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Abstract—Player believability is often defined as the ability of
a game playing character to convince an observer that it is being
controlled by a human. The agent’s behavior is often assumed
to be the main contributor to the character’s believability. In
this paper we reframe this core assumption and instead focus
on the impact of the game environment and aspects of game
design (such as level design) on the believability of the game
character. To investigate the relationship between game content
and believability we crowdsource rank-based annotations from
subjects that view playthrough videos of various AI and human
controlled agents in platformer levels of dissimilar characteristics.
For this initial study we use a variant of the well-known Super
Mario Bros game. We build support vector machine models of
reported believability based on gameplay and level features which
are extracted from the videos. The highest performing model
predicts perceived player believability of a character with an
accuracy of 73.31%, on average, and implies a direct relationship
between level features and player believability.

I. INTRODUCTION

Player believability is a highly subjective notion commonly
viewed as the ability of a game playing character to convince
observers that it is being controlled by a human player [1]–[4].
The problem of creating human-like1 agents and measuring
believability in agents is among the most challenging and pop-
ular research areas in the field of game artificial intelligence
(AI) [5], [6]. While research in believable game bots has seen
recent advances in games such as Unreal Tournament [7] and
Super Mario Bros [8], generic methods for creating such bots
are far from being available.

It is commonly assumed that believable game characters
make games more immersive and entertaining for players [9]
and that believability is solely dependent on the algorithm
controlling the character’s behavior. The evident relationship
between believability and character control has driven the ma-
jority of studies in the area of game AI [5], [6]. However, the
extent to which believable behavior in an algorithm-controlled
game agent comes about from the controller has recently been
questioned [1]. Inspired by speculations in [1] we instead focus
on the degree to which believability is a product of the agent’s
(player’s) environment. We thus introduce a game content-
centered view on player believability instead of the traditional
controller-centered perspective.

Taking a crowdsourcing approach to model perceived be-
lievability of player characters in a platformer game variant of

1For the purposes of this study human-likeness and believability are two
terms used interchangeably.

the well-known Super Mario Bros, we asked over 350 subjects
to annotate believability in playthrough videos of the game.
In these videos four different players (two AI-controlled and
two humans) play dissimilar level configurations of the game.
The extracted gameplay characteristics and level features, on
one hand, and the obtained annotations of believability, on
the other hand, were used as the input and output, respec-
tively, to construct a believability model. The model was built
using rank support vector machines (RankSVMs) [10] as the
crowdsourced annotations have an ordinal (rank-based) format
[11]. A correlation analysis revealed that the average width
of gaps in the level has a linear relationship with reported
believability. Further, the best SVM model reaches 73.31%
accuracy, on average, and maps level and gameplay features
to believability, revealing non-linear relationships between
the enemy placement and number of gaps in the level and
believability.

This paper is novel in that it introduces an approach for
modeling player believability using machine learned repre-
sentations of crowdsourced annotations of believability. Most
importantly, it offers the first empirical assessment of the
extent to which level design influences the believability of play
and sheds light into the association between game content and
player believability.

II. RELATED WORK

In this section we outline studies which are relevant to
this paper including work in believability and its assessment,
studies in player modeling as well as earlier work on the
impact of content on believability.

A. Believability, Believable Agents and their Assessment

The notion of believability is highly subjective and cannot
be objectively defined trivially. However, in virtual worlds
it is generally understood as a form of suspension of the
observer’s disbelief or the ability of a fictional or virtual world
or character to give the illusion of life [1], [12]. With respect
to game agents or characters there are two main dimensions
of believability in literature: character believability (i.e., the
character itself is perceived to be real through its behaviour,
emotive expression or graphical appearance) [1] and player be-
lievability (i.e., by exhibiting human-like gameplay behaviour,
the character gives the impression that it is being controlled by



a human player) [1]–[4]. This paper focuses on the assessment
and modeling of player believability in platformer games.

