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Abstract—Procedural generation is important to modern game
development as both an artistic implement and an engineering
tool. However, developing procedural generators and understand-
ing how they work are both difficult tasks, and even more so for
novice developers. In this paper we describe Danesh, a tool to
help in analysing, changing and exploring procedural content
generators. In particular, we describe several features in Danesh
which help a user optimise their procedural generator towards a
certain kind of output by automatically changing parameters and
evaluating the effect it has on the generator. We compare different
approaches to these tasks and describe our future intentions for
Danesh’s automated features.

I. INTRODUCTION

Procedural content generation is an important part of mod-
ern game development and a well-known concept among
gamers and critics [1], useful both as a tool for solving
problems [2] and a paintbrush for expressing ideas [3], and
often employed as both at once [4]. The ability to generate
game content automatically opens up the potential for new
kinds of game to be made possible [5], as well as easing the
development of games by allowing abundance, serendipity and
surprise to be added to a game in very simple ways [6].

In our experience, developing procedural generators is hard.
Unlike many other common concepts in game development
like physics engines [7] or particle systems [8], most modern
tools for making games do not come with built-in support for
content generation. Where they do offer such support, it is
usually in the form of fixed-purpose generators of (usually
decorative visual) content, such as Unity’s tree generator
[9]. In addition to this, a user wishing to learn more about
procedural generation is mostly limited to tutorials about
generating highly specific content through one method (such
as Unity’s cave generator tutorial [10]), which usually focus
on the process of implementation rather than understanding
and customising a generator after the fact. As an example, the
tutorial in [11] ends by telling the reader: ‘the final step is
down to you: you must iterate over what you learned to create
more procedurally generated content for endless replayability’.

Understanding procedural generators can also be difficult.
Unlike traditional content creation, the user cannot see the
entirety of what they are creating all at once. Instead, they
typically view an example output from the generator (perhaps
multiple examples in quick succession) to assess the approxi-
mate type of output the generator might produce. In a survey

we conducted of 53 game developers, 85% of them stated that
their primary method of testing a generator involved changing
parameter values and repeatedly viewing the output. There are
many problems with such an approach: it doesn’t capture the
variance or distribution of the output; it can’t detect outliers or
anomalous results; it is extremely hard to do when parameters
have nonlinear relationships with the output or interact with
other parameters; and it doesn’t provide feedback to the user
as to whether their goal is even achievable.

In order to help new practitioners learn about procedural
content generation as a skill and an artform, we need to build
tools that focus on domain-independent analytical techniques,
that provide as much help and feedback as possible in the
process of learning what a generator does and understanding
how to change it. There is also a need for such tools among
experts too – better development tools could streamline the
process of working with procedural generators and help make
them more accessible to artists and designers [12]. This would
make their use in modern game development easier, but also
promote experimentation among expert communities [13].

In this paper we describe Danesh, an open-source tool
for helping designers and developers of all experience lev-
els explore, explain and experiment with procedural content
generators. We focus here on describing our techniques for
automatically optimising and analysing the generators, in-
cluding identifying useful parameters for the generator to
tweak and automatically configuring the generator towards
producing a certain kind of output. In addition to being
useful for both novice PCG developers and experts, we hope
that by developing Danesh as an open-source tool we can
promote crossover between procedural generation researchers,
and provide an open platform for implementing analytical
ideas about generative software.

The remainder of the paper is organised as follows: in
section II we discuss existing work at the intersection of
procedural generation and design tools; in section III we
introduce Danesh and describe some of its features, including
a suite of analysis tools; in section IV we describe the ways
in which Danesh can automate some of its processes, and
describe experimentation done to assess the best techniques; in
section V we discuss the strengths and limitations of Danesh
in its current form, and describe our intentions for future work
on the system; finally, in section VI we summarise the paper’s
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results.

