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Abstract—In procedural content generation (PCG), how to
assure the quality of procedural games and how to provide
effective control for designers are two major challenges. To tackle
these issues, this paper exploits the synergy between rule-based
and learning-based methods to produce quality yet controllable
game segments in Super Mario Bros (SMB), hereinafter named
constructive primitives (CPs). Easy-to-design rules are employed
for removal of apparently unappealing game segments, and sub-
sequent data-driven quality evaluation function is learned based
on designer’s annotations to deal with more complicated quality
issues. The learned CPs provide not only quality game segments
but also an effective control manner at a local level for designers.
As a result, a complete quality game level can be generated online
by integrating relevant constructive primitives via controllable
parameters. Extensive simulation results demonstrate that the
proposed approach efficiently generates controllable yet quality
game levels in terms of different quality measures.

I. INTRODUCTION

Procedural content generation (PCG) is of great interest to
game design and development as it generates game content
automatically. In PCG research, a number of methods have
been proposed for game content generation in different game
genres [1]. Super Mario Bros (SMB), a classic 2D platform
game, has become a popular test bed for PCG-related research
[2], [3]. In this platform game, a player runs from the left
side of the screen to the right side, fights enemies, and
rescues Princess Peach. SMB has a number of different game
elements (e.g., enemies, tubes, and cannons) that can be used
in PCG. In recent years, several SMB level generators have
been developed for level generation track of the Mario AI
Championship [4] as well as presented in publications [5]–
[11].

Although wide varieties of PCG techniques have been pro-
posed, there are still some open challenges faced by SMB level
generation as well as generic PCG techniques. One challenge
in PCG is how to assure the quality of procedural content.
Procedural levels sometimes contain unplayable structures [1],
aesthetically unappealing items [8], unexplainable difficulty
spikes [12] and unreachable resources [13], which could result
in negative gameplay experience. Another challenge is how to
effectively control the geometrical features (e.g., coordinate
of each enemy and tube) and some properties of procedural
levels (e.g., linearity [14] and density [6]). In general, a game
designer has to encode the desired properties in handcrafted
rules (e.g., theory-driven evaluation functions) to control the
procedural levels [12], that could slow down the level gener-
ation [13].

This paper presents an alternative approach to address the
aforementioned issues. Motivated by the learning-based PCG
(LBPCG) framework [16] and other existing works, we explore
the content space in SMB from a different perspective by tak-
ing short game segments into account. To address the quality
assurance issue, we exploit the synergy between rule-based and
learning-based methods. Easy-to-design rules are employed
for removal of apparently unappealing game segments, and
then a data-driven evaluation function is constructed based on
designer’s annotations about the quality of game segments.
Once the data-driven evaluation function is constructed, we use
it along with the aforementioned rules to produce high qual-
ity game segments, hereinafter named constructive primitives
(CPs). Those CPs not only provide quality game segments but
also enable to control the geometry and the level properties
effectively. As a result, a complete quality game level can
be generated online by integrating relevant CPs together via
controllable parameters. Experimental results demonstrate that
our data-driven evaluation function could implicitly encode
multiple quality-related criteria, and improve the quality of
procedural level with respect to different quality measures.
Results also show that our generator is capable of generating
procedural levels of desired properties online.

The main contributions of the paper are summarized as fol-
lows: a) a novel approach to producing quality yet controllable
game segments or CPs in SMB; b) a controllable online level
generator based on CPs; and c) a thorough evaluation of our
proposed approach.

II. LEARNING CONSTRUCTIVE PRIMITIVES

In this section, we first describe the motivation underlying
our approach and then present our approach to producing
constructive primitives (CPs) in SMB.

A. Motivation

By a close look at existing SMB level generators, we
observe that the content space on all the complete procedural
levels is huge. As there are an enormous variety of combina-
tions among game elements and structures at procedural levels,
an approach working on such content space inevitably faces a
greater challenge in managing quality assurance and generation
efficiency in PCG. Nevertheless, a complete procedural level
in SMB can be decomposed into a number of segments as
evident in [7]–[9]. Partitioning levels into fixed-size game
pieces permits us to decompose the level design problem [15].
As a result, all the possible segments form a new content
space of lower complexity. We believe that it is less difficult to



understand the properties and quality of short game segments
and hence the use of those segments as building blocks would
facilitate tackling aforementioned non-trivial issues in SMB.