Arguably, gameplay believability increases player engage-
ment since it makes the game interaction more realistic [9].
There is also evidence suggesting that human players tend
to prefer playing with or against other human players rather
than AI agents due to the unpredictability in human gameplay
behavior [1], [9]. Moreover, non-believable behavior such
as repetitiveness and predictability (e.g., constantly falling
into a gap in a platformer game or getting stuck in areas
where human players could easily get through) seems to make
games less challenging, thus deterring players [3]. ‘God-like’
behavior (e.g., going through an entire level without taking any
damage) may also be considered non-believable [1]. Therefore,
believability — as objectively as one can define it — likely lies
somewhere in the middle of a gameplay spectrum, where the
lower end includes poor, predictable behavior and the upper
end includes optimal, god-like behavior; both of which are
naturally perceived as non-believable.

Attempts at measuring the believability of playing behaviour
include a criteria-based approach [2], [3] where believability
is based on how many predefined criteria a playing character
is observed to meet. However, a more common approach to
measuring believability is through subjective assessment [1],
[5], [13]–[17] where, similarly to the traditional Turing Test
[18], human subjects are asked to observe a character in a
game and indicate whether they believe it is being controlled
by a human or by a computer. In this paper we follow
the subjective assessment approach and we crowdsource rank
annotations of believability given to video recorded player
characters of a Super Mario Bros variant.

B. Player Modeling

Player modeling has been defined as the study of com-
putational models of players in games which includes the
detection, modeling, prediction and expression of human
player characteristics which are manifested through cognitive,
affective and behavioral patterns [19]. Player believability can
be viewed as a core component of playing behavior and player
experience [1]. One could thus assess and model believability
using an approach similar to how other components of player
experience have been modeled [20]–[22]. There are two main
approaches to modeling players and aspects of the playing
experience: the model-based (top-down) and the model-free
(bottom-up) approach [19], [23]. In this study we adopt a
bottom-up approach for modeling player believability and we
derive the computational model from data. The input of the
model contains gameplay and game content data [19] of play-
ers playing through varied levels of a platformer game whereas
the output contains ordinal annotations of believability. To the
best of our knowledge, this is the first crowdsourcing-based
study for modeling believability in games.

C. Game Content and Believability

Game content is progressively increasing in demand and
volume and, thus, becoming more expensive and time-

consuming to create manually [24]. Procedural Content Gen-
eration (PCG), the “algorithmic creation of game content
with limited or indirect user input” [25], is a natural and
direct response to this challenge. Experience-driven PCG is
a framework which views game content as the building block
of player experience and involves the procedural generation
of content based on a model of player experience [23]. The
framework first consists of constructing a model of player
experience which takes information about game content and
the player and outputs some approximation for the current
player experience state. The quality of the generated content
is evaluated based on the model and a representation for
the content is established. New content is then generated by
searching for content that optimizes the player’s experience
with respect to the player experience model [23]. This core
PCG approach has been applied in several studies to generate
content for various player experience states including engage-
ment, frustration, and challenge [20]–[22].

While game content and experience have an apparent direct
relationship, no study has ever attempted to quantify the
impact of game content on game playing believability; instead,
studies in player believability focus on developing the agent’s
controller [5]. That said, interactions with game content in
BioShock Infinite (Irrational Games, 2013) were used to en-
hance character believability of the player’s NPC companion,
Elizabeth [26]. Game mechanics have also been designed to
hide non-believable characteristics of a simple algorithm in
[27]. However, extending the argument that believable virtual
agents must act according to the context they are situated
within [28], we argue that the modification of the environment
that characters act (play) within is of utmost importance for
the observer’s suspension of disbelief. Inspired by the core
suggestions of [1] this study attempts, for the first time, to
investigate the relationship between game level architecture
and game playing believability and construct models of player
believability based on level design features, gameplay charac-
teristics and crowdsourced annotations of believability.