II. BACKGROUND

In [14] Smith and Whitehead describe Tanagra, a tool for
generating levels for platforming games using a rhythm-based
system for labelling and slotting content together. In this
paper they introduce the notion of expressive range, a way
of evaluating a generator based on the qualities of its output.
Hundreds of pieces of content from the generator are produced
and then evaluated according to two metrics (in the paper
these are the linearity of a level and leniency of its difficulty
structure). The values are then plotted on a histogram, with
bright colours or larger points indicating that more pieces of
content fall in a particular area. This provides a neat visual
summary of the current state of the generator, as the user can
see information such as the spread of the generator’s output
(whether the cluster of points is large or small); the correlation
between axis metrics (whether the points appear to correlate
along a particular line); the quantity and nature of outlying
points; and areas of the metric space which the generator does
not currently cover. We have implemented expressive range in
Danesh and this enables the user to generate histograms based
on those described in [14].

Besides Tanagra, other attempts have been made to produce
tools for generating content, typically tailored to one specific
kind of game content such as maps or levels. Ropossum
[15] uses a physics simulation to verify levels for the game
Cut The Rope, and can either generate levels from scratch
or co-create with a human user who has produced a partial
level design. The Sentient Sketchbook [16] is a slightly more
general tool aimed at developing maps – users can sketch
a map at a low resolution and then upscale the map to a
more detailed version automatically using the tool. Danesh
is related to this work primarily because all of these tools
are concerned with generative software – however, Danesh
is a general analytical and developmental layer intended to
be plugged into an existing generator, whereas the systems
mentioned above are all generators themselves, trying to help
a user solve a particular type of content generation problem.

In [17] the authors describe a procedural procedural level
generator generator. This represents another attempt at higher-
level descriptions of generators, by describing the properties of
a system which then goes on to generate procedural generators.
The work describes the notion of ‘inner’ and ‘outer’ gen-
erators, where the inner generation process is parameterised
by the outer level, which the user interacts with. Similar to
the tools we have mentioned, this is a bespoke tool aimed at
a particular game domain, although the techniques are quite
broadly applicable. One of the most interesting features of this
work is how playful and divergent the system is – interacting
with the generator generator is an enjoyable experience, and
can produce unusual and unexpected results.

In [18] the authors present procedural generation from the
perspective of those who use it, and highlight the different
metaphors practitioners use when discussing it. One of the
motivations for the work is to explore the possibility of a

‘shared language’ with which to talk about procedural content
generation across different communities and areas of expertise.
The four metaphors proposed are Tool (something which
acts as an extension of its user to achieve a goal); Material
(something that can be shaped or manipulated into a particular
form); Designer (something that solves a design problem
independently or collaboratively); and Expert (something that
holds specific knowledge about a domain and can interpret
data based on this knowledge).

The work presented in [18] not only reinforces how widely-
used procedural generation is, by people of diverse back-
grounds and experience, but also how important it is to provide
different ways of engaging with this technology, and to assist
people in getting the most out of these ideas by providing
different ways to think about and explore them. We believe
the work on Danesh outlined in this paper continues some of
these ideas by trying to provide new tools to help people better
understand procedural generation.

III. THE DANESH TOOL

Danesh is a Unity plugin designed to help developers to
analyse and improve generative software. It is being developed
with the intention of making it as general as possible – it
is currently not designed to evaluate a particular kind of
content generator, and instead relies on modular subsystems to
evaluate and visualise generated content while being agnostic
to what exactly is being generated. This does not mean that
Danesh is able to work with any kind of generator – there are
limitations to the current version of the software, which we
discuss later. However, it can handle a wide range of generator
types and provides a suite of useful tools for analysing and
improving them, which we briefly describe in this section.

Danesh is an open-source C# project and can be downloaded
from GitHub1. We are writing tutorials for new features of
the tool as they are developed – these, as well as further
information about Danesh, can be found on the tool’s website2.