For quality assurance, there are generally two method-
ologies in developing such a mechanism in PCG [1], [16]:
deductive vs. inductive. To adopt the deductive methodology,
game developers have to understand the content space fully
and know how to formulate/encode their knowledge into rules
explicitly. In the presence of a huge content space, however, it
would be extremely difficult to understand the entire content
space. Thus, less accurate (even conflicted) rules might be used
in PCG, which could generate low quality games. Nevertheless,
we observe that some rules are easy to design/identify while
a complete set of rules for evaluating the content quality are
hard to handcraft. For example, overlapped tubes in SMB is
unacceptable and can be easily detected with a simple rule.
On the other hand, a learning-based PCG (LBPCG) framework
[16] was recently proposed where an inductive methodology,
i.e. learning from data, was advocated for quality assurance.
As game content is observable but less explainable, it is easier
for game developers to make a judgement on quality for a
specific game by applying their knowledge implicitly than to
encode their knowledge into rules or constraints [8]. Thus,
the LBPCG suggests that a quality evaluation function should
be learned from data annotated by game developers. Hence, a
hybrid approach to quality assurance would allow us to exploit
the synergy between rule-based and learning-based methods.

For controllability, game developers usually encode desired
properties (e.g., linearity, leniency) into theory-driven evalu-
ation functions (e.g., [5], [7]). Then, game level of desired
properties can be generated via generate-and-test method,
which is not efficient. We observe that it could provide more
efficient and effective control for designers if they directly
select game from desired region of content space instead of
using theory-driven evaluation functions to explore the content
space.

With the motivation described above, we propose a hybrid
approach to producing CPs, quality yet controllable game
segments, in SMB. Fig. 1 illustrates the main steps of our
approach. First of all, game developers choose a region of
interest from the entire content space via controllable parame-
ters. Then game segments in the region of interest are evaluated
by a set of easy-to-design handcrafted conflict resolution rules
and the subsequent data-driven quality evaluation function that
deals with more complicated quality issues. Survivals of game
segments become CPs.

Fig. 1. The constructive primitive (CP) generation process for SMB.

B. Content Space

We observe that it is sufficient to cover rich yet diverse
types of levels by using a game segment of 20 in length and 15
in height. Some typical game segment instances are illustrated
in Fig. 2.

Fig. 2. Game segment instances.

The SMB content is naturally specified by a 2D grid similar
to an image. However, this leads to a 300-dimensional content
space in our case where there are a lot of redundancies, e.g., the
uniform background. In this paper, we employ a list of design
elements as our content space representation where a design
element refers to an atomic unit used in a procedural level
generation, e.g., enemy, boxes, coins, cannon, and gap. By
using this representation, we can not only specify the content
space concisely but also gain the direct controllability on low-
level content features, e.g., coordinates of enemies and coins.
As listed in Table I, 85 controllable features are employed
in our representation. Such representation is similar to the
previous work [5], [6]. In this representation, x, y, width,
height, and type refer to the x coordinate, y coordinate, width,
height, and type of each design element, while wbefore and
wafter refer to width of the platform before and after each
tube/cannon. Among these features, types of gap, tube, boxes
and coins are nominal features, while the rests are ordinal
features. In our content space, the design elements in each
type are sorted in decreasing order along x dimension.

TABLE I. CONTENT FEATURES

ID Description
1 height of initial platform
2 number of gaps
3 - 11 x, width and type of the 1st - 3rd gap
12 number of hills
13 - 18 x, width and height of the 1st and 2nd hill
19 number of cannons
20 - 34 x, y, height, wbefore and wafter of the 1st - 3rd cannon
35 number of tubes
36 - 53 x, y, height, wbefore, wafter and type of the 1st - 3rd tube
54 number of boxes
55 - 62 x, y, width and type of the 1st and 2nd boxes
63 number of enemies
64 - 78 x, y and type of the 1st - 5th enemy
79 number of coins
80 - 85 x, y and width of the 1st and 2nd coins

While design element parameters in Table I have a wide
range that specifies a huge content space, we confine our
concerned content space to a non-trivial region of the content
space by setting the maximum number of gaps, hills, tubes,
cannons, boxes, coins, and enemies appeared in a game seg-
ment are 3, 2, 3, 3, 2, 2, and 5 respectively. These design
decisions are made based on our game design knowledge.
Consequently, there are roughly 9.72 × 1037 game segments
in our content space. This content space should be sufficient
for generating content with a variety of geometrical features,
level structures and difficulties required by SMB.

The content space defined in Table I is an explicit control-
lable space, which means that game designers can effectively
control the properties of game segments by specifying the
desired region of content space. For instance, a pure linear
segment can be generated if designers set the number of hills,



y coordinate of tubes and cannons as zero, and set the rest of
controllable features on random; a mountainous segment can
be generated by setting the number of hills as 1 or 2, and set
the rest of controllable features on random.