III. TESTBED GAME

Our testbed game is a variant of Infinite Mario Bros (a
platformer game [29] and a popular benchmark in player
modeling and content generation studies [20]–[22], [30]–[34])
as modified for the 2011 Mario AI Competition with sprites
from an open-source platformer game called SuperTux.

The game therefore consists of a player character called
Tux; a number of platforms (separated by gaps) which Tux can
run on and jump between; coin collectibles for Tux to collect;
and enemies which Tux must avoid or kill (by stomping on
them — thus turning them into shells — or by kicking a shell
to hit them). The main goal of the player in the game is to
get Tux through levels containing these elements. The player
is given three ‘lives’, or attempts, to complete the level. Each
time Tux gets killed by falling into a gap or touching an enemy
(or shell), one life is lost. If no lives are left, the game is over.
Collecting coins increases the player’s score. A screenshot of



Fig. 1. Screenshot of the testbed game used in this study.

the game displaying some of the above-mentioned elements is
provided in Fig. 1.

IV. FEATURE EXTRACTION AND DATA COLLECTION

This section outlines the features extracted from levels and
gameplay behaviour and also presents the crowdsourcing pro-
cess through which believability annotations were collected.

A. Level design features

Following the approach of [21], [22], levels of the test-bed
game were represented using the following four features: the
number of gaps in the level (G), the average width of the
gaps (Gw), the number of enemies (E), and the placement
of enemies (Ep). For a particular game level, each parameter
could be in one of two states: high or low. For G, the low state
was set to 2 gaps and the high state was set to 10 gaps, while
for Gw, the low state was set to 3 blocks and the high state was
set to 8 blocks. Further, the low value of E was chosen to be 5
enemies while the high value for this feature was chosen to be
15. The Ep feature is represented by three values which define
the probabilities of an enemy being placed near a gap, near a
box, and on a flat surface. For the low state of Ep, the value of
these three probabilities was chosen to be 10%, 10% and 80%,
respectively, whereas those for the high state were chosen to
be 80%, 10% and 10%. The choice of these features and their
corresponding values which were set empirically was inspired
by earlier studies in Super Mario level generation [20]–[22],
[30], [31], [34]. Given the two states for each of the four level
features, the resulting number of all their combinations, and
thereby possible levels, is 16. The 16 levels were generated
following the approach presented in [21].

B. Gameplay features

The following list of fourteen player metrics used for this
study is based on earlier feature extraction attempts for level
generation in Super Mario Bros [21], [22]: completion time
(tC), duration of last life (tLL), percentage of time spent
running right (tR), percentage of time spent running left (tL),
percentage of time spent running (tRun), number of times
the ‘run’ button was pressed (PRun), number of jumps (J),
number of aimless jumps (Ja), number of coins collected (C),
number of enemy shells kicked (S), number of deaths by

Fig. 2. Screenshot of the 4-AFC part of the online questionnaire.

falling into a gap (Dg), number of deaths by an enemy (De),
number of enemies killed (K), number of enemies killed by
kicking a shell (Ks).

C. Crowdsourced believability annotations

We recorded video clips of four players (two human players
and two AI agents) playing through each of the sixteen
generated levels. The two humans play the game differently
with one clearly performing better than the other. The first AI
agent is based on the A* pathfinding algorithm of Baumgarten
[35] which won the Mario AI competition in 2009. The
second AI agent is a hard-coded rule-based agent inspired
by the REALM agent [36] which won the Turing Track of
the Mario AI championship in 2010. Collectively, the four
players purposely demonstrate varied behavior across all levels
played and are therefore assumed to exhibit different levels of
believability. The resulting 64 videos of all 16 levels played
by all 4 players were stored for the believability annotation
experiment described herein.

