
This is a repository copy of Using Association Rule Mining to Predict Opponent Deck
Content in Android: Netrunner.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/104807/

Version: Published Version

Conference or Workshop Item:
Sephton, Nicholas John, Cowling, Peter Ivan orcid.org/0000-0003-1310-6683, Devlin, Sam
orcid.org/0000-0002-7769-3090 et al. (2 more authors) (2016) Using Association Rule
Mining to Predict Opponent Deck Content in Android: Netrunner. In: IEEE Computational
Intelligence and Games Conference (CIG 2016), 20-23 Sep 2016, Greece.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Using Association Rule Mining to Predict

Opponent Deck Content in Android: Netrunner

Nick Sephton∗, Peter I. Cowling∗, Sam Devlin∗, Victoria J. Hodge∗, and Nicholas H. Slaven†

∗York Centre for Complex Systems Analysis, Department of Computer Science, University of York, United Kingdom

Email: njs523@york.ac.uk, peter.cowling@york.ac.uk, sam.devlin@york.ac.uk, victoria.hodge@york.ac.uk
†Stainless Games, Isle of Wight, United Kingdom

Email: nicks@stainlessgames.com

Abstract—As part of their design, card games often include
information that is hidden from opponents and represents a
strategic advantage if discovered. A player that can discover
this information will be able to alter their strategy based on
the nature of that information, and therefore become a more
competent opponent. In this paper, we employ association rule-
mining techniques for predicting item multisets, and show them
to be effective in predicting the content of Netrunner decks. We
then apply different modifications based on heuristic knowledge
of the Netrunner game, and show the effectiveness of techniques
which consider this knowledge during rule generation and
prediction.

I. INTRODUCTION

A variety of games often include incomplete or hidden

information as a form of challenge to the players, indeed

most such games would be far more trivial if such an element

was excluded. Card games in which players bring decks of

their own construction to play are now relatively common

place, and are represented both in physical card gaming (e.g.

Magic: The Gathering1), and in digital gaming (e.g. Blizzard

Entertainment’s Hearthstone2). In such games, knowledge of

the content of an opponent’s deck represents a potentially

powerful strategic knowledge which can be exploited to

significant advantage. This is true of competition outside of

the game domain also, as being able to adequately predict the

strategy of a potential competitor will likely give significant

advantage.

In this paper we consider a deck of cards to be a multiset

consisting of a known number of cards, each of which

has a type identifier. We then use a variety of rule-mining

techniques applied with heuristic knowledge to attempt to

predict the content of the deck after observing a specific

number of cards chosen at random. It is important to note

also that our game of choice is sufficiently complex, such

that constructing a deck in the manner a human might is

substantially more difficult than prediction using any method

we have attempted here. Human players generally construct

decks by identifying a central idea for the deck, then fitting

cards into the deck that either support that concept or appeal

to the player in some other way. While our techniques here

produce similar results, there is no clear identification of

1http://magic.wizards.com/
2http://us.battle.net/hearthstone/en/

concept, and all cards are connected, not selected for any

other appeal.

This research could also be applied outside the realm of

games, as this problem represents a highly complex, partially

observable system with specific rules which govern the

system construction. Optimising association rule mining to

these complex requirements is clearly of interest as a general

advancement of research in this area. The techniques here

could easily be converted for use in other fields which have

similar complex requirements on sets or multisets, simply

by applying heuristic knowledge to data mining and rule

generation processes as performed here.

The remainder of this paper is organised as follows. In

section 2, we present a summary of related works on Rule

Association Mining and other relevant techniques. Section

3 discusses the Android: Netrunner game which was the

main focus for this work. In section 4, we discuss our

experimental methods, the methods we used to generate

association rules, and also the algorithms which we used to

make deck predictions. In section 5, we present our results,

and section 6 contains our conclusions and some notes on

potential future work.

II. RELATED WORK

The prediction of an opponent deck is effectively a form of

opponent modelling [1], [2], [3], except with the important

distinction that we are modelling strategic decisions which

took place before the game started. As the opponent can’t

change their pre-game behaviour due to game experience,

we do not need to create a full opponent model, only an

estimation of actions which have already been performed.

