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Abstract—This paper presents a study on the robustness and
variability of performance of general video game-playing agents.
Agents analyzed includes those that won the different legs of
the 2014 and 2015 General Video Game AI Competitions, and
two sample agents distributed with its framework. Initially, these
agents are run in four games and ranked according to the rules
of the competition. Then, different modifications to the reward
signal of the games are proposed and noise is introduced in either
the actions executed by the controller, their forward model, or
both. Results show that it is possible to produce a significant
change in the rankings by introducing the modifications proposed
here. This is an important result because it enables the set of
human-authored games to be automatically expanded by adding
parameter-varied versions that add information and insight into
the relative strengths of the agents under test. Results also show
that some controllers perform well under almost all conditions,
a testament to the robustness of the GVGAI benchmark.

I. INTRODUCTION: GAMES AND COMPETITIONS

Evaluation of algorithms using games and competitions is a
common practice in the Game AI community, and to a certain
extent in the wider AI community. Games provide parame-
terizable benchmarks that allow for fast experimentation with
multiple approaches, while competitions establish a common
framework and set of rules to guarantee that these algorithms
are compared in a fair manner [1].

Recently, a new general framework for creating and playing
video games was introduced [2], [3], [4], accompanied by a
competition [5], [6]. This framework is called the General
Video Game AI Framework, and the competition the General
Video Game AI Competition; both are abbreviated “GVGAI”.
A main feature of the framework is to allow for the creation of
arbitrary games in a high-level game-specific language, which
can then be used as benchmarks for artificial (and maybe real?)
agents. A distinct advantage of GVGAI over other benchmarks
is the possibility to generate/create new games in addition
to using a pre-existing set of older, established games (as,
for example, is done in the very popular Arcade Learning
Environment [7]). Additionally, one can systematically vary
certain qualities of the games involved and examine how
different controllers react. One could even go a step further
and design games that embody specific qualities that would
advantage or disadvantage certain agent creation methods.
Until now, this ability of the GVGAI framework has not
been explored; we have not seen either carefully tuned games

aiming to portray different agent qualities, or any exploitation
of the ability to modify any of the properties of the games.

It is well-known that some game-playing methods are more
robust to imperfections in the sensors or forward model,
noise or hidden information than others. For example, A*
can play Super Mario Bros near-optimally given linear lev-
els, but tends to create “brittle” plans that rely on planned
actions executing perfectly. Monte Carlo Tree Search, with
its stochastic estimates of action values, struggles to keep up
with A*-based planning under normal conditions. However,
when noise is introduced to the model the performance of A*
drops drastically whereas MCTS performs almost as well as
before [8].

An important part of the justification for GVGAI in partic-
ular and general game playing in general is that the agents’
general intelligence is tested, as agent developers cannot tailor
their performance to a particular game. That’s why agents are
tested on unseen games, which are developed for each round of
the competition. However, the developers of agents could still
rely on certain assumptions about the GVGAI game engine,
for example about the determinism of games and reliability of
the forward model. Arguably, agents that are less dependent on
such assumptions—less brittle—are more generally capable or
“intelligent”. The obvious way to find out how brittle agents
are is to vary all aspects of the game engine and see what
happens to the performance of said agents.

This paper is an initial exploration of the effects of large-
scale modification of game characteristics. The goal is to
identify how robust game-playing algorithms are to particular
changes in the reward structure and the existence of uncer-
tainty in the form of noise.

While, to the best of our knowledge, this is the first time
that such a systematic exploration is conducted in such a large
number of games, with the explicit aim of testing robustness,
there has been some work generating games using a parameter
space and then using controllers that portrayed certain human-
like qualities in order to better understand the resulting design
parameter space [9]; once game-space is understood, it can
be searched for game variants that differ from existing games
while still being playable [10].

The rest of the paper is organised as follows; section II
describes the framework used, while Section III introduces
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a selection of controllers that we are going to use in our
evaluation. Section IV discusses the original rankings obtained
by the controllers presented previously in a subset of GVGAI
games. Section V describes the modifications done to the
games and how each controller fared. We conclude with a
short discussion in Section VI.

II. GENERAL VIDEO GAME AI

A. The Framework

The GVGAI framework provides information about the
game state via Java game objects. Its interface provides means
to create agent controllers that can play in any game defined in
the Video Game Description Language (VGDL [2], [4]). An
agent implemented in this environment must be able to select
moves in real-time, providing a valid action in no more than
40ms at each time step.

