed. When a decision needs to be made, the list of
actions is filtered to only contain valid actions given the game
state of the current rollout. This allows us to account for the
multiple potential configurations produced by a single action
while still retaining the information learned from previous
runs.

As indicated above, the UCT node is simplified and only
keeps track of all possible actions and the number of times it
has been visited. The actions for each node are all generated
based on the parameters of the game state at the root node. We
can make this assumption in our case because executing actions
can only reduce the number of possible actions. If one group
attacks or joins another group, this reduces the total number
of groups, and thus, the total number of possible actions.

The game state consists of all of the pertinent information
about the units, their status, and their location on the board.

Specifically, we track each friendly and enemy group. Within
a group, we maintain a list of each associated unit, its type,
and its health. We treat each group as a point particle and only
keep track of its position which is initialized with the groups
geometric center.

C. Implementation

Given a set of friendly units and enemy units, the first
decision that must be made is how to partition these units into
different groups. While an interesting problem in its own right,
we do not attempt to tackle the issue in these experiments. In-
stead, the scenarios are designed to use a particular number of
groups. We use a simple bottom-up agglomerative hierarchical
clustering based on spatial position to form the groups for both
friendly and enemy groups.

Because all players in the game act simultaneously, we may
intend to complete a particular action but be interrupted by
the opponent before we can finish. Because of this, we handle
these interruptions by engaging the enemy group. For example,
for the Attack(f,e) action, our group will move to confront the
enemy group, e, but will stop and fight if intercepted by a
different enemy group. The same applies to the Join(G) action
as the set of groups are moving towards the centroid location.

When the groups have joined together, the new group is idle
and triggers a new round of UCT runs to determine the action
it will take. If one or more of the joining groups is destroyed
before the join is complete, then the action is nullified and the
remaining groups are set to be idle so that they can be assigned
new actions. Whenever an enemy group has been destroyed,
the attacking friendly group becomes idle and is assigned a
new action. This continues until either all friendly groups or
all enemy groups have been defeated.

After traversing an edge, the current game state is updated
to represent that the groups involved in the chosen action are
no longer idle. This does not actually progress in time in
the game but is more of a bookkeeping step. The list of all
possible actions is retrieved from the UCT node trimmed down
to only actions involving idle groups. Because of the non-
deterministic nature of our rollouts, each action is explored a
set number of times before its value estimation is considered.
After the initial exploration period, the action with the highest
value is selected.

The learning update rule is as follows:

Q∗(s, a) = Q(s, a) + c

�
log n(s)

n(s, a)

The term Q(s, a) represents the current value estimate for
state s and action a while n(s) indicates the number of times
the current state has been visited and n(s, a) the number of
times the action a has been selected in state s.

Once we have reached a state where all groups have been
assigned actions, we use simulation to generate the rest of
the tree. The simulation for the current run continues until
either all of the enemy groups or friendly groups have been
eliminated. At this leaf node, we calculate the final reward, R.

R =
�

f∈friendly

fhf rvf
ihf

−
�

e∈enemy

fherve
ihe

(1)

The values fhu, ihu, and rvu represent unit u’s final health,
initial health, and resource value, respectively. Essentially,
this sums the production cost of each remaining friendly
unit weighted by its remaining health and subtracts the same
calculation for the enemy units. This means that simulations
in which the enemy wins result in a negative reward which
helps UCT guide the search towards actions that are closer to
victory.

After the reward is calculated, it is propagated back up
the tree such that R is added to the total reward for each
executed action and the visit counts of each node and action
are incremented. The Q(s, a) value for each node is simply
the mean value of all of the rewards it has earned. This
process continues for a set number of rollouts. Once a sufficient
number of rollouts have been completed, we are ready to gather
the actions with the best estimated values. Starting at the root
node, we pick each action with the highest Q(s, a) value until
we reach a state where there are no idle friendly groups. This
set of actions is assigned to each associated friendly group and
the game continues.

D. Reward Model

The main purpose of the offline training is to learn a reward
model for confrontations between different unit types to be
used by the UCT rollout simulation. The reward model is
stored in the form of ratios derived by testing every StarCraft
unit type of the Terran Race against all of the unit types from
each of the three races.

We created a Campaign Editor and Testbed map for
learning the reward model. The Testbed design was primarily
developed using the StarCraft Campaign Editor which is an ap-
plication that allows a user to create or manipulate a StarCraft
battle map. For this Testbed, a unique map was developed
that divided a single large map space into smaller separate
grid areas. These areas are designed to prevent the units from
leaving their specified area, as well as prevent other units from
entering another unit’s area. The areas are also designed to
allow the Testbed to be modified depending on the type of
tests desired (such as higher/lower ground advantages). This
design allows the Testbed to be very accurate, while allowing
for a very flexible space to create different environments.

With the Testbed in place, the next stage was the creation
of the Data Gatherer to retain relevant data. The Data Gatherer
monitors each of the battles within the Testbed for changes.
When one of the units in the battle is eliminated or the round
timer ends, then the Data Gatherer would evaluate and compile
data from the specific match-ups. The data that is retained for
the simulation is the ratio between enemy health loss and friend
health loss, which can be combined with the unit resource
value to generate rollout rewards.