There has been little work in this specific area before, with

the exception of a single application of machine learning to

the game of Hearthstone [4], which achieved a very high

prediction rate on a limited card set.

A. Association Rule Mining

Association Rule Mining is the determination of correla-

tions between a set of items [5]. It is also known as Market-

Basket Analysis, due to the common usage of determining

which products a shopper may purchase based on what

is already in their shopping basket. A typical rule-mining

algorithm functions by generating rules that describe which

items are likely to be included in a partially observed set,

given the items in the observable part of the set. Itemsets are

drawn from the data such that each itemset describes a cor-

relation between items. Association rule mining is employed

in many application areas, including intrusion detection [6],

web usage mining [7] and bioinformatics [8].

A commonly used algorithm in association rule mining is

Apriori [9]. Apriori first generates all 1-itemsets that appear

in the data at least a number of times equal to a predetermined

support value, then passes this generation onward to create a

second generation of 2-itemsets. This process continues until

an empty generation is found (that is a generation with no

candidates that appear at least support times in the data.)

Each generation member then creates a single association rule

which describe the correlation recognised by that member.

There are many variations on the Apriori technique to

generate rules [10]. Most notable of these are a technique

which attempts to identify the n-most interesting itemsets

for rule generation rather than using a minimum support

value [11], [12]. Some techniques also use functional lan-

guages rather than support constraints [13], and others use

lattice and graphing techniques [14].

III. ANDROID: NETRUNNER

Android: Netrunner is a two-player strategy card game

published by Fantasy Flight Games3, which includes ele-

ments of bluffing and deception. Netrunner is similar to other

popular card games such as Magic:The Gathering, and is

described as an LCG (Living Card Game [15]).

Due to the nature of the game, the content of an opponent’s

deck is critical strategy information, and a player who is able

to accurately model their opponent’s deck is at a substantial

advantage. There are currently more than 600 cards released

for Netrunner, so accurately modelling a deck is a significant

challenge. The combination of the wide number of choices,

plus the complex and specific rules for which cards may

be included in decks makes Netrunner deck construction a

highly intricate process.

During a standard match of Netrunner, opponents do not

have access to the content of their opponents deck. Access to

such information would provide a substantial advantage to a

player, as they would both be able to predict their opponent’s

likely strategy, and also determine which strategies they are

poorly defended against.

Netrunner has a well documented rules structure for deck

building4. Each deck has a single identity card, which pro-

vides a Side, Faction and a certain amount of Influence.

Decks may only include cards associated with their side, but

may spend influence to include cards from other Factions.

Every Netrunner deck has exactly one Identity card which

defines some rules for that deck, most notably a Side, an

amount of influence and a Faction. There are exactly 2 sides

(named Runner and Corp), and each card in Netrunner is

associated with one side and cannot be included in decks

associated with the other side. Identities which are from the

3http://www.fantasyflightgames.com
4https://images-cdn.fantasyflightgames.com/filer public/2e/66/

2e66279a-0b5c-4d12-80b1-754289b5ff0c/adn01 rules eng lo-res.pdf

corp side must also include a specific number of agenda

points, which are provided corp cards (the specifics of agenda

points are not relevant to this work, other than to recognise

that there is a required number of agenda points for some

decks to include, which presents an additional restriction

upon decks.) All non-identity cards also have a Faction and

a Influence Cost, the latter of which describes the amount of

influence which must be paid to include the card in a deck

which contains an identity of a different faction.

In this paper, we consider a deck for Netrunner to be a

multiset, where no item can appear in a set more than three

times. Each set also includes exactly one identity, which is

always visible to us (as this is a condition of beginning a

game of Netrunner), and also defines a portion of the multiset

rules.

IV. EXPERIMENTATION METHODS

A. Netrunner Deck Data

Experimentation data consisted of 6000 community made

decklists posted on a popular Netrunner community website 5

that allows users to collect and compare decklists. Some fil-

tered based on popularity was performed. Prediction accuracy

results are determined by direct comparison of the predicted

deck and the original deck and returning a percentage of the

cards that match.