This controller receives information about the game state,
including factors like the game status (winner of the game,
score, time step), the player’s state (position, resources gath-
ered), and position of the different sprites (identified only
by an integer id for its type) in the level. The dynamics of
these sprites and the victory conditions are never given to the
player. It is the agents responsibility to discover the game
mechanics while playing. However, the agent is provided with
a forward model to reason about the environment, a tool that
allows the agent to simulate actions and roll the game forward
to one of the possible next states of the game. The forward
model is very fast and almost all successful agents simulate
hundreds or thousands of game states for each decision taken.
For more information about the interface and constituents of
the framework, the reader is referred to [5].

B. The Games

Four games (out of the 60 distributed with the framework)
have been used in this study: Aliens, Butterflies, Sheriff and
Seaquest. These games have been chosen according to the
following characteristics:
• High percentage of victories: Not even the best controllers

submitted to the competition (by rankings, the ones used
in this study) are able to achieve victories in all games
distributed with the GVGAI framework. Three of the
games selected average a percentage of victories above
90%, with only Seaquest averaging around 45%.

• Smooth scoring: All games provide small increments of
score through their play (rather than having no score
change but a point given or taken when the game is won
or lost, respectively). Games that provide a different score
landscape are left for future work.

• Different set of actions: Not all games in GVGAI provide
the same set of available actions. By choosing games with
different sets, the experiments will permit an analysis on
how this factor affects results after applying the different
game modifications.

• They are all stochastic in nature.
These four games are described next:

• Aliens: Similar to the classic Space Invaders, this game
features the player (avatar) moving along the bottom of
the screen, shooting upwards at aliens, who fire back at
the avatar. The avatar can use the actions Left, Right and
Use (to shoot). The player loses if touched by an alien or
its bullet, and wins if all aliens are destroyed. 1 point is
awarded for each alien or protective structure destroyed
by the avatar and 1 point is subtracted if the player is hit.

• Butterflies: The avatar must capture butterflies that move
randomly. If a butterfly touches a cocoon, more butterflies
are spawned. The player wins if it collects all butterflies,
but loses if all cocoons are opened. 2 points are awarded
for each butterfly captured. The avatar can use the actions
Left, Right, Up and Down.

• Sheriff: The avatar is at the center of the screen and the
objective is to kill all the bandits that move in circles
along the level, shooting at the player. There are also
some structures in the level that can be used as cover.
1 point is awarded for each bandit killed, and 1 point is
subtracted if the avatar dies. The avatar can move in the
four directions and shoot.

• Seaquest: Remake of the Atari game by the same name.
The player controls a submarine that must avoid animals
whilst rescuing divers by taking them to the surface. Also,
the submarine must return to the surface regularly to
collect more oxygen, or the player loses. The submarine’s
capacity is 4 divers, and it can shoot torpedoes at the
animals. 1 is point awarded for killing an animal with a
torpedo, and 1000 points for saving 4 divers in a single
trip to the surface. As in Sheriff, the avatar can move in
the four directions and shoot.

C. The Rankings

The GVGAI Competition rankings system, which is also
used in this paper, aims to reward those controllers that
perform well across different games, rather than relying on
differences of performance in particular games.

For each one of the games used, all controllers are sorted
according to three criteria, in the following order of im-
portance: percentage of victories, average of score achieved
and time spent on the victories (the lower, the better).
Then, controllers are awarded with points according to this
game ranking, following the Formula 1 scoring system:
{25, 18, 15, 12, 10, 8, 6, 4, 2, 1}, where 25 points are awarded
to the best controller, 1 to the tenth, and no points beyond
that rank. In order to determine the overall best, all points per
game are added up and the controller with the highest sum is
declared the winner. In case of a draw in points, the number
of first positions in a game unties the ranking, proceeding to
the highest number of second, third, etc. positions until the tie
is broken.