E. Simulation

Once we have reached a state in the UCT search where
actions have been assigned to all friendly groups, we need
to simulate execution of those actions. Because battles are
simulated in a non-deterministic fashion, simulating the same
actions can potentially produce different final results. This is
how we try to model the uncertainty that is present when
executing actions in the real game.

Groups are reduced to point particles represented by the list
of units in the group and the centroid location. To model the
actions of enemy groups, we assume each one will attack the
closest friendly group. The simulation is executed at roughly
two seconds of game time per step. During each step, all
groups are first moved by interpolating between their current
and target position using the average speed of the group. Next,
if opposing groups are within a set distance of each other,
an attack is simulated, and if joining groups are within a set
distance of each other, the groups are combined into one large
group at their center.

Attacks between opposing groups are simulated by ran-
domly pairing a unit from each group against each other. This
attempts to model the randomness of the army formation as it
travels across the map. Based on the unit type information that
we gained from offline training, we compute the damage that
will be done to each unit. A slight advantage is also given to
the unit that is part of the larger group. Battles continue until
one group no longer has any units. Once one or more friendly
groups become idle or we reach a leaf node, the simulation
ends and returns to the UCT search.

Fig. 3. The 4v4 Mixed Map is an example evaluation scenario that commonly
occurs within StarCraft in which there is a large battle with opposing groups
intermixed.

VI. EVALUATION

To evaluate the performance of our learned unit microman-
agement model, we compare our UCT implementation against
a variety of competing approaches in several different StarCraft
scenarios. We also show the performance of the final version
of our Adjutant bot which attempts to encode some of the
micromanagement insights derived from the learned model
within the MilitaryManager logic.

A. Setup

We created a variety of different combat scenarios that
resemble different types of battles in StarCraft. To keep them
relatively simple, all scenarios take place on flat ground with
no obstacles. At the beginning of the round, the units for
each group are generated at the same location. The round is
over when one team has no units left. The metric used to
evaluate each baseline is the same final resource value formula
as described in [12]. Each scenario was run 50 times for every
baseline.

The TeamWork map pits two friendly groups against two
enemy groups of the exact same unit type. The greatest reward
is provided when the teams work together to defeat the enemy.
The 3v3RockPaperScissors scenario involves three groups on
each team each composed of a different unit type. As the
name suggests, it was designed so that certain friendly groups
are more effective at battling particular enemy groups. In
3v4Surrounded, a variety of units are used on both sides and
the friendly groups are outnumbered. The 4v2SplitUp map
has roughly equal teams but splits the friendly units up into
more groups. The 4v4Mixed setup simulates a large battle with
opposing groups intermixed and a typical screen shot of this
map can be seen in Figure 3. Finally, the 4v4SplitUp map sets
up a large battle between opposing groups that are placed on
opposite sides of the map.

For these test scenarios, the UCT search is run with 5000
rollouts and each action encountered is explored at least 10
times. Increasing the rollout and action budget beyond these
values did not produce significantly better results.

TABLE I. WIN RATES AGAINST THE STARCRAFT BUILD-IN AI

Race Win Rate

Protoss 86%
Terran 73%
Zerg 90%

B. Benchmarks

We use a variety of benchmarks to evaluate the perfor-
mance of UCT:

• Closest: for each friendly group, only attacks the closest
enemy group

• Random: picks a random action from the possible join
and attack actions

• Isolated: determines the enemy group that is farthest away
from the others and sends all groups to attack it

• Adjutant: the final version of the low-level logic that tries
to attack as one large tightly-packed group

• StarCraft AI: the built-in artificial intelligence that con-
trols computer opponents in StarCraft

C. Results

We evaluated the efficacy of each of the six benchmarks
by running them in the different game scenarios. Figure 5
shows the adjusted final resource value that was computed
after averaging the scores that each benchmark received over
50 trials. The UCT algorithm was able to score higher than
all of the other algorithms in 3 out of the 6 scenarios. In
the other scenarios, it was able to score among the best
3 algorithms, only being outperformed by the Adjutant and
Isolated benchmark. Of the scenarios that UCT scored the
best in, two were designed to test specific tactics in battles
on a smaller scale and the other was a large open map that
allows the chosen actions to have a larger impact on the final
outcome of the game. Of the scenarios where UCT scored the
worst, two have very high standard deviations which could
indicate that the randomness of the situation had an impact on
the outcome.

Figure 4 shows the results from each baseline averaged
across all of the different game scenarios that were tested.
This data indicates that the UCT algorithm outperformed all
other heuristics except for the final version of our StarCraft
bot Adjutant. This indicates that our UCT implementation can
outperform a wide variety of heuristics and the built-in game
AI, but that the performance can be duplicated with a hand-
tuned logic model.