Human annotators were asked to view a number of game-
play videos which were randomly selected from the 64 videos
without replacement. To establish the ground truth of a highly
subjective notion such as believability we followed the rank-
based approach for reliable annotation as proposed in [11]. The
rank-based approach requires that annotators are provided with
instances of the investigated variable in pairs (or more) and are
asked to rank those instances according to a particular notion.
For eliminating any short-term memory biases we chose to
present the 64 videos in pairs, amounting to 2016 unique
combinations in total. For each pair viewed, the observer was
requested to provide a pairwise preference for believability
using the 4-alternative forced choice (4-AFC) protocol [20]–
[22]. That is, the subject was asked to specify which of the
games in the two videos they believed was more likely to
have been played by a human. Subjects could pick one of
four possible responses; the game in video A, the game in
video B, both or neither (see Fig. 2). The two videos in the
pair were presented in a random order next to each other so
that any primacy or recency effects are eliminated.

Prior to proceeding with video annotation the subjects were
required to fill in a brief demographics questionnaire. The
questions asked were: age; gender; how often do you play
games (possible answers: never; few times a month; few times



a week; few hours a day; many hours a day); how would
you rate your skill level in playing video games (possible
answers: novice; average; good; excellent); have you ever
played platformer games (possible answers: never; a few times,
I am a novice player; many times, I am a good player; I am
an expert player); have you ever played Super Mario Bros
(possible answers: never; a few times, I am a novice player;
many times, I am a good player; I am an expert player).

The crowdsourcing experiment was advertised widely and
run for a whole month during which a total of 1, 605 ran-
domly selected video pairs were ranked by approximately 391
subjects. This amounts to 79.6% of all possible combinations
of pairs (i.e., 2016). Subjects reported clearly about their
preference (i.e., they selected one of the two videos) in 984 out
of the 1, 605 available video pairs; this is the clear preference
dataset used for the analysis in the remaining of this paper.

V. STATISTICAL ANALYSIS

As a first phase of our analysis, this section presents various
descriptive statistics we derived from the obtained data. This
includes a brief analysis on the demographical data of the
subjects, an analysis of the quality of the believability pref-
erences and a correlation analysis between the game features
considered and the reported believability annotations.

A. Demographical Data

A high-level descriptive statistical analysis on the demo-
graphical data of the respondents reveals that the subjects
(average age is 36.9 years) are relatively balanced in terms of
gender (females: 197; males: 168). However, the distribution
of demographical data is slightly biased in terms of gaming
skills (e.g., only 15 out of 365 subjects play many hours a day),
gaming experience (e.g., only 30 subjects identify themselves
as expert gamers), and previous exposure to platformer games
(e.g., only 15 subjects identify themselves as expert platformer
gamers) and Super Mario Bros (e.g., only 13 subjects identify
themselves as expert Super Mario Bros gamers).

B. Believability Preferences

Assessing the validity of annotations of highly subjective
notions such as believability is a challenging task. For instance,
a believability preference for one of two videos depicting
different AI players (instead of annotating these videos with
the neither label) is not objectively invalid since AI players
of the game may have the capacity of being perceived as
believable. The analysis presented here is not intended to
test the validity of the reported believability preferences but,
rather, to provide an insight into the nature of these annotations
following the evaluation approach presented in [1]. Figure 3
offers a first visualization of the crowdsourced believability
preferences with respect to the four characters (the two AIs
and the two human players) and three types of subjects: all
subjects, expert subjects who consider themselves a good or
an expert Super Mario Bros player, and novice subjects who
either have never played Super Mario Bros before or they
consider themselves novice Super Mario Bros players. For

Fig. 3. Percentage of believability annotations across the different player
characters and annotator sets. A* and RB (rule-based) are the two AI players;
H1 and H2 are the two human players. “Expert”, “Novice” and “All” indicate
the expert, novice and all subjects, respectively.

each of the four players and the three annotator types we depict
the percentage of the four possible responses.