C. Conflict Resolution

In our content space, there are quite a number of
game segments that contain conflicting design elements. For
instance, “. . . Tube(5,0,2,0,0,normal). . . Cannon(5,0,4,0,0). . . ”
represents a game segment of at least one tube and one cannon.
The x, y, height, wbefore, wafter, and type of this tube
are 5, 0, 2, 0, 0, and normal respectively, while the x, y,
height, wbefore, and wafter of this cannon are 5, 0, 4, 0,
and 0 respectively. We can see from above description that
their x coordinates are same. Thus, the cannon and tube are
overlapped together and this conflicting situation makes the
segment aesthetically unappealing.

To address this issue, we adapt a class of rules presented
in [5], [6] for our requirement. Whenever two design elements
in a game segment are overlapped together, this game segment
is discarded during CP generation. In our approach, gap,
enemy, tube, cannon, boxes, and coins are not allowed to be
overlapped with each other, while hills of different heights can
be overlapped together. In addition, enemy/tube/cannon can be
overlapped with hills.

D. Learning Constructive Primitives

After filtering out those obviously unappealing game seg-
ments, the tailored content space still contains a lot of low
quality segments, e.g., segments of unplayable or aesthetically
unappealing structures, segments of unreachable or unbalanced
resources, and segments that lack a sense of progression.
Inspired by the LBPCG work [16], we would learn a quality
evaluation function from annotated game segments to remove
unplayable/unacceptable segments. To carry out this idea, a
binary classifier is trained where its input is the 85D feature
vector of a game segment and its output is a binary label
that predicts the quality of a game segment. Binary classifier
rather than multi-class classifier is chosen since it is easier for
annotator to make binary decision about segment quality and
avoid using knowledge explicitly. Game segments labeled as
positive are CPs and would be used for online level generation
described in Sect. III.

To establish a data-driven evaluation function, training
examples are required but have to be provided from game
developers. As the tailored content space is still huge, it is
infeasible to annotate all possible games in this content space.
To keep the content space manageable, a proper sampling can
be applied to achieve a much smaller data set of the same
properties as the content space. Motivated by the success in the
LBPCG work [16], we conduct clustering analysis on the data
set and further employ active learning based on the clustering
results to create a data-driven quality evaluation function (or
classifier). Clustering algorithm is used since it can get a better
estimation of data distribution, while active learning is chosen
to minimize a game developer’s efforts in data annotation. In
summary, this CP learning process is depicted in Fig. 3.

Fig. 3. The constructive primitive learning process.

1) Sampling: For sampling, we apply the simple random
sampling (SRS) with replacement [17] to the tailored content
space for a manageable data set. In contrast to other sampling
techniques, SRS is an unbiased sampling technique which
can ensure that each game segment in this content space has
the equal probability of selection. In addition, it can handle
unknown data distribution without any prior knowledge since
we do not know the distribution of content space. As a result,
we randomly set all the controllable features in the tailored
content space to form a data set.

In sampling, an important question is how large a sample
should be. Large sample size can guarantee that sample is
representative enough, but can also result in increased human
work. The size of our data set is determined via the sample
size determination (SSD) algorithm suggested in [17] since this
algorithm is designed for simple random sampling. According
to SSD algorithm, necessary sample size can be calculated as
follow:

n ≈ z2δ2

d2
=

1.962 × 49.4490

0.102
= 18996.32 ≈ 19000 (1)

where z is the z-score 1.96 for 95% confidence interval, and
d is 0.10 which refers to a small allowable difference. These
values are suggested in typical SSD algorithm. δ2 is 49.4490
which refers to maximum variance of content space among
different features. The value of δ2 is determined using an
engineering guesstimate [18]. With the theoretical justification,
the SSD can decide the size of a sampled data set without loss
of non-trivial information. By applying the SSD to our tailored
content space, it is suggested that a data set of 19,000 games
should be sufficient.