A. The Cellular Automata Cave Generator

Throughout the remainder of this paper we will be using
a cave generator based on cellular automata [20] whenever
an example generator is needed for explaining a feature of
Danesh. The implementation of the generator is based on [19].
The generator produces two-dimensional grids of solid and
empty tiles which describe a top-down view of a cave-like
structure. The implementation of the generator in Danesh has
four parameters: the initial chance a tile will be randomly
assigned as solid when the algorithm begins; the number of
iterations the algorithm is run for; and two numbers that define
the conditions for a tile changing from solid to empty, or empty
to solid (called the birth and death limits).

Danesh uses what we call metric functions to measure
features of a generator’s output. These metric functions must
be provided by the user before starting to use the tool. They
are written as methods which take a piece of generated content

1http://github.com/gamesbyangelina/danesh
2http://www.danesh.procjam.com
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Fig. 1: A screenshot of Danesh working with a generator.

and return a number in the interval [0, 1]. We have written five
metrics for the example cave generator:

• Connectedness: Measures the largest contiguous area of
empty tiles, returns its area as a proportion of all empty
tiles in the cave. (i.e. If the cave is one single contiguous
area, returns 1.0).

• Density: Calculates the proportion of solid tiles.
• Openness: Calculates how many empty tiles are not

adjacent to any solid tiles, as a proportion of all empty
tiles.

• Jaggedness: Calculates how many empty tiles are
‘jagged’ (a tile is jagged if it is adjacent to two solid tiles
on opposite sides), as a proportion of all empty tiles.

• Wall Distribution: Calculates how many empty tiles are
adjacent to one or more solid tiles, as a proportion of all
tiles in the cave.

The following sections will explain the use of these metrics
and parameters in Danesh.

B. Loading, Viewing, Changing

Before loading in a generator, the user tags sections of
their code with custom C# Attributes that mark out methods
used for generating content and for visualising that content.
Danesh can currently visualise content either as text, or as a
2D image. The user is relied upon to write the visualisation
function for their content, although we provide a small suite
of utility methods to help them do this easily. In order to
load a generator, three things must be tagged with attributes:
a Generator method which Danesh can call to generate a
new piece of content, a Visualiser method which Danesh
can call to display a piece of generated content on-screen, and
any fields of the generator that the user wishes to change using
Danesh’s interface. When tagging a field, the user must also
provide a simplified name to display in the tool, and minimum
and maximum values for the field (where applicable).

Figure 1 shows a screenshot of the main interface after
loading a generator. The display is split into three columns. In
the central column is a piece of content that has been generated
by Danesh and displayed using the visualiser. In the right-hand
column is a series of sliders, each one referring to a field in the

generator that was tagged by the user. The slider is limited by
the minimum and maximum values set by the user. Changing
the slider values directly adjusts the underlying generator, and
the user can then click a button to generate and display a new
piece of content using the changed parameters.

C. Expressive Range Analysis

In the bottom-right corner of the interface in Figure 1 is a
group of controls for the expressive range analysis functions
of Danesh. Expressive range analysis (ERA) is a method of
analysing a procedural generator according to the qualities of
its output rather than those of its parameters. Suppose we have
a generator with a set of fields and a zero-argument generation
method GenerateContent. Additionally, suppose we have
two metric functions Metric1 and Metric2 which take an
output from the generation method and return a number in the
interval [0, 1]. To produce an expressive range histogram, we
repeatedly sample from the generator and calculate both metric
values for each sampled output. We record each result by
multipling it by 100, flooring the result, and using the resulting
integer to index a 100-element array, incrementing the indexed
value. For example, if Metric1 returns a value 0.87995,
we calculate b(0.87995 ∗ 100)c, which gives us 87, and then
increment the value in the 87th element of the Metric1 array.

To produce the visual ERA output we plot the data on
a histogram with the two axes referring to Metric1 and
Metric2. If there are no samples at a particular co-ordinate,
no colour is plotted. The higher the number of samples
recorded at a point, the more intense the colour is plotted.
This representation is derived from Smith and Whitehead’s
original expressive range histograms in [14]. Figure 2a shows
an expressive range analysis of the cellular automata generator,
as seen in Figure 1. The x-axis records Openness – the
proportion of tiles in a level which have no solid tiles adjacent
to them – while the y-axis records Density – the proportion
of tiles in a level which are solid (regardless of what they
are adjacent to). From the ERA in Figure 2a, we can see that
the generator produces levels which contain about 50% solid
tiles, and of the open tiles, just over 50% are not touching
solid tiles. This might mean that the space in the dungeon
is more open rooms than narrow corridors. The user can get
more information about a data point in the ERA by hovering
their mouse over it to view an example piece of content.