Algorithm 1 GetPredictedDeck(...) for a1
1: function GETPREDICTEDDECK(Dobs, R, C, n)

2:

3: ##Initialise all cards with rule support

4: InitCardRuleCounts(Dobs, C, R)

5:

6: ##Sort cards desc by rule support

7: sort(C, rulecount, 0)

8:

9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:

12: ##For each card

13: for all c ∈ C do

14:

15: ##Take the required number of cards

16: k = min{n− |Dpred|, c.MaxCount}
17:

18: ##Add them to the predicted deck, if possible

19: Dpred.AppendMultiple(c,k)

B. Apriori Rule Generation

Rules were mined from data using the Apriori method

detailed in Agrawal & Srikant [9], with modifications as

detailed in sections below. This process generates a large

number of rules, which describe the relationship between

items in the analysed set. These rules are made up of one

or more antecedent items, and one consequent item. The

5http://netrunnerdb.com

antecedent items is a multiset of items which must be found

in any observed set in order for the rule to become active.

The consequent item is the item which results from rule

activation, and thus the item which will be added to the

predicted set. Our rules take the form {A,B,B,C,D} → E,

where A,B,B,C,D is the full set of antecedents, and E is

the consequent.

Each rule also has a support [16] value, which

states how many occurrences of the complete set of

antecedents and the consequent appear in the training

data, and is useful to describe the magnitude of the ef-

fect of the rule. Support is calculated by the formula

support(X → Y) = σ(X ∪ Y)/N [17], where (X → Y)
represents a rule, and N represents the total size of the data

set. Each rule also has a confidence value, which measures

the reliability of the rule. Confidence is calculated by the

formula confidence(X → Y) = σ(X ∪ Y)/σ(X).
The primary piece of evidence used to model an oppo-

nent’s deck will be the identity card, as it is always visible,

and also provides the constraints for deck construction in

the form of faction, side and influence. As other cards

are revealed through play, these can be added to the deck

with complete confidence. It is usual to have observed a

small number of opponent cards during the first turn of

play (we estimate 1-4 is usual), and as such we vary the

number of observed cards we randomly select to determine

the effectiveness of our technique upon different sized sets

of cards.

After rules were generated from the data, the set of 6000

decklists were tested using 30 fold cross-validation, with

each individual prediction being made based upon a set of

randomly selected cards from the decks. As these cards could

potentially be duplicates, for each test a minimum of two

unique cards are observed.

C. Apriori Prediction

1) Standard Apriori Prediction (a1): The standard Apriori

method of prediction is shown in algorithm 1, where Dobs

represents the observed known cards, n represents the size

of the observed deck, Dpred represents the predicted deck, R
represents the set of all generated rules, and C represents the

set of all Netrunner cards. In the first step of the algorithm we

set the rule counts of each card to 0, then we run through all

rules and determine if they are active for the set of cards

we have observed (Dobs). We then set Dpred to contain

Dobs, as our prediction will always include the cards we

have observed, and this makes further operations easier. We

sort all cards by their rulecount attribute, and then move

through them in decending order of c.rulecount until we

find sufficient cards to fill the remainder of Dpred.

2) Modifying for duplicate cards (a2): A notable error

performed by a1 is number of duplicates which appear in

the predicted decklists. As Netrunner decks can include up

to three copies of each card6, we attempt a technique that

6A few cards have specific rules which break this allow more copies or
restrict the number of duplicates, but the vast majority may only appear in
sets of 1-3

allows us to predict the number of copies of each item in the

predicted multiset. Without this modification, the a1 simply

adds the maximum number of each item until it cannot add

more, resulting in three copies of each card in the predicted

deck.

Algorithm 2 GetPredictedDeck(...) for a2
1: function GETPREDICTEDDECK(Dobs, R, C, n)

2:

3: ##Initialise all cards with rule support

4: InitCardRuleCounts(Dobs, C, R)

5:

6: ##Sort cards desc by rule support

7: sort(C, rulecount, 0)

8:

9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:

12: ##For each card

13: for all c ∈ C do

14:

15: ##Take the required number of cards

16: k = min{n− |Dpred|, c.Cardinality}
17:

18: ##Add them to the predicted deck, if possible

19: Dpred.AppendMultiple(c,k)

In order to modify this behaviour, we make a separate

calculation using the rule metadata to determine the number

of duplicates included in the original data. We then use

this information to include copies in the prediction. This

algorithm is very similar to algorithm 1 except that after a

card is selected, the rule metadata is averaged to determine

the number of duplicates to be included.