2) Clustering: We apply the CURE algorithm [19] on
the sampled segment set for clustering analysis since this
hierarchical clustering algorithm can deal with data set with
unknown data distribution and discover the clusters of different
sizes. We can achieve good clustering results without any
prior knowledge of data distribution within our data set [20].
There are four parameters in CURE algorithm: the number
of clusters, sampling rate, shrink factor, and the number of
representative points. By using the dendrogram tree achieved,
the number of clusters is automatically decided based on the
longest k-cluster lifetime [21]. The rest of parameters are set to
defaults suggested in [19]; i.e., 2.5% for sampling rate, 0.5 for
shrink factor and 10 representative points, respectively. Due to
the existence of two different feature types, i.e. nominal and
ordinal, we employ the mixed-variable distance metric [20] in
the CURE. After clustering, we found 106 clusters from this
sampled data set. Game segments within same cluster tend to
have similar structures (e.g., same number of design elements),
while segments in different clusters may look different. The
clustering results would be used to facilitate active learning.

3) Active Learning: For binary classification, there are two
error types: false negative (type-I error) where a high quality
segment is misclassified as low quality and false positive



(type-II error) where a low quality segment is misclassified
as high quality. Obviously, a type-II error could result in a
catastrophic effect while a type-I error simply shrinks the
content space slightly. As a result, we formulate our classi-
fication as a cost-sensitive learning problem where the type-II
error incurs a higher cost. By looking into several state-of-
the-art classification techniques, we found that the weighted
random forests (WRFs) [22], a cost-sensitive oblique random
forests [23] classifier, fully meet our requirements for active
learning. Random forests are an ensemble learning method
for classification and regression by training different decision
trees based on different subsets of the data. Such classifier can
handle data set with different feature types, and allows us to
know which feature is more important during training. WRFs
is a cost-sensitive version of random forests in which the class
weights are taken into consideration. Such algorithm is easy
to incorporate into typical random forests, and allows us to
control the weights of two types of errors easily. In our work,
the parameters of WRFs [22] are set via validation as follows:
2:1, 50, 5, 10, and 9 for the cost ratio, the number of trees,
the number of combined features, the number of feature groups
selected at each node, and depth of trees, respectively.

After clustering, a small number of segments are selected
from each cluster to form a validation set in order to evaluate
the generalization performance of a classifier during active
learning. The number of segments selected from each cluster is
proportional to the cluster size. Totally, there are 800 segments
in the validation set. One of author annotates each game
segment in the validation set by visual inspection. In general,
it takes us less than five seconds to annotate a game segment.

During active learning, we randomly choose 100 segments
and annotate them via visual inspection to train the initial
WRFs. In each iteration, we find 100 segments of the highest
uncertainty scores, defined by si = 1−P (ŷ|xi) where ŷ is the
predicted label of segment xi, and P (ŷ|xi) is the probability
of this prediction, and annotated them to be examples for re-
training WRFs. The active learning stops when the accuracy
of WRFs on the validation set no longer increases. Although
there are other active learning techniques, our active learning
algorithm based on uncertainty sampling is efficient to handle
a data set of of 19,000 points. Such algorithm is summarized
in Algorithm 1.

Once the evaluation function is learned, we use it along
with the rules described in Sect. II.C to produce CPs in a
generate-and-test way, and a combination of proper CPs via
controllable parameters leads to an online procedural level
generator as described in next section.

III. ONLINE LEVEL GENERATION

As described in Sect. II, CPs provide quality building
blocks and hence lumping them together can easily lead to
a procedural level of aesthetically appealing content with a
path between entrance and exit. In SMB, there are a variety of
procedural levels that can be categorized based on a number
of properties, e.g., density [6], leniency [14], and linearity
[14]. As our CPs are represented by design elements, we
can generate a procedural level of pre-setting property via the
corresponding controllable level generation parameters.

Algorithm 1 Active Constructive Primitive Learning
Input: Sampled data set U and clustering results on U .
Output: WRFs binary classifier.
Initialization: Based on the clustering analysis results,
create a validation set V of 800 examples.
Active Learning:
Annotate 100 segments randomly selected from U via visual
inspection to form a training set L. Train WRFs on L to
obtain an initial binary classifier.
repeat

for all xi ∈ U do
Label xi with the current WRFs.
Calculate the uncertainty score si of xi.

end for
Annotate 100 segments of the highest uncertainty score
in U to form a new training set L.
Re-train the WRFs with the examples in L.

until The overall accuracy on V does not increase.
return Classifier WRFs.

Motivated by the previous works [6], [14], we employ three
controllable level generation parameters, i.e., density, leniency,
and linearity, to generate a variety of levels online. The density
controls the complexity of geometrical structures, e.g., a high
density leads to many overlapping hills. The leniency decides
the level difficulty in gameplay; intuitively, a high leniency
results in an easy-to-play level. The linearity is yet another
parameter that ensures there is a linear structure in a generated
level; a large value leads to a level of highly linear structures.
Each level generation parameter is set to {1, 2, 3}, and carried
out by setting the proper values to relevant content features
in CPs as defined in Table II. It is worth stating that linearity
may conflict with density. Hence, we stipulate that the density
and linearity parameters cannot be used together.