An ERA provides a visualisation of a single generator con-
figuration, because it samples the generator with a set of fixed
input parameters. This is useful when considering a particular
configuration in detail, however it is not especially useful
when the user wants to consider what might be possible with
other configurations of the system. To this end, Danesh also
provides a randomised expressive range analysis, or RERA. A
RERA is performed very similarly to a standard ERA, except
that each time Danesh samples the generator, the parameters
are randomised within the minimum and maximum values set
when the generator was loaded. The resulting histogram shows
a broader picture of the generator’s potential generative space.
Figure 2b shows a randomised expressive range analysis of the
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(a)

(b)

(c)

Fig. 2: Top: An example of an expressive range histogram.
Middle: An example of a random ER histogram. Bottom: The
ERA from 2a overlaid in red on the RERA from 2b. We have
circled the area for readers of a B&W version of the paper.

same procedural generator which produced the ERA in Figure
2a. Here we can see a much wider set of potential outputs from
the generator, as well as seeing which areas are more dense
with content than others – or even which parts of the metric
space the generator does not appear to cover at all.

Figure 2c shows the standard ERA overlaid in red on
top of the RERA. From this image, we can see the current
configuration of the generator in the wider context of its
potential. We can see, for example, that we can increase the
openness or the density of the generated content, but not both
(the top-right of the RERA is completely dark, indicating no
generated content appeared in this area). This could be because
the parameter intervals are not wide enough to explore. It
could also be because there is some kind of conflict between
the metric features (which is the case here – we cannot have
extremely dense levels which also have a lot of open space,
so it makes sense that we can’t maximise both metrics).
Most importantly, however, it might mean that the generative
algorithm itself needs revising, because its structure means that
content of this type cannot be generated currently.

RERAs provide the user with information about the po-
tential of the wider space their generator exists within, while
ERAs confirm the current state of the generator. Using the two
in tandem, the user can make adjustments to their generator
and then verify the effect of the changes by performing regular
ERAs and examining the changes made. This is an improve-
ment on simply generating and examining single examples,
because the increased density of data contained in an ERA
or RERA allows the user to understand the shape of the
generative space better. They can also hover over the histogram
to view points of interest such as outliers, or more dense/sparse
areas, to better inform their decision-making.

For example, Figure 3 shows a RERA with two different
ERAs superimposed for the purposes of illustration. In this
histogram, the y-axis shows Wall Distribution – a similar
concept to Openness, which we described earlier and showed
in Figure 2a – and the x-axis shows Density. The first ERA,
circled at top of the histogram, shows that the generator was
producing content with a high Wall Distribution score. The
user has tried to reduce this, and the second ERA (circled
in the lower part of the histogram) shows they have been
successful in doing so. We can also infer other small changes
from the shape of the second ERA – the spread of the
generator’s output has increased slightly, and the average
density has been slightly reduced. The user may wish to make
further changes if this is not exactly what they wanted.

IV. AUTOMATING GENERATOR OPTIMISATION

So far we have described the basic investigative and analyt-
ical techniques of Danesh. These provide data and feedback to
the user, but are primarily user-led and only enable people to
perform adjustments and exploration of the generator. The user
is able to tag parameters to identify areas for investigation,
adjust those parameters manually in the tool, and then run
ERA and RERA analyses to explore the space. This process
of iteratively changing parameter configurations and running
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Fig. 3: An RERA with two ERAs superimposed (circled for
B&W readers). The two ERAs show the state before and after
adjusting the generator to reduce the y-axis metric score.