III. CONTROLLERS

This section describes the different controllers that have
been used in this study. The first two, Sample Open



Loop Monte Carlo Tree Search (Sample OLMCTS, Sec-
tion III-A) and Rolling Horizon Genetic Algorithm (RHGA,
Section III-B), are sample controllers distributed with the
framework. The third controller, Open Loop Expectimax Tree
Search (OLETS, Section III-C), was the winner of the 2014
GVGAI competition. Finally, the last three controllers1 were
the winners of the three legs of the 2015 GVGAI Compe-
tition: YOLOBOT (GECCO 2015, Section III-D), Return42
(CIG 2015, Section III-E) and YBCRIBER (CEEC 2015,
Section III-F).

A. Sample OLMCTS

Monte Carlo Tree Search (MCTS) [11] is a very popular
tree search technique that iteratively builds an asymmetric
tree in memory to estimate the value of the different actions
available from a given state. Starting from the current state,
the algorithm repeats the following steps in iteration until the
time budget is over:

First, a Tree Selection process selects actions until reaching
a state from which not all possible moves have been taken.
These actions are selected according to a Tree Policy,
like for instance the Upper Confidence Bounds (UCB1; see
Equation 1 [12]), which balances between exploitation of the
best actions found so far and exploration of the ones employed
less often.

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

where N(s) represents the number of times the state s
is visited, N(s, a) is the number of times an action a is
taken from s, and Q(s, a) indicates the empirical average of
the rewards obtained when picking an action a from s. The
exploration-exploitation balance can be tempered by the value
of C: setting high values gives priority to exploration, while
values closer to 0 reward those actions a ∈ A(s) with a higher
expected reward.

The second step, Expansion, adds a new child to the node
reached at the end of the previous one. Next, a Monte Carlo
Simulation is performed from the new node until reaching the
end game or a predetermined depth. This simulation picks
actions on each state according to some Default Policy,
which could select moves uniformly at random or biased by
an heuristic based on the features of the state. Lastly, the
Back-propagation phase uses the reward observed in the state
reached at the end of the Monte Carlo Simulation, to update
the Q(s, a) values of all nodes visited during the Tree Selection
step.

The distinction between Open Loop and Closed Loop
MCTS resides in using the forward model during the Tree
Selection phase or not. In closed loop MCTS, the algorithm
assumes that is stable to store game states on the nodes of
the tree when Expansion is performed, and therefore the Tree

1To the knowledge of the authors of this paper, the descriptions of these
controllers have not been published to date. All these controllers are accessible
for download at the competition website, www.gvgai.net

Selection step can simply navigate the tree without the need
of calculating the new states. If randomness is encountered,
instead of acting according to the tree policy, a random guess
is made as to what state one might land after an action. This
is a valid approach for all games, and indeed the only really
“correct” one but it may lead to sub-optimal performance
on stochastic scenarios (as the games used in this research
work), where one might focus too much on exploring all future
possible states, never having enough time to collect enough
information to perform well. Another approach is to behave
in an open-loop manner - Open Loop MCTS (OLMCTS) only
stores the statistics on the tree nodes, and generates the next
state using the forward model to average over the distribution
of possible next states. Note that for deterministic settings
open-loop and close-loop are the same. For more details about
this distinction, the reader is encouraged to read [13].

For the experiments performed in this experiment, the
number of moves performed on each iteration is set to 10,
and C =

√
2.

B. RHGA

Rolling Horizon Genetic Algorithm (RHGA) employs a
fast evolutionary algorithm to evolve a sequence of actions
to be executed from the current game state. It is an open
loop implementation of a minimalistic steady state genetic
algorithm, known as a microbial GA [14].

Each individual receives a fitness equal to the reward
observed in the state reached at the end of the action sequence,
which has a length of 7. Two different individuals are selected
and evaluated from a population, and the one that obtains
the worse fitness is mutated randomly, with probability 1/7,
whereas certain parts of its genome are recombined with parts
from the other’s genome with probability 0.1.

Both OLMCTS and RHGA use the same function to eval-
uate a state. The procedure works as follows: the reward
is the score of the game at that state plus a high positive
(respectively, negative) number if the game is finished with a
victory (resp. loss).

C. OLETS

Open Loop Expectimax Tree Search (OLETS), created by
Adrien Couëtoux, is an algorithm inspired by Hierarchical
Open-Loop Optimistic Planning (HOLOP, [15]). As OLM-
CTS, OLETS does not store the states in memory, but uses
the sampled sequences to build a tree.