TABLE II. PARAMETERS USED IN GAME GENERATION

Parameter Value Description
1 number of enemies ≥ 2; number of gaps ≥ 1

Leniency 2 number of gaps ≤ 2; width of gaps < 3; 1 ≤
number of enemies ≤ 3; enemies without wings

3 number of enemies ≤ 1; number of gaps ≤ 1; number
of cannons = 0; width of gaps < 3; no turtle enemy

1 0 ≤ number of hills ≤ 2; height of the first platform
= 2

Linearity 2 y coordinates of tubes and cannons = 0; number of
hills ≤ 1; number of hills ≤ 1; height of the first
two platforms = 2

3 y coordinates of tubes and cannons = 0; number of
hills = 0; number of hills = 0; height of the first
three platforms = 2

1 0 ≤ number of hills ≤ 1
Density 2 0 ≤ number of hills ≤ 2

3 number of hills ≥ 1; number of gaps ≥ 1

To generate a complete level, we first specify the desired
values to controllable parameters that fix the values of relevant
content features and set other irrelevant content features in
game segments randomly. Thus, game segments of desired
properties are generated, and evaluated by rule-based and
data-driven quality evaluation functions. Survivals of game
segments become CPs, and an iterative process is undertaken
by merging the CPs of the specified properties together until
reaching a pre-specified length.

As depicted in Fig. 4, our CP-based online generation



algorithm first uses a generate-and-test method to produce
CPs for quality assurance, and a complete procedural level is
then constructively generated by sequentially lumping CPs of
specified properties together via setting controllable parameters
at a local level.

Fig. 4. Online procedural level generation.

IV. EXPERIMENTAL RESULTS

In this section we report results in the CPs learning and
level generation to study the implications and benefits of
our data-driven evaluation function, and examine whether our
generator is capable of generating controllable yet quality
game level efficiently in terms of different quality measures.
The game engine adopted in our experiments is a modified
version of the open-source Infinite Mario Bros used in the
Mario AI Championship [4], [24]. Our level generator that
yields results reported in this section are publicly available on
our project website1.

A. Results on Constructive Primitives Learning

Based on the learning algorithm described in Sect. II, Fig. 5
illustrates the evolutionary performance of our active learning
on the validation set, including types-I and -II error rates as
well as their average, the half total error rate (HTER). From
Fig. 5, it is observed that the active learning converges after
1100 data points.

Fig. 5. Performance evolution on the validation set during active learning.

While the final HTER is around 11.67%, the corresponding
type-I error rate is around 19.66%. It is evident from Fig. 5
that our cost-sensitive classifier performs well in minimiz-
ing the type-II error; the type-II error rate is approximately
3.69%. Among those segments that yield type-II error, about
0.74% segments contain unreachable resources and the rest
segments consist of unexplainable difficulty spikes, imbalanced
resources, and aesthetically unappealing structures. While such

1http://staff.cs.manchester.ac.uk/s̃hipa/mario.html

segments may result in negative gameplay experience, fortu-
nately, none of unplayable segments in the validation set was
misclassified.

Some correctly classified and misclassified instances are
shown in Fig. 6. Segment instances in Fig. 6 (A) and (B) are
positive examples, while instances in Fig. 6 (C) and (D) are
negative examples. The label of each instance is determined
according to our labeling criteria. For instance, the 1st example
in Fig. 6 (C) consists of unplayable structure which does
not allow a player to pass through. The 4th example in
Fig. 6 (C) contains unreachable boxes. The 1st, 2nd and 3rd
examples in Fig. 6 (D) consist of unbalanced resources and
difficulty spikes. All the game elements (e.g., boxes, enemy,
cannon, gap) are centralized in the middle of game segments,
which will dramatically increase the difficulty in the middle
of game segments. The 2nd example in Fig. 6 (C) contains
simple structures which lack a sense of progression. The
rest segments in Fig. 6 (C) and (D) consist of aesthetically
unappealing combination since enemies, gap, boxes, tubes and
cannons are arbitrarily lumped together without any meaning.
In contrast, segments in Fig. 6 (A) and (B) contain playable
structures, reachable resources and meaningful combination
which capture an area of challenge and convey a sense of
progression. Among all these instances, game segments in
Fig. 6 (B) and (D) will yield type-I and -II errors respectively.