ERA analyses is time-consuming, however, and there may
be hidden non-linear relationships between parameters or
between parameters and metrics that make it hard to predict
the impact of small adjustments on the output of the generator.

In this section, we describe features implemented in Danesh
to automate parts of this process, and report on some analyses
of the approaches we undertook. In the future we intend to
provide automation support for other tasks the user may wish
to undertake with the tool – we discuss these in Future Work.

A. Automatic Parameter Identification

Recall that in order to add a generator parameter to Danesh’s
interface the user must add C# Attribute tags to their code
to label each parameter individually. Adding parameters in-
discriminately is not a good idea, since it clutters up the
user interface and makes automation tasks more difficult. It
can also confuse novice users who might need help focusing
on parameters that have meaningful impact on the generator.
Thus, deciding which parameters to add and which to leave
out is a difficult decision to make. There are also many
reasons why a user might mistakenly decide not to add a
parameter to Danesh – perhaps they forgot the parameter
was there, underestimated how useful it might be, or simply
don’t want the burden of deciding which parameters to add.
It would be helpful for the user if Danesh were able to
intervene and automatically add useful generator parameters.
To facilitate this, we have implemented a feature into Danesh
which searches for fields in the generator code, tests their
feasibility for influencing the generator, and then prompts the
user to add them with upper and lower bounds and a name.
The process by which a particular field is tested for feasibility
is as follows.

First, before testing any fields, Danesh collects an average
metric sample by generating several pieces of content (cur-

rently we use a sample size of 20) with the generator as-is
and then computing the average metric score and standard
deviation for each metric across all the generated content.
We then use a metaprogramming technique called reflection
to examine the generator’s class and extract a list of fields
declared in it. For each of these fields (we currently only use
numerical values and booleans) we set the field’s value to a
series of test values, generate another sample of 20 pieces of
content, compute the average metric score for this new sample
and compare it to the baseline metric average. If any of the
test values for the field produce an average metric score more
than one standard deviation away from the original generator
average, we consider the field to have had an effect on the
generator and add it as a potential parameter.

The testing values we use for the field are pre-set values
chosen via earlier experimentation to cover common parameter
ranges. For boolean values, we simply test both values and see
if there is a difference. For numerical values we test the follow-
ing values: {−1, 0, 1,−100, 100, MAX VALUE, MIN VALUE}. If
the numerical type is a floating-point value we also test
{−0.5, 0.5}. We currently do not test string fields or other
types, this is planned for future work.

Once this process is complete, Danesh presents the user
with a list of potential parameters to add, along with three
input fields to set a name for the field, a minimum value, and
a maximum value (the same information given when a user
manually tags a field using an attribute in their code). The
user can then either confirm the addition of the parameter to
Danesh, or delete the suggestion.

As an example, when running this procedure on our example
cave generator it suggests both the width and height of the cave
as parameters to the system, as well as a boolean value which
sets whether the edge of the map is considered solid or empty
(for the purposes of calculating tile births/deaths). The width
and height parameters are useful for scaling the system, while
the boolean field has a large impact on the expressiveness
of the system - setting the edges of the map to be treated
as empty changes the generated caves greatly, making them
much sparser and fragmented.

B. Parameter Configuration Search

One of the tasks Danesh was designed to facilitate is the
act of changing a generator’s parameters to achieve a different
kind of output (in terms of the type of content being produced,
how variable the content is, how likely outliers are to occur,
what properties hold of the content, etc.). As we mentioned
in the introduction, a small survey we conducted of 53 game
developers indicated that 85% of them typically achieve this
by adjusting parameters and then viewing individual output
examples to assess whether the change was good or bad.
We have already described in the previous section analytical
tools in Danesh such as metric functions and expressive range
analysis to help the user achieve some of these outcomes
without the need for laborious output examination.