Table I shows the win rates of our bot against the StarCraft
build-in AI, based on 500 games on a selection of maps
from the AIIDE Starcraft competition. Table II shows the win
rates against other competitors, including the earlier version of
Adjutant. Looking at our agent’s results against other bots, we
can see that our current implementation has improved over the
first iteration, but there is still room for improvement. We were
able to beat the previous version of our bot, Adjutant 1.0, 93%
of the time. Our agent was also able to win the majority of
games against many of the other opponents, but rarely defeated
the most complex agents like Skynet and UAlbertaBot.

Fig. 5. Final resource value results for all baselines

TABLE II. WIN RATES AGAINST OTHER STARCRAFT COMPETITORS

Agent Race Win Rate

Adjutant1.0 Terran 93%
Aiur Protoss 53%

bigbrother Zerg 93%
Cromulent Terran 93%

Nova Terran 40%
Quorum Terran 100%
Skynet Protoss 0%

UAlbertaBot Protoss 7%

Fig. 4. Final resource value averaged across all scenarios. The grouping
tactics learned by UCT and the hand-tuned final Adjutant logic outperform
the heuristics and the StarCraft AI at reducing unnecessary attrition.

D. Conclusion and Future Work

While the results show that our hand-tuned Adjutant bot
remains better, UCT is a consistently reliable performer that
can outperform both the built-in StarCraft AI and a wide
range of micromanagement heuristics. This means that in cases
where hand-tuning is not an option, UCT is a good choice for
unit micromanagement. For our purposes, it was more efficient
to encode the core micromanagement insights directly within
the Adjutant MilitaryManager logic rather than to run UCT
during gameplay.

There are many interesting avenues for future work, with
the most promising being unit grouping and targeting. The
current Offline Training module gathers and retains enough
data about specific unit types to yield insights as to what unit
types would most likely win in a match-up. One idea would be
to modify the possible actions in the UCT search to consider
that data when selecting actions. This data could be used to
create specialized unit groups and to target the specific enemy
units that the friendly unit group has the greatest chance of
defeating.

Another future work idea involves the better use of the
battle maps. The Testbed is designed to allow freedom in
testing for different situations. Learning how different unit
types react while in different areas of the map could produce
greater efficiency in the UCT runs enabling more accurate
action selection during simulations. For example, units that
are located in a chokepoint or on an elevated platform have
a greater chance of defeating enemy units. In general, refin-
ing the UCT simulations in a data driven fashion promises
to improve search performance. Interestingly, human players
often perform poorly at micro-management tasks but salvage
the situation through innovative high-level strategies, while
most of the top bot competitors are quite good at this aspect
of the competition. Hence this approach may not yield deep
cognitive insights of how humans approach complex planning
and resource management problems, but remains an important
part of bot vs. bot competitions.

VII. ACKNOWLEDGMENTS

This research was supported in part by DARPA award
D13AP00002 and NSF IIS-08451.

REFERENCES

[1] E. Lowe, “For want of a nail,” Analysis, vol. 40, no. 1, pp. 50–52, 1980.

[2] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
European Conference on Machine Learning (ECML), 2006, pp. 282–
293.

[3] N. Sturtevant, “An analysis of UCT in multi-player games,” in Proceed-
ings of the Conference on Computers and Games, 2008.

[4] H. Simon, “Bounded rationality and organizational learning,” Organi-
zation Science, vol. 2, no. 1, pp. 125–134, 1991.

[5] T. Mahlmann and M. Preuss, “CIG 2012 Starcraft Competition,”
http://ls11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2012.

[6] D. Churchill and M. Buro, “Build order optimization in Starcraft,” in
Proceedings of Artificial Intelligence for Interactive Digital Entertain-
ment Conference (AIIDE), 2011, pp. 14–19.

[7] G. Synnaeve and P. Bessiere, “A Bayesian model for plan recognition in
RTS games applied to Starcraft,” in Proceedings of Artificial Intelligence
for Interactive Digital Entertainment Conference (AIIDE), 2011, pp.
79–84.

[8] ——, “A Bayesian model for opening prediction in RTS games with
application to Starcraft,” in Proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG), 2011.

[9] B. Weber, M. Mateas, and A. Jhala, “Applying goal-driven autonomy
to StarCraft,” in Proceedings of Artificial Intelligence for Interactive
Digital Entertainment Conference (AIIDE), 2011, pp. 101–106.

[10] A. Uriarte and S. Ontanon, “Kiting in RTS games using influence maps,”
in Proceedings of the AIIDE Workshop on AI in Adversarial Real-time
Games, 2012, pp. 31–36.

[11] S. Wender and I. Watson, “Applying reinforcement learning to small-
scale combat in the real-time strategy game Broodwar,” in Proceedings
of the IEEE Conference on Computational Intelligence and Games
(CIG), 2012.

[12] R. Balla and A. Fern, “UCT for tactical assault planning in real-time
strategy games,” in Proceedings of International Joint Conference on
Artificial Intelligence, 2009.

[13] K. Laviers and G. Sukthankar, “A real-time opponent modeling system
for Rush football,” in Proceedings of the International Joint Conference
on Artificial Intelligence, Barcelona, Spain, July 2011, pp. 2476–2481.