Fig. 6. Segment instances. (A) Correctly classified positive examples. (B)
Segments leading to type-I error. (C) Correctly classified negative examples.
(D) Segments leading to type-II error.

By analysing clustering analysis results, we found that
segments located in same region of content space tend to
be classified as same category. For instance, the 5th example
in Fig. 6 (B) and rest examples in its cluster are classified
as negative since most instances in this cluster are annotated
as negative examples. During training, WRFs finds a single
split that optimizes the information gain to classify these
instances. Thus, some of them are misclassified. The 2nd
example in Fig. 6 (B) is also misclassified due to same reason.
In addition, segments of complicated data distribution are
likely to be misclassified. For instance, the 5th example in
Fig. 6 (C), 4th and 5th examples in Fig. 6 (D) share similarities
since they both have boxes above the rock gap, but these
instances are located in different regions of content space
due to their representations. During training, WRFs has to
find three different splits instead of one split to classify these
segments. Thus, some of them will be misclassified since these
splits cannot optimize information gain. The data distribution
of this type of segments is complicated since these data points
look similar from perspective of annotator, but spread through



whole content space due to their representations. This is the
main source of this type of errors. The 1st, 3rd, and 4th
examples in Fig. 6 (B) are also misclassified due to this reason.
Moreover, some “rare segments” are likely to be misclassified.
The proportion of some types of game segments (see the 1st,
2nd and 3rd examples in Fig. 6 (D)) in whole content space
is small. On one hand, those segments are located in several
quite small regions of the content space, and unlikely to be
selected in both training and validation set. On the other hand,
WRFs uses greedy strategy to find an optimal split according
to the split criteria. These “rare instances” maybe overlooked
and then misclassified since these splits cannot optimize the
information gain.

Experimental results demonstrate that our data-driven eval-
uation function can effectively eliminate low quality segments
in terms of our labeling criteria. This argument is supported by
the low type-II error achieved from active learning. In addition,
this function can implicitly encode multiple quality-related
criteria, which could avoid the design and use of multiple
evaluation functions.

B. Quality Analysis

This section further examines the implications and benefits
of our data-driven evaluation, and compares our approach
to other generators in terms of quality. Unlike [8] that uses
human subjects to evaluate their generator, we use different
quality measures to compare our system with others since
these metrics are capable of evaluating large numbers of levels
objectively.

In this experiment, we use strategic resource control (fs),
area control (fa), area control balance (ba), and exploration
(E) defined in [25] as our metrics for evaluation since they
are domain-independent metrics which are verified by game
developers. Among these metrics, fs measures how close
treasures (e.g., coins, boxes) are to enemies; fa measures the
placement of design elements (e.g., enemies, tube flowers,
cannons) away from each other; ba measures how balanced
distribution of design elements; E evaluates the exploration
efforts to reach the exit starting from entrance. Mathematical
definitions of these metrics are defined in [25]. Apart from
above measures, we also employ Peter Lawford’s A* agent
[24] in small state to evaluate the playability (P ) of game
levels since this agent can survive from most playable game
levels no matter how difficult they are.

As we aim to examine the benefits of our data-driven
evaluation function, we use our generator to generate two
sets of levels. Each level in the first set is composed of
randomly generated constructive primitives, while each level
in the second set is composed of game segments which survive
from conflict resolution rules but are rejected by data-driven
evaluation function. For a thorough evaluation, we compare our
approach with a number of SMB level generators, including
Notch [3], Grammar Evolution (GE) [6], and generators devel-
oped for level generation track of the Mario AI Championship
[4]. Each of level generators generates 100 procedural levels
of 200 in width and 15 in height for evaluation in terms of
aforementioned metrics. The level generation parameters used
in ours are set randomly and others use their default settings.
The E scores are normalized to the range of [0,1].