Danesh can also automate this process of parameter search
entirely, allowing the user to simply specify a target outcome
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in terms of desired metric scores and then let Danesh search
the parameter space to find a parameterisation of the generator
whose average metric score is as close to the user target
as possible. To set up an automatic parameter search, the
user must provide some information: first, they select which
parameters they wish Danesh to search over. Fewer parameters
results in a more efficient search, but more parameters covers
a wider space of possibilities, so the user must decide how
broad they want the search to be. Then, the user selects which
metrics they wish to target for the search, and what values
they wish the average generator output to be.

We implemented three algorithms for searching for pa-
rameterisations, in order to test different approaches: random
search (as a baseline), hill climbing, and evolutionary search.
There are conflicting goals here when considering the best
algorithm for parameter search. A high-quality solution is
desirable, since we want to get a result as close to the user’s
specified goals as possible. However, the time taken is also
an important consideration – Danesh is designed to be an
interactive application, so long periods of time searching for
a solution is not desirable. In this section we describe the
algorithms and some experiments performed to assess the
relative performance of each one.

All of the algorithms use the same definition of fitness
to assess the quality of a particular parameter configuration,
which we define as follows. Given a set of n metric functions
f1 . . . fn ∈ F , a target value ti for each metric function
fi ∈ F , and a set of p generated content samples c1 . . . cp ∈ C,
we define the fitness of a parameter configuration as follows:

mi =

∑
cj∈C

fi(cj)

|C|
δi = |mi − ti|

Where mi denotes the mean value for metric function fi on
the set of generated content C, and δi denotes the difference
between the user’s target value ti for the metric and the
observed mean value mi. The score Φ is then expressed as
an average of these differences:

Φ =

n∑
i=1

δi

|F |
Randomised search randomly generates parameter values

for the selected parameters, using the minimum and maximum
values set by the user as limits. It then evaluates them by
sampling from the generator and recording the average metric
value for each metric. The random search terminates after a
set number of iterations, at which point the best parameter set
seen is returned. It can also terminate after a set amount of
time has elapsed. The number of samples per iteration and
the number of iterations are parameters to the system – in the
experiments here we test 15 samples over 100 iterations.

Hill climbing randomly generates an initial set of parameter
values, and then iteratively changes one of the parameters by
a small fixed interval, ensuring that each time it picks the
interval change that results in the biggest increase in fitness. If

it cannot increase its metric score any further, it has reached
a local maxima. It records this maxima if it is higher than
any it has found so far, and then randomly restarts. The hill
climber terminates after a set number of iterations, or after a
set amount of time has elapsed. As with randomised search,
the number of samples per test and the number of iterations
can be set as parameters to the system. In the experiments
outlined here we use 15 samples per test, over 100 iterations.

Evolutionary search generates a population of random sets
of parameter values and then performs an evolutionary search,
crossing over parameter sets using one-point crossover on the
parameter array and mutating a parameter value with a 5%
probability. It terminates after a fixed number of generations
have been completed, but can also terminate at the end of a
generation cycle after a time limit expires. We use a population
of size 15 evolved for 15 generations for these experiments.

1) Experimentation: We set up three auto-tuning scenarios
of varying difficulty to test the algorithms, based on the
example cave generator:

• P1: 2 target parameters, 2 target metrics.
• P2: 2 target parameters, 3 target metrics.
• P3: 4 target parameters, 4 target metrics.
Because responsiveness is important to the design of the

Danesh tool, in our first experiment we were interested in the
performance of each technique in a time-limited scenario. We
ran each algorithm on each problem five times, and on each
run we recorded the best fitness available at 2.5 seconds, 5
seconds, 10 seconds and 20 seconds. These were considered
hard limits on time, so if the algorithm was computing an
iteration at a time limit, we recorded the best fitness reported
so far. Figure 4 details the results for each algorithm and
problem case combination.