Therefore each run of GetPrediction a2(Dobs) adds 1-

3 cards to Dobs, and bans the included card from further

selection. This technique may appear arbitrary, but in the

case of duplication in a specific decklist, the nature of the

individual card is far more relevant than any patterns between

the card and other cards in that deck. For example, some

cards are so strong and usable in any deck that they almost

always appear in sets of 3, whereas others frequently appear

alone due to the narrow field of use or difficulty to fit into a

deck.

3) Prioritising by Influence (a3): A review of the all data

used here shows that 84% of decks in our dataset used all of

their influence, 92% used all except 1 point, and 95% used

all but 2. Considering that our data likely contains a large

number of casual decks, which likely accounts for those not

using all of the influence, this is indicative of how important

the concern of influence during deck construction.

In order to prioritise influence spends, we change the

method of deck prediction so that we first attempt to make

predictions which would spend all available influence (both

influence and non-influence cards still undergo the duplicate

procedure mentioned in section IV-C2 above.) This new

method is not shown in algorithm, as the only change is

a sorting C so that all of the rules with a resultant card

that will cost influence appear first, and this is restated later

in algorithm 4. Notation is as before, however in the set C

is sorted not only by rulecount, but also by a boolean that

represents whether including any given card in Dpred would

cost influence. This means that the first predictions made by

a3 will cost influence, and then when all the influence is

spent, only cards that do not cost influence will be added.

4) Using influence during Rule Generation (a4): Here, we

separate item sequences that were generated from influence

spend and non-influence spend. This allows us to separate

the item sets into two groups, one which represents cards

which players have spent influence on, and which represents

card sequences that were used “in-faction”. We can then

generate specific rules for influence and non-influence spend.

In the case that we had insufficient data, the prediction

reverted to using all generated rules. This method is shown

in algorithm 3. Notation is as before, however in addition

Rinf represents rules originally generated from influence

sets, and Rnoinf represents rules which are generated from

non-influence sets only. This algorithm is very similar to

algorithm 2 except that GetPrediction a4 uses only rules

generated from influence selections when selecting an card

that costs influence, and only rules generated from non-

influence selections when selecting a card that doesn’t cost

influence.

5) Rule Generation including duplicate cards (a5): We

also attempted to remove the calculation for duplicate cards

by allowing the rules to be constructed from duplicate items,

and thus we should be able to predict those duplicates with

more relevancy to the observed deck, rather than the general

attributes of the cards. This algorithm is identical to algorithm

a4, except that duplicates are calculated based on the number

of copies of each card seen in the generated rules rather than

our cardinality data. When a rule is determined to be active,

instead of checking rule metadata to determine the number of

cards to add to the predicted deck, we instead determine the

total number of the consequent item that already exist within

the predicted deck, and if the required number specified by

the rule already exist, we take no action. If the required

number is not yet in the deck, we add a single consequent

item. For example, if the rule {A,B,C} → B becomes

active, we check to see if 2 or more B are included in the

predicted deck. If so, we add nothing. If not, we add a single

B.

6) Prioritising by rulesize (a6): This modification at-

tempts to give priority to rules which contain more items, as

these rules will be less rarely active due to their specificity.

However, when these rules are active for an observed card

set, they will likely tell us more about the content of the deck

than smaller rules. This algorithm is identical to a4, except

that the rules are sorted by descending rule size, and then a4
is performed using the set of rules which are the largest size,

then descending through the rules until we have completed

the deck.