Table III illustrates the mean and the standard deviation
of quality scores achieved from different level generators. We
now use one-tailed Wilcoxon rank sum test to make a pairwise
comparison between our approach (levels in set 1) and others
with respect to different quality metrics. From Table III, it
is evident that both ours (levels in set 1), GE generator, and
Mawhorter’s generator receive high fs scores, which implies
that treasures (e.g., coins, boxes) in these levels are close to
enemies acting as their “guardians” [25]. In contrast, design
elements (e.g., enemies, boxes, coins) in procedural levels of
set 2 are arbitrarily lumped together without any reason, which
leads to relatively lower fs score. Regarding area control (fa)
and area control balance (ba), our generator tends to generate
levels with significantly higher fa score than others and moder-
ate ba score, which implies that design elements (e.g., enemies,
tube flowers, cannons) in our procedural levels are placed far
away from each other, and have balanced distribution. For
exploration (E), Mawhorter’s generator [11] tends to generate
levels with complicated structures and multiple paths, which
leads to highest E score. In contrast, ours generate levels
of low E score in comparison to others due to the initial
content space defined in our approach. We found that our
density parameter could increase E score since it controls
the complexity of geometrical structures. Such result is not
presented here since this experiment only examines the bene-
fits of data-driven evaluation function instead of controllable
parameters. For playability (P ), both ours, Notch generator and
Takahashi’s generator achieve a high percentage of playable
levels. The playability results of these three approaches are
significantly better than the rests. Please notice that P score
value is dependent on A* agent’s gameplay performance and
sampled levels. Procedural levels that A* agent cannot pass
through are not necessarily unplayable.

TABLE III. AVERAGE QUALITY SCORE.

Generator fs fa ba E P

Ours (set 1) 0.34(0.11) 0.46(0.08) 0.48(0.07) 0.20(0.07) 1.00(0.00)
Ours (set 2) 0.29(0.10) 0.36(0.09) 0.45(0.07) 0.18(0.06) 0.92(0.27)
Notch 0.27(0.26) 0.24(0.19) 0.42(0.24) 0.12(0.05) 1.00(0.00)
GE 0.34(0.19) 0.41(0.12) 0.42(0.09) 0.17(0.05) 0.96(0.20)
Weber 0.29(0.05) 0.40(0.07) 0.43(0.06) 0.33(0.14) 0.28(0.45)
Shimizu 0.24(0.05) 0.29(0.04) 0.50(0.06) 0.32(0.07) 0.93(0.26)
Mawhorter 0.32(0.06) 0.42(0.07) 0.43(0.07) 0.44(0.19) 0.81(0.39)
Takahashi 0.23(0.09) 0.19(0.10) 0.54(0.15) 0.18(0.05) 1.00(0.00)
Baumgarten 0.18(0.05) 0.20(0.05) 0.53(0.06) 0.31(0.11) 0.86(0.35)

Extensive simulation results show that our data-driven
evaluation could improve the quality of procedural games with
respect to different quality measures, and our generator is
capable of generating game levels with high fs, fa, and P
scores.

C. Controllability

In this section, we evaluate the controllability of our level
generator. In general, controllability can be reflected in the
expressive ranges of procedural levels generated with different
level generation parameter settings [7]. Expressive range refers
to the range and variation of procedural levels according to an
evaluation metric [14]. This paper uses linearity [14], density
[6], and leniency [14] as our metrics since they can reveal
global properties of game levels generated by a level generator.
For linearity, we use the method suggested in [13] to find a line
that fits the profile of a procedural level, and the coefficient of



determination r2 is used to estimate the degree of linearity. For
density, we count the number of all possible standing positions
in a game level [6]. For leniency, we assign a value to each
type of game elements as same as used in [6], [7] (i.e., enemy:
-1.0, gap, cannon or flower tube: -0.5, and powerup: +1.0). The
overall leniency score is the sum of the three values.

As ours have three level generation parameters and each
may take one of three values as described in Sect. III, we
exhaustedly generate nine sets of levels by fixing one pa-
rameter with a specific value and randomly setting all other
parameters each time. To see the controlling effect clearly,
we also generate a set of levels by setting all the parameters
randomly. Thus, we achieve 10 level sets where each contains
100 levels for reliability. A game level is confined to a 2D
map of 200 in width and 15 in height, as same as the setting
in previous work, e.g., [5]. In terms of linearity, density and
leniency, the expressive ranges of levels controlled by different
parameters are shown in Fig. 7 where it is clearly seen that
the levels of a specific property are generated by properly
controlling a parameter.

Fig. 7. Expressive ranges of our level generator corresponding to different
controllable parameter values.

For exemplification, Fig. 8 illustrates some levels generated
by controlling parameters in a specific way. Level in Fig. 8
(C) consists of 14 hills, which leads to highest density value.
Levels in Fig. 8 (A) and (B), however, contain 2 and 8 hills
respectively, which leads to lower density values. In addition,
there are more complicated geometrical structures (e.g., more
overlapping hills) in the level shown in Fig. 8 (C) than those
shown in Fig. 8 (A) and (B).

Experimental result demonstrates that our generator pro-
vides control for designers by controlling relevant content
features in CPs locally, and generates a complete procedural
level of desired properties.