There are a few points worth making about the data avail-
able. First is that, in general, there is not a huge disparity
between the three algorithms at the 20s mark. However, we
can see that in many of the cases the hill climbing and
evolutionary search algorithms perform badly at shorter timing
marks – on P2 and P3, the evolutionary algorithm fails to
complete processing a generation before the 2.5s mark. As
these two algorithms progress, they improve in larger amounts.
We believe that the primary reason for this disparity is the
number of samplings and evaluations required to iterate the
algorithm. Random search repeatedly chooses and evaluates
new parameter configurations - meaning it can try several con-
figurations across a wide search range in a few seconds. The
evolutionary approach evaluates fifteen different configurations
in each generation, however, and the number of evaluations the
hill climber makes scales with the number of parameters (since
it checks incremental changes to each parameter individually).
This means that initial progress is slow, but rapid improvement
is made once the algorithms progress.

To highlight this, we ran a second experiment which focused
on minimum fitness. Instead of sampling fitness at preset
timing cutoffs, instead we tested how long each algorithm
took to reach a fitness of 0.9 and 0.95. This is to simulate
Danesh finding a ‘close enough’ result, from which a user
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2.5s 5s 10s 20s
RS 0.892 0.909 0.959 0.964
HC 0.784 0.959 0.959 0.963

EVO 0.932 0.952 0.966 0.967

(a) Timing results for P1.
2.5s 5s 10s 20s

RS 0.868 0.879 0.892 0.909
HC 0.738 0.806 0.892 0.911

EVO - 0.887 0.897 0.917

(b) Timing results for P2.
2.5s 5s 10s 20s

RS 0.889 0.906 0.916 0.942
HC 0.851 0.914 0.932 0.948

EVO - 0.877 0.925 0.942

(c) Timing results for P3.

Fig. 4: Results showing best fitnesses recorded at fixed time
intervals on three problem scenarios. RS: Random Search,
HC: Hill Climb, EVO: Evolutionary Search. All results to 3
significant figures, an average of five samples.

could conceivably perfect or tweak the details to fine-tune the
result. If the algorithm did not reach the fitness limit in 60
seconds, we recorded a failure. The results are shown in table
5 for each algorithm and problem case combination, as before.

First, note that the 0.95 target was not reached on P2 for any
of the algorithms - this is because the targets set could not be
reached closely enough in this problem scenario (in that it was
slightly outside of the generator’s expressive range). P2 is the
hardest problem of the set because although it has fewer metric
targets than P3, it also has fewer parameters it can change
to reach those targets. The most important result here is that
while the results are relatively close again, both hill climbing
and evolutionary search far outperform the random search on
the 0.95 fitness target for the hardest problem, P3. This shows
that although random search can rapidly explore the state space
to find relatively good results, the more intelligent techniques
work better when prioritising high fitness.

We are still developing and refining techniques for auto-
matic parameter configuration, but we believe that a hybrid
approach may yield good results, where the first 5-10s is spent
using random search, and then the best result is used to seed
a hill climber. It is likely we will offer different techniques to
the user depending on what tradeoff of speed versus quality
they wish to have with the result.

V. DISCUSSION

A. Current Limitations Of The System

We are currently working on various additions and im-
provements to the Danesh tool. Boolean and string fields are
currently unsupported, and other conveniences such as numeric
intervals or arrays are not supported in a convenient way (it is
possible to use them in Danesh but workarounds are required).
As we release Danesh to more developers and complete the

> 0.9 > 0.95
RS 2.61 4.29
HC 2.71 2.21

EVO 3.35 5.65

(a) Fitness-limited timing results for P1.
> 0.9 > 0.95

RS 11.3 -
HC 11 -

EVO 11.6 -

(b) Fitness-limited timing results for P2.
> 0.9 > 0.95

RS 2.06 30
HC 5.61 17.3

EVO 10.4 17.9

(c) Fitness-limited timing results for P3.

Fig. 5: Results showing time taken to reach a fitness of 0.9 and
0.95. RS: Random Search, HC: Hill Climb, EVO: Evolutionary
Search. All results to 3 significant figures, an average of five
samples.

user studies we are currently conducting, basic features like
these will be implemented to round out Danesh’s feature set.