7) Making confident predictions (a7): This modification is

identical to a6, however when we predict a card, we add it to

Algorithm 3 GetPredictedDeck(...) for a4
1: function GETPREDICTEDDECK(Dobs, Rinf , Rnoinf , C,

n)

2:

3: ##Initialise all cards with rule support (inf)

4: InitCardRuleCounts(Dobs, C, Rinf)

5:

6: ##Sort cards desc by rule support

7: sort(C, rulecount, 0)

8:

9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:

12: ##Spend influence first

13: for all c ∈ C do

14:
15: ##Take the required number of cards

16: k = min{⌊(maxinf − inf(Dpred))/c.inf⌋, c.Cardinality}

17:

18: ##Add them to the predicted deck, if possible

19: Dpred.AppendMultiple(c,k)

20:

21: ##Initialise all cards with rule support (no inf)

22: InitCardRuleCounts(Dobs, C, Rnoinf)

23:

24: ##Then fill the deck with non-influence cards

25: for all c ∈ C do

26:

27: ##Take the required number of cards

28: k = min{n− |Dpred|, c.Cardinality}
29:

30: ##Add them to the predicted deck, if possible

31: Dpred.AppendMultiple(c,k)

the observed card set and check all rules again. So any card

we predict to appear in the deck, we assume we are correct

for the purposes of further predictions. This final version is

shown in algorithm 4.

V. RESULTS

All results for predictions are shown in figure 3. Use of

the mentioned techniques to generate deck predictions is

generally successful, completing decks with an accuracy of

up to 59% from viewing only 5 cards (roughly 8-10% of

the actual deck). However there are some general trends

which can be observed. Firstly, as each card (or set of

cards) are added to the deck sequentially, we don’t take into

account new patterns which may emerge between originally

observed cards and cards more recently added. This means

that all predictions are based on the original set of observed

cards, whereas we would likely have a different effect on

prediction if we considered predicted cards to be part of the

observed set when making further predictions. We suggest

that some of the difference in prediction may be a tendency to

form into familiar deck archetypes, as predicted cards would

likely support larger patterns already recognised as frequently

Algorithm 4 GetPredictedDeck(...) for a7
1: function GETPREDICTEDDECK(Dobs, Rinf , Rnoinf , C, n)

2: Dpred ← Dobs

3: for all r ∈ Rinf do

4:

5: ##Initialise all cards with inf rule support

6: InitCardRuleCounts(Dpred, C, Rinf)

7:

8: ##Sort cards desc by rule support

9: sort(C, rulecount, 0)

10:

11: ##Spend influence first

12: for all c ∈ C do

13:
14: ##Take the required number of cards

15: k = min{⌊(maxinf − inf(Dpred))/c.inf⌋, c.Cardinality}

16:

17: ##Add them to the predicted deck, if possible

18: Dpred.AppendMultiple(c,k)

19: for all r ∈ Rnoinf do

20:

21: ##Initialise all cards with non-inf rule support

22: InitCardRuleCounts(Dpred, C, Rnoninf)

23:

24: ##Sort cards desc by rule support

25: sort(C, rulecount, 0)

26:

27: ##Fill out deck with non-influence

28: for all c ∈ C do

29:

30: ##Take the required number of cards

31: k = min{n− |Dpred|, c.Cardinality}
32:

33: ##Add them to the predicted deck, if possible

34: Dpred.AppendMultiple(c,k)

35: return Dpred

played decks. This is somewhat consistent with human deck

construction however, as players often use existing archetypes

to construct decks.

In order to provide a control for experimentation, random

selection was tested (a0). Generated decks were still required

to observe deck construction rules, but other than that cards

were selected randomly from the set of available cards. All

predictions using a0 had an accuracy in the range 0% - 6%,

and due to this low accuracy, results are not shown below.

We also attempted to test prediction across a range of

different numbers of observed cards. In each of these cases,

the identity card was always observed, then an additional

number of cards were added. This means in the case of the

number of observed cards being zero, only the identity card

was observed. In all previous experiments the size of the set

has been five, which represents what a player might expect

from two complete turns of play. We tested prediction with

sets of up to ten viewed cards. We also tested prediction

with a set of zero observed cards, which represents the game

before play has begun.

A. Default Apriori (a1)

Default Apriori allows for predictions of up to 48% accu-

racy, and while this is somewhat effective, it can be improved

upon significantly by the later algorithms which incorporate

heuristic knowledge. Different values of minimum support

were used to determine the optimum value, which lies close

to 15. All of these tests were run on a dataset of size 200

(30-fold cross-validation on a total set of size 6000), so larger

values of minimum support will likely cause smaller detail

of the dataset to be lost during rule generation. Examination

of the decks generated with a1 also reveals that almost every

card is included in triplets, further speaking of the neces-

sity of a modification to address the number of duplicates

included.