What is apparent from Fig. 3 is that expert players, com-
pared to novice players, are capable of better distinguishing
the two AIs from the two human players. Further, it is clear
that the preferences obtained generally match with the true
nature of the players being assessed. In particular, the human
players were correctly identified as humans by the majority
of subjects. The RB player was able to convince a great
number of subjects (especially the novices) that it was likely
to be human in most of the video combinations that it was
featured. On the other hand, the A* player, which was much
more optimal in its actions, was not perceived as believable
(especially by the experts). This observation reinforces the
findings of Togelius et al. [1] in that there seems to be
some lower and upper boundaries for the relation between the
playing skill of the players and their believability. To some
extent, this may serve as an indication that the quality of the
results obtained in this study are at least on par in terms of
validity with those obtained in [1].

Although through crowdsourcing we risked obtaining noisy
or incorrect data (e.g., preference pairs provided by subjects
who made their choices arbitrarily or who did not understand
the questionnaire task), these results show that there is a
certain degree of agreement between the responses of the
majority of subjects, implying that there might indeed be some
common reference point (or ground truth) with regards to
human perception of player believability. This finding further
reinforces the assumption that aspects of believability can
be approximated and there are certain factors that affect
believability which are common to many.

C. Correlation analysis

In this section we examine the relationship between each
of the game features and the reported believability preferences
through a correlation analysis. The rank correlation coefficient
between each of the eighteen gameplay and level features and
the crowdsourced preference pairs was calculated using the test



statistic c(z) = 1/N
∑N

i=1 zi, where N is the total number of
clear preference pairs (i.e., where one of the video clips in
the pair is preferred over the other) and zi = 1 if the value
of the examined feature in the preferred video of the pair is
greater than that of the other video (i.e., there is a match)
and zi = −1 otherwise (i.e., the feature value is lower in
the preferred video and, thus, there is a mismatch). Statistical
significance was calculated via a one-tailed binomial test.

The correlation coefficients of all 18 features are provided
in Table I across the three different subject datasets: all
subjects (984 clear preferences), expert subjects (206 clear
preferences), and novice subjects (774 clear preferences). It
can clearly be observed that — independently of subject class
— 7 out of the 18 features are found to be highly and positively
correlated (p < 0.01) with reported preferences. These include
one level feature, and six gameplay features. When all subjects
are considered, findings suggest that believability is perceived
higher in levels where gaps are wider (Gw), and when players
spend more time running left (tL), are killed more often by
enemies (De), kill more enemies by kicking shells (Ks), kick
more shells (S), press the ‘run’ button more often (PRUN )
and take longer to die in their last life (tLL). Indeed, running
left and making use of shells are considered human playing
characteristics and the results are in line with the findings
in [1]. An interesting observation is that the above gameplay
features have also been found to be associated with reported
player fun in Super Mario Bros [21].

The difference between the expert and novice subjects
is only limited to the degree of effect as some substantial
differences are observed in the c(z) values. Further, it seems
that for the expert annotators, as opposed to novice annotators,
the number of times the ‘run’ button was pressed and the
duration of the player’s last life were not factors that contribute
to a character’s believability. On the other hand, the average
gap width was not an indicator of believability for the novice
annotators.

From these correlations, it is clear that there exist some lin-
ear relationships between aspects of level design and perceived
player believability. In particular, it seems that the wider the
gaps are in a level, the more the behaviour of the players
is showcased; as a result, this level feature seems to be a
good predictor of player believability across all four players
— particularly for the expert annotators. Interestingly enough,
the gap width has already been found to be a good predictor
of player challenge, predictability, anxiety and boredom in an
earlier study in the Super Mario Bros game [21]. That said, an
additional, preliminary correlation analysis was also conducted
to measure the effect of the features on believability for each
of the four players separately. While no effects were found
for the rule-based agent, Gw and Dg are positively and highly
correlated (p < 0.05) with perceived believability in both the
A* agent and one of the human players (H1). Further, Ks

seems to be a good predictor for the believability of both
human players while PRUN , tL and De are highly correlated
with the perceived believability of H1.

The correlation analysis presented above limits our findings

TABLE I
RANK CORRELATIONS c(z) BETWEEN ALL EXAMINED FEATURES AND
REPORTED BELIEVABILITY PREFERENCES. VALUES IN BOLD INDICATE

SIGNIFICANCE (p < 0.01).