D. Generation Efficiency

Generation efficiency is often evaluated by the actual time
taken in a level generation. By testing on a PC (Intel Core i5-
3470 processor with 8GB memory), our level generator takes
only 0.057 sec on average to generate a procedural level, 200×
15 2D map, which should be able to meet the online generation
requirements.

V. DISCUSSION

In this section, we discuss the issues arising from our work
and relate ours to pervious works.

Quality assurance is an open challenge in the area of
PCG since automatically generated procedural levels are gen-
erally worse than those handcrafted levels [12]. Different

types of approaches have been proposed to tackle this issue.
For instance, Shaker et al. [6] presented a system which
used design grammars and handcrafted fitness functions for
generating SMB levels via grammatical evolution algorithm;
Smith et al. developed the Launchpad generator [7] which
used handcrafted critics for quality assurance and designer
control. In general, identifying proper constraints and formu-
lating heuristic evaluation functions is difficult since game
content is observable but hard to explain and abstract. Thus,
Reis et al. [8] merged human-annotated game segments to
form complete aesthetical appealing and enjoyable levels.
However, they did not train a model to generalize the annotated
data. Dahlskog and Togelius [9] used design patterns learned
from human-authored SMB levels to generate levels, while
Snodgrass and Ontañón [10] learned Markov chains from
human-authored SMB levels as constructive rules for level
generation. These approaches aim to generate levels with
training data (e.g., human-authored levels) instead of domain
knowledge. However, infering/learning reliable constructive
rules (or diverse design patterns) from these levels without
any domain knowledge might be difficult since the number of
human-authored levels are limited (e.g., 32 human-authored
levels in SMB). In our approach, we explore and exploit the
synergy between rule-based and learning-based methodologies
to assure the quality of game content. Easy-to-design rules
are employed for removal of apparently unappealing game
content, while a learning-based approach addresses the rest of
quality assurance issues with a single evaluation function. Our
data-driven evaluation function implicitly encodes multiple
quality-related criteria based on game developers’ judgment
on quality of training examples, and improves the quality of
procedural game with respect to different quality measures.
However, a learning-based approach rarely yields the error-
free performance, which could be a potential weakness of such
approach.

Another issue in PCG is to effectively control the properties
of procedural content. In general, a game designer has to
encode the desired properties in handcrafted rules (e.g., theory-
driven evaluation functions) in order to control the procedural
levels (e.g., [5], [7]). While those evaluation functions may
work less efficiently especially for generating procedural levels
of a considerable length. In contrast, our online level generator
clearly benefits from CPs, it provides effective and efficient
control for designers. On the one hand, our generator is
proposed based on a direct content representation concerning
low-level geometrical features. By controlling relevant con-
tent features directly, game content of desired properties are
directly selected from the specified region of content space.
This process is more efficient than aforementioned approaches
since using theory-driven evaluation functions to explore the
content space is computationally expensive. On the other hand,
our representation is working at a local level for CPs. Thus, our
generator generates a procedural level efficiently by integrating
CPs of desired properties. It is noticed that the desired level
properties have to be specified via setting controllable parame-
ters at a local level. This would be a potential weakness when
such properties are unknown or hard to specify. In addition,
the expressive ranges of procedural levels are also mainly
determined by local controllable parameters. Game developer
could generate procedural levels of wide expressive range by
tuning controllable parameters locally.



Fig. 8. Exemplar levels generated with different density values. (A) density = 1. (B) density = 2. (C) density = 3.

In general, our online level generator may be viewed as a
hybrid PCG approach if we position it in light of the existing
taxonomy [1]. On the one hand, we use a generate-and-test
method to produce CPs for quality assurance. On the other
hand, a procedural level is constructively generated via a num-
ber of controllable parameters for effective control. Apparently,
ours distinguishes from aforementioned approaches in terms of
quality assurance and resultant controllability.

In conclusion, we have presented a novel approach to
online level generation in SMB. Our approach can also be
used for offline game generation, which allows for using more
complex controlling parameters to generate richer content in
contrast to our online generation. We explore and exploit the
synergy between rule-based and learning-based methodologies
to produce controllable yet quality constructive primitives. A
complete quality game level can be generated by integrat-
ing relevant constructive primitive together via controllable
parameters on geometrical features and level properties. We
have further carried out a thorough evaluation on our pro-
posed approach and other approaches. The experimental results
demonstrate that our approach online generates quality yet
controllable levels efficiently. In our ongoing research, we have
been working on the application of CPs to generate adaptive
games for personalization and extension of this approach to
first-person shooter (FPS) games.
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