B. Apriori with duplicates (a2)

The modification to consider inclusion of duplicates in the

predicted deck results in a significant increase in accuracy.

The most significant value of minimum support now appears

between 10-15, both options resulting in a prediction accu-

racy of 53%, an increase in accuracy of 5%. This increase

in accuracy is certainly related to more accurate predictions

on sets of duplicate cards, as due to the nature of the game,

certain cards are more often played in sets of 2 or 3, and

certain cards are almost always played without duplicates.

This modification largely makes the effect that there are no

longer automatic inclusions of cards in groups of 3, however

it can still be further improved with respect to heuristic data.

C. Apriori with Influence Priority (a3)

While prioritising the inclusion of cards which cost influ-

ence has a positive effect, the effect is marginal, increasing

prediction accuracy by less than ∼2% at the optimal value

of minimum support 10. It is surprising that the effect is so

marginal, but upon examining further it is apparent that most

(92%) of decks predicted with a1 and a2 already include

the maximum permitted influence for those decks, so the

modification is perhaps not as important to prediction as

originally proposed.

Examinations of the individual card selections shows that

the influence spends are somewhat inappropriate however,

and are somewhat to blame for the inaccuracies of this

prediction algorithm.

D. Apriori with Influence Filtering (a4)

There are several interesting effects in these results. Firstly,

the highest accuracy has risen to 57%, an increase of ∼4%.

Secondly, the optimal value of minimum support has changed

to a higher value of 20.

A review of the cards selected by influence spends reveals

that they are much more appropriate to the acknowledged

deck archetypes, presumably due to the specific use of rules

generated entirely from influence spend patterns.

We also start to observe some occasional single-card influ-

ence inclusions which are well established in the appropriate

archetypes.

E. Rule Generation including duplicate cards (a5)

We can see from the results for a5 that attempting to

determine the number of duplicate cards in a deck from

generated rules appears to be less effective than using our

data on the normal set count of that card. This is believable,

as the number of duplicate cards included is likely to be

much more dependent on the nature of the card than on

the nature of the deck itself. As our information relates to

patterns between cards, we don’t necessarily have a good

understanding of the nature of the card itself.

It is worth noting however that for some values of mini-

mum support, a5 is approximately as effective as a3 and a2,

meaning that it is still an effective technique, and alternative

methods to predict duplicate cards in the deck could be

investigated.

F. Prioritising by rulesize (a6)

Giving priority to larger rules has also had a positive effect

on prediction accuracy. We can see this effect particularly

when minimum support is 20. We attribute this effect to

larger rules being more rarely satisfied unless they are

highly informative about the configuration of decks. As such,

activated large rules should be given priority over activated

smaller rules.

G. Making confident predictions (a7)

By adding all predictions to our observed set, we are

assuming that all our predictions are correct, and biasing

future predictions by this information. This has a positive

effect on prediction accuracy at higher values of minimum

support, however it has almost no effect at values of 15 and

below. This could be explained by some subtly of rules that

are activated with a support of 15 or less, however in this

case we would expect the prediction accuracy to be positively

affected also, and yet we see that this is not the case.

The extension of our observed set also has another less

obvious effect on prediction, which is that it allows activation

of rules with larger item sequences, as more items appear

in the observed set. This means as Dobs expands, we may

observe decks activating larger rules, and effectively falling

into archetypes.

H. Varied Size Observation Set

The results for predictions made with varied observation

sets are shown in figure 1. We can see that the overall change

in deck prediction accuracy across the total range of tested

values is approximately 20%, which while a large change,

might be less than we expect from such a change in source

data. This illustrates the importance of the identity card which

is always viewed, it speaks deeply of the construction of

the deck, mostly because the identity card is always active

during play, and a substantial portion of the cards included

will have some synergy with that identity. This also speaks of

the nature of deck construction in Netrunner, which largely

consists of modifications to existing archetypes, likely due to

smaller synergies between groups of cards. It is also worth

noting that at almost all values of observed set size and

minimum support, our algorithms which incorporate heuristic

information perform significantly better than default apriori.