Feature All Expert Novice
Gw 0.1291 0.2821 0.0846
G 0.0825 0.0891 0.0840
Ep −0.0503 0.0874 −0.0867
E 0.0303 0.1778 −0.0050
tL 0.2483 0.3548 0.2170
De 0.2134 0.3121 0.1900
Ks 0.2911 0.4805 0.2342
S 0.3043 0.3898 0.2744
PRUN 0.1082 0.0632 0.1179
tLL 0.0966 0.0891 0.0964
J 0.0700 0.0792 0.0652
Ja 0.0636 0.0707 0.0593
C −0.0698 −0.1097 −0.0617
tR 0.0526 0.0051 0.0658
Dg 0.0593 0.1389 0.0373
K −0.0309 −0.0726 −0.0232
tC −0.0260 −0.1179 −0.0041
tRUN −0.0010 0.0647 −0.0213

to linear relationships between individual features and anno-
tated believability. However, the effect that features have on
believability is clearly dependent on the player (represented by
gameplay features). This means that there are relationships in
between the features themselves (both level and gameplay fea-
tures) which may affect how well they can predict believability.
Therefore, in the next section, we investigate the creation of
nonlinear mappings between combinations of features and
reported believability via preference learning.

VI. PREFERENCE LEARNING FOR MODELING
BELIEVABILITY

Preference learning is the task of learning global rank-
ings. Assuming that there is an underlying global order that
characterizes the provided rank annotations, the data can be
machine learned via preference learning and a global ranking
of believability can be derived [37]. This section provides a
brief description of the preference learning methodology fol-
lowed to construct models of player believability: in particular
we discuss the feature selection method and the preference
learning algorithm adopted. For all experiments reported in
this paper we used the Preference Learning Toolbox (PLT)
[38]. PLT is an open-source software package which integrates
various data normalization, feature selection and machine
learning algorithms for the task of learning from preferences.

A. Feature Selection

To select the most meaningful features that maximize the
predictive capacity of our computational model of believability
we used the Sequential Backward Selection (SBS) algorithm
for all experiments presented in this paper. The SBS algorithm
starts by feeding the preference learning algorithm with all
available features and obtaining a performance value; perfor-
mance is measured through cross-validation accuracy in this
paper. At each iteration, SBS removes from the feature set



the feature which, upon its removal, improves the model’s
performance (accuracy) the most. This process continues until
the feature set contains a single feature or until a certain
accuracy threshold is reached.

B. RankSVM

This study’s core aim is to infer a computational map-
ping between level and gameplay features (input) and the
believability preferences (output). While the PLT offers a
number of preference learning algorithms to choose from, we
choose the RankSVM [10] algorithm for its comparatively
low computational effort and well-evidenced performance.
RankSVM is the preference learning variant of Support Vector
Machines (SVMs) introduced by Joachims [10]. SVMs are
models which map training instances to data points in a
typically high-dimensional space and attempt to divide the data
points into two categories via a hyperplane. The algorithm tries
to find the dimension (or hyperplane) which best separates the
training instances. Once the model is built, unseen instances
are mapped to the space represented by the model and an
output is produced based on which half of the space they are
mapped to [39]. The mapping of training instances to data
points in space is performed using a kernel function. In this
study, we use the radial basis function (RBF) kernel as it
yields superior performance to linear or polynomial kernels
compared via trial experiments.

VII. BELIEVABILITY MODEL CONSTRUCTION

In this section, we describe the core preference learning
experiments carried out in order to investigate both the impact
of the annotators’ experience with respect to Super Mario
Bros and the impact of level content on the accuracy of a
believability model. In all experiments reported in this section,
features are min-max normalized to [0, 1] and RankSVM
(see Section VI-B) uses the RBF kernel with the default γ
parameter value of 1. Finally, three-fold cross validation is
used as the performance measure of all derived models.