Danesh’s generality comes at the expense of placing a
burden of implementation on the user. Currently, the user must
write a visualisation method for their generator which makes it
harder for novice users (although we provide a suite of utility
functions to help with this, and text rendering requires almost
no visualisation code). In the future, we hope to work on some
automatic visualisation methods or a stock set of visualisers
for common kinds of content (such as arrays representing tile-
based levels, for example).

The other main implementation bottleneck for users is
selecting and writing good metric functions. We plan to extend
the automation of Danesh to cover this task, and provide other
ways for users to express metrics, such as allowing the system
to machine learn models of metrics. This will be conducted
through an interface that allows the user to label positive and
negative content examples and slowly define a metric function
interactively. Good metrics are crucial to all of Danesh’s more
complex features, so this is an important area of future work.

Another potential limitation of the tool is that it is imple-
mented as a plugin to Unity and written for C# and Javascript
generators as opposed to being a general platform-agnostic
tool. We do not see this as a limitation specifically, since
we are primarily concerned with connecting with developer
communities, and Unity is one of the most widely-used
development tools today. Integrating with Unity and its asset
store will help us contact developer communities directly and
hopefully have a larger impact. However, we hope that the
open-source nature of the tool will allow Danesh’s techniques
to be reimplemented into other languages, platforms and
engines, should this be a barrier for other users.
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B. Towards Domain-Agnostic PCG

The development of Danesh comes partly in response to a
feeling that most work in procedural content generation, both
within and outwith academia, is highly fragmented. Generative
systems in games are typically highly bespoke, and as such it is
harder to make theoretical connections between them. This is
possibly one reason why Super Mario has continued to be such
a common domain for procedural generation research – it is
one area where there is a lot of overlapping existing work that
provides baselines, inspiration and complementary sources of
code. Of course, there are many other reasons to work in this
domain as well – it is well-defined, the game is popular and
well-known among potential survey participants, it is a well-
understood design space. Yet the density of work provides
additional appeal – comparisons, competitions, engines, tools.

While the fragmentation of generative software and research
is a cause of its vibrance and diversity, it also hampers the
formation of strong theoretical work that is independent of
a particular domain, genre or game. While we do not see
Danesh as a panacea for this, we hope that more projects
like it that aim to be less domain-specific will help shift
the targets of procedural generation research and encourage
more domain-agnostic theoretical work on generative soft-
ware. Open-sourcing Danesh hopefully enables interested re-
searchers to branch off or extend Danesh with their own work,
contribute features to the tool, and as we expand the library of
example generators, will allow them to perform experiments
across a wide range of generator and content types. This could
contribute to more abstract theories of content generation for
larger classes of games or design scenarios.

VI. CONCLUSIONS

In this paper we introduced Danesh, a tool for exploring,
explaining and experimenting with procedural content genera-
tors. We described the basic functionality of the tool, and how
it affords a richer way of visualising and interacting with gen-
erative spaces. We then discussed how Danesh can automate
some aspects of its own process to greatly simplify the act of
iteratively refining a generator’s output. We evaluated several
techniques for automating parameter configuration search, and
then discussed the current limitations for the system and the
potential future for domain-agnostic PCG tools.

We believe there exists a skills gap in game development
concerning procedural generation, and that this gap is not be-
ing bridged by traditional tools. Writing procedural generators
is already a difficult task, but understanding them well enough
to tweak and adjust them to a designer’s liking requires a
lot of knowledge that is difficult to obtain. Other comparably
complex (arguably even more complex) tasks such as writing
graphics shaders have been made considerably easier thanks
to intuitive and useful tools. We hope the same can be done
for procedural generation, and that Danesh contributes towards
this goal in some small way.

Procedural generation is often seen as a simple case of
‘more unpredictable stuff’, content that can be thrown into
a game for endless replay value without much thought. But

generative techniques are increasingly a key tool in achieving
certain design goals, expressing artistic ideas, and developing
new genres of game. In order to promote this growth and
diversity, we need to support developers, students, dabblers
and novices of all kinds, to ensure this technology is as flexible
and accessible as possible.
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