We see an understandable increase in prediction accuracy

as we increase the size of the observed set, as there are

both fewer cards to predict, and also more information is

available on the set content. Rules with a higher number of

antecedents are also activated, which likely provides more

accurate information on the set content.

Fig. 1. Varied Size Observation Set

We can also observe that a few of our own techniques

(a3&a4) perform very poorly when the observed set is very

small or empty. As a3 and a4 both focus on influence

inclusions, this is likely due to a lack of corroborating

information from other observed cards to distinguish correct

influence selections. As such, the initial influence selections

are almost unguided, and as these cards are selected from a

much larger set of available cards than regular selections, the

picks are more likely to be incorrect without guidance.

There is also an interesting plateau in prediction accuracy

around set size 3-6 with algorithm a5. This is likely due to the

estimation for duplicate cards struggling on smaller set size.

As the cards in the observed section of the deck are selected

randomly during each test, it is possible that duplicate cards

are selected, and as such less information is exposed in

certain cases. This might cause a decrease in accuracy when

only a small number of unique cards are observed. This

calculation is not included in any other algorithm, as it was

not effective in increasing accuracy overall, possibly due to

this complication.

The results across all experiments grouped by algorithm

are shown in figure 2. We can more clearly see a general

rise in prediction accuracy here, with the exception of the

a5 algorithm for reasons mentioned above. This is to be

expected, as each algorithm following a1 includes specific

heuristic improvements which are targeted to improve effi-

ciency in this specific domain.

Algorithm a5 shows that our introduction of rule-based

cardinality estimations have been unsuccessful in improving

prediction efficiency, although this is something we would

definitely want to address in future. The current cardinality

estimations are unlikely to predict decks with 100% accuracy,

for example it will always fail to predict decks that include

a unusually small number of a card almost always seen in

sets of 3.

Fig. 2. Cumulative results by Algorithm

VI. CONCLUSIONS & FURTHER WORK

It can be seen that our modifications to the Apriori

technique provide a significant improvement to prediction

of decks in Netrunner, showing a maximum improvement

of ∼13% between the default apriori algorithm (a1) and our

optimal modified algorithm (a7).

There are several other opportunities for future work

which could be explored. For example, the technique used to

separate rules in a4 could also be applied to identity cards,

using only rules generated for each identity to select either

the entire deck, or the influence-spend portion of the deck.

However this would require a large amount of data, as certain

identities are unpopular and may appear only rarely within

our current data set, so there would be fewer useful rules

generated for these identities. It may also be worth looking

at generation by Faction, which might yield more interesting

results. Also, as our observed cards were randomly selected,

they may not adequately represent the real order cards are

observed during a game (as it is more common to play certain

cards earlier than others.) Biasing generation of the observed

set of card may provide a more realistic scenario.

Our attempts to adequately predict the number of duplicate

cards within a deck have been some what effective, but

there is still work to be done here, as our best prediction is

based on our heuristic knowledge of the specific card, rather

than knowledge of the card in context. Successfully adding

contextual heuristic knowledge into this process will surely

lead to more accurate prediction.

We can also look to applying these techniques to other

domains, specifically the games mentioned in section 1.

Magic the Gathering has a much larger set of active cards,

and less stringent deck construction rules, so while this

would represent a more challenging target, there is also

a much larger amount of data available due to the larger

player community and history of the game. Hearthstone likely

represents a point of medium complexity, as the card pool is

between the other two games mentioned here (approximately

450), and the deck construction rules are more restrictive than

Magic, and thus provide more guidance.

A further avenue of research which could be pursue is

that of pattern matching within the decks, in order to draw

out common patterns which occur within multiple decks, and

then using that information to further bias the prediction.

ACKNOWLEDGEMENTS

The work displayed here was supported by EPSRC (http://

www.epsrc.ac.uk/), the LSCITS program at the University of

York (http://lscits.cs.bris.ac.uk/), the NEMOG program at the

University of York (http://www.nemog.org/), and Stainless

Games Ltd (http://www.stainlessgames.com/).