A. The Impact of Super Mario Bros Experience

As mentioned earlier in Section IV-C, prior to the video
annotation process, subjects were asked if they had ever played
Super Mario Bros (i.e., the game that the testbed game is
largely based on) before and could respond with one of
four different levels of experience. We assume that a level
of experience with a particular game may have an impact
on a person’s perception of believability in that game. That
assumption is, in part, validated in the correlation analysis of
Section V-C. Thus, in this first round of experiments, we vary
the data used for training based on reported experience with
Super Mario Bros and investigate their impact on the accuracy
of the computational model of perceived believability. For
that purpose, as in Section V-C, the full dataset (984 clear
preferences) was split into two subsets: the novice (774 clear
preferences) and the expert (206 clear preferences) annotators.
We run SBS for each of the three sets and depict progression
of the average 3-fold cross-validation accuracy in Fig. 4.

Fig. 4. Impact of Super Mario Bros Experience: 3-fold cross-validation
accuracy as features are removed over iterations from the feature set using
SBS for all, expert and novice subjects. The x-axis represents the iteration of
the SBS process — or the number of removed features. Level features are
not considered by SBS in this experiment. The random baseline represents
the average accuracy of 10 random multi-layer perceptrons. Error bars depict
standard error values.

It is important to note that in this set of experiments, the
level features are not considered during the SBS process (i.e.,
they are purposely forced in the input of the SVM). The
purpose of doing so is to allow the model sufficient capacity to
capture aspects of reported believability through the content of
the level. Furthermore, the performance of such a model can
be used as a baseline against any model that does not put an
emphasis on content features. In the next section all considered
features (gameplay and content) are treated equally, thereby
testing the degree to which level features are important for
modeling gameplay believability.

The results illustrated in Fig. 4 reveal that the believability
annotations provided by subjects who considered themselves
to be ‘good’ or ‘expert’ players of Super Mario Bros (‘Expert’)
managed to yield significantly higher accuracies compared to
the other two datasets (all data and data annotations from
novice Super Mario Bros players) and also achieve the highest
accuracy improvement over the iterations of SBS. The highest
accuracy of a model built solely on expert annotations is
that of 71.36% with a corresponding feature set containing
all four level features (since they were forced in this set of
experiments) and ten gameplay features: tC (completion time),
tLL (duration of last life), PRUN (number of times the run
button was pressed), S (number of kicked shells), J (number
of jumps) and Ja (aimless jumps). The novice annotators did
not seem to yield any significant improvement over the full set
of preferences from all annotators. The best accuracy obtained
when training RankSVMs on the full dataset is only 58.43%.

B. The Impact of Level Features

In the second round of experiments we chose to treat all
features equally and consider them all during the SBS process
so as to examine which would be picked as appropriate for
capturing reported believability. Given the successful results
of the expert subset of annotators in Section VII-A, in this
round of experiments we focus on the expert subset and
we compare the accuracy obtained between models that are



Fig. 5. Impact of level features: 3-fold cross-validation accuracy as features
are removed over iterations from the feature set using SBS for the expert
annotators. The x-axis represents the iteration of the SBS process — or
the number of removed features. Level features are either considered —
SBS (All features) — or not — SBS (Gameplay) — by SBS. The random
baseline represents the average accuracy of 10 random multi-layer perceptrons.
‘Gameplay’, ‘Gameplay (Best 4)’, and ‘Level’ represent, respectively, the
accuracy of SVMs featuring all gameplay, the best 4 gameplay, and all level
features. Error bars depict standard error values.

trained when we consider and when we do not consider level
features during the feature selection process. The progression
of the average model accuracy for the two approaches for
the expert annotators is shown in Fig. 5. In addition to
the random baseline, the figure contains three more baseline
performances: the average 3-fold cross-validation accuracy of
an SVM containing solely the gameplay features, another one
containing the best four gameplay features, and finally, one
containing only the four game level features.