REFERENCES

[1] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings,
and C. Rayner, “Bayes’ Bluff: Opponent Modelling in Poker,” in
Proceedings of the TwentyFirst Conference on Uncertaintyin Artificial

Intelligence UAI, 2005, pp. 550–558.
[2] M. Ponsen, G. Gerritsen, and G. M. J.-B. Chaslot, “Integrating Oppo-

nent Models with Monte-Carlo Tree Search in Poker,” in Proc. Conf.

Assoc. Adv. Artif. Intell.: Inter. Decis. Theory Game Theory Workshop,
no. February, 2010, pp. 37–42.

[3] C. Bauckhage, C. Thurau, and G. Sagerer, “Learning human-like
opponent behavior for interactive computer games,” Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 2781, pp.
148–155, 2003. [Online]. Available: http://www.cs.berkeley.edu/daf/
games/webpage/AIpapers/Bauckhage2003-LHL.pdf

[4] C. Bursztein and E. Bursztein, “I am a legend: Hacking
Hearthstone with machine learning,” in DEFCON 22,
2014, p. 169. [Online]. Available: https://cdn.elie.net/talks/
I-am-a-legend-defcon-22-slides-final.pdf

[5] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” ACM SIGMOD Record,
vol. 22, no. May, pp. 207–216, 1993.

[6] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for
building intrusion detection models,” in Security and Privacy, 1999.

Proceedings of the 1999 IEEE Symposium on, 1999, pp. 120–132.
[7] J. Srivastava, R. Cooley, M. Deshpande, and P.-n. Tan, “Web usage

mining: discovery and applications of usage patterns from Web data,”
vol. 1, no. 2, pp. 12–23, 2000.

[8] C. Creighton and S. Hanash, “BIOINFORMATICS Mining gene ex-
pression databases for association rules,” pp. 79–86, 2003.

[9] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” Proceeding VLDB ’94 Proceedings of the 20th International

Conference on Very Large Data Bases, vol. 1215, pp. 487–499, 1994.
[10] J. Hipp, U. Güntzer, and G. Nakhaeizadeh, “Algorithms for association

rule mining — a general survey and comparison,” ACM SIGKDD

Explorations Newsletter, vol. 2, no. 1, pp. 58–64, 2000.
[11] S. C. Ngan, T. Lam, R. C. W. Wong, and A. W. C. Fu,

“Mining N-most interesting itemsets without support threshold by
the COFI-tree,” International Journal of Business Intelligence and

Data Mining, vol. 1, no. 1, p. 88, 2005. [Online]. Available:
http://www.inderscience.com/link.php?id=7320

[12] A. W. C. Fu, R. W.-w. Kwong, and J. Tang, “Mining N-most Interesting
Itemsets,” in Proceedings of the 12th International Symposium on

Methodologies for Intelligent Systems (ISMIS),, 2000.
[13] Z. Hu, W. Chin, and M. Takeichi, “Calculating a new data mining

algorithm for market basket analysis,” Practical aspects of declarative

languages: second International Workshop, PADL 2000, Boston, MA,

USA, January 17-18, 2000: proceedings, pp. 169–185, 2000.
[14] J. Hipp, A. Myka, R. Wirth, and U. Guntzer, “A New Algorithm for

Faster Mining of Generalized Association Rules,” in Principles of Data

Mining and Knowledge Discovery, 2006, pp. 74–82.
[15] S. C. Duncan, “Mandatory Upgrades: The Evolving Mechanics and

Theme of Android: Netrunner,” in Well Played Summit, 2014.
[16] V. Baez-Monroy and S. O’Keefe, “An Associative Memory for Asso-

ciation Rule Mining,” 2007 International Joint Conference on Neural

Networks, no. 2, pp. 2227–2232, 2007.
[17] P.-N. Tan, M. Steinbach, and V. Kumar, “Association Analysis: Basic

Concepts and Algorithms,” Introduction to Data mining, pp. 327–414,
2005. [Online]. Available: http://www-users.cs.umn.edu/{∼}kumar/
dmbook/index.php

Fig. 3. Results of algorithm runs with varying minimum support values