As shown in Fig. 5, the model featuring all (14) gameplay
features clearly outperformed the model featuring all (4) level
features. The latter is unlikely to be disadvantaged due to
the lower number of features since the model featuring the
best 4 gameplay features also outperforms it. Nevertheless, the
selected features for the best performing model (73.31% ac-
curacy — an improvement over the highest accuracy obtained
in Section VII-A) still contains the level features G (number
of gaps), Gw (average gap width), and Ep (enemy placement)
in addition to 9 gameplay features: tC , J , PRun, tRun, tR,
Ks, S, Ja and De. Although Gw was the only level feature
found to be correlated with annotated believability, RankSVMs
were able to capture non-linear relationships between more
level features (i.e., G and Ep) and gameplay features, and
reported believability. Even though the model performance
improvement is not large, it is however clear that the best
predictors of player believability consist of a combination
of gameplay and level features, as also speculated in [1].
Further, it should be noted that the accuracy of 73.31% is
considered very satisfactory given the highly subjective notion
of believability.

VIII. DISCUSSION

The core findings of this paper suggest that there is a strong
and direct relationship between level design and the perceived
believability of a character within a level. This validates,
to an extent, the hypothesis that level design influences the

perception of believability (at least in the platformer genre).
Nevertheless, a number of limitations of this study are very
likely to have hindered even more promising findings from
emerging. First, the performance of all four players may have
impacted the believability preferences as some subjects might
have based their reasoning on the players’ ability to complete
levels. More varied and expressive agents would have equipped
us with a much wider range of behaviors in the spectrum of
believability. Second, the level and gameplay features chosen
for this study are a subset of all possible game features that
could be encapsulated. We can only envisage that a larger
set of features can potentially reveal more information about
the relationship we are studying; however, the small level
feature set allowed us to both study the relationship and make
the crowdsourcing experiment feasible to run (by preventing
a combinatorial explosion of the total number of required
videos). Third, while RankSVM is a reliable algorithm for
learning preferences, other algorithms including backpropaga-
tion and neuroevolutionary preference learning must be tested
on the data available. Finally, this study is only based on data
derived from one particular game; experiments for testing the
generality of the methods and the results on other platformer
games and other game genres is a future goal of this work.

Despite current limitations, the initial findings of this study
suggest that it is possible to optimize player believability
merely by modifying the game level architecture, without
necessarily adjusting the character behavior per se. Moreover,
these findings hint towards the possible use of other forms of
game content, beyond levels, to optimize player believability.
Finally, other domains such as those of embodied conversa-
tional agents and robotics could also benefit from the outcomes
of this work by putting an emphasis on modifying the envi-
ronment within which agents act rather than focusing solely
on their controllers to optimize their believable behaviour.

IX. CONCLUSIONS

In this study, we have introduced a data-driven modeling
approach for constructing a mapping between gameplay, level
design and believability. To crowdsource that mapping, we
recorded a number of videos showing the gameplay of two
human and two AI-controlled players — varying in playing
style — playing through platformer levels of dissimilar design.
Through the use of an online questionnaire, more than 350
annotators provided pairwise preferences of perceived believ-
ability for the characters appearing in the videos.

A first statistical analysis of the data revealed that the an-
notators’ experience with the game impacts their preferences;
further, the average gap width of a level and a number of
gameplay features were found to be highly correlated to per-
ceived believability. Then, the 1, 605 believability preferences,
on one hand, and the gameplay and level features of each
video, on the other, defined the output and input, respectively,
of a preference learning process via RankSVMs that con-
structed the desired mapping. Through several experiments,
we examined the impact of annotators’ experience with Super
Mario Bros, and the features considered by the model, on the



model’s accuracy. The best accuracy of 73.31% was obtained
when both level and gameplay features were considered by the
model and the feature selection mechanism. The core findings
of this study reveal both a linear and a non-linear relationship
between level design and player believability that needs to be
further explored in other game genres and domains.
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