A first difference with OLMCTS is that OLETS does not use
any roll-out and relies on the game scoring function to give a
value to the leaves of the tree. Additionally, another important
difference is that the empirical average of rewards obtained
by performing simulations is not used in the UCB1 policy
(see Equation 1). Instead, OLETS replaces Q(s, a) with the
Open Loop Expectimax (OLE) value (rM (n)), as calculated in
Equation 3).

rM (n) =
Re(n)

ns(n)
+

(1− ne(n))

ns(n)
max

c∈C(n)
rM (c) (2)
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where ns(n) the number of simulations that visited the node
n, ne(n) the amount of them that end in n, and Re(n) the
accumulated reward from this last subset. C(n) the set of
children of n, and P (n) the parent of n. For more details
about this algorithm, please consult [5].

D. YOLOBOT

This controller, created by Tobias Joppen, Nils Schroeder
and Miriam Moneke, was declared winner of the 2015 GVGAI
championship, as they obtained the highest sum of scores
across the three legs run that year. Their approach uses
pathfinding to first identify those sprites that can be reached
from the avatar’s position, creating a list with the nearest
reachable sprite of each type. At the same time, it also tries to
identify if the game is deterministic or not, using the forward
model to spot differences on states reached after applying the
same action from a given state. This is done to choose which
algorithm to use to try to discover how valuable these sprites
are within the game. If the game is deterministic, YOLOBOT
uses Best First Search (BFS) to navigate to the target sprite. In
case the game is deemed as stochastic, the algorithm of choice
is an open loop version of MCTS, in order to get closer to the
aimed sprite without losing the game due to stochasticity.

E. Return42

This controller, created by Tobias Welther, Oliver Welther,
Frederik Buss-Joraschek and Stefan Hbecker is a hyper-
heuristic that combines different algorithms which are used
depending on the type and state of the game. Initially, the
games are differentiated by being deterministic or not, a
feature checked using the forward model to determine if
multiple states derived from the same original state are the
same. If the game is deterministic, an A-Star algorithm is
used to determine future states with high scores and possibly
winning conditions. In case the game is stochastic, random
walks are used to determine the best action based on a hand-
crafted heuristic that considers score and changes on resources
and NPCs in the game.

F. YBCRIBER

This controller was submitted by Ivan Geffner, Tomas
Geffner and Felix Mirave. The algorithm is based on Iterative
Width (IW [16]) with a dynamic look-ahead scheme. A
previous version of this work can be found at [17]. YBCRIBER
employs some basic statistical learning to save information
about each sprite at each look ahead, which it then uses to
select actions in stochastic games and to prune actions over
the IW search. Additionally, a danger prevention mechanism
minimizes the chances of the avatar being killed in close
proximity of hazards.

IV. DEFAULT RANKINGS

All controllers described in Section III have been executed
100 times in each one of the 5 levels of the 4 games detailed
in Section II-B. Therefore, each controller plays 500 times on
each game. The percentage of victories, average of scores and

time spent are recorded, and non-parametric Wilcoxon Signed
Rank tests are computed to determine statistical significance
(p-value < 0.05). All experiments performed in this research
have been carried out in this manner, for the default settings
and for each one of the different environment configurations
described in Section V.

Table I shows the results for the tested controllers in the
games selected. The percentage of victories, average of scores
and time steps used to complete the game are shown here
with their respective standard error measures. First of all, it is
worthwhile mentioning that there is no superior algorithm that
achieves the best results in all games tested. Both in Aliens
and Butterflies, three controllers achieve 100% of victories, the
first metric in order of importance. Note that these controllers
are not the same in both games. Sheriff is revealed to be a
slightly more complicated game, as no controller achieves the
maximum amount of victories. It seems, however, to be easier
than Seaquest, where the best controller obtained less than
70% of victories.

The variability of these games can also be observed in two
factors: First, winners of some games can perform badly in
others (i.e., YOLOBOT is the leader in Aliens, while achieving
0.20% of victories in Seaquest; or like Return42, which is
the best controller in Seaquest but the worst one in Sheriff ).
Secondly, there is a high variance in the scores typically
achieved on each game, as Table I shows.

Table II shows the rankings derived from these results. The
controller that ranks first in this set of games is OLETS,
closely followed by YBCRIBER. It is interesting to see how
YBCRIBER ranks high albeit it does not perform the best in
any game. This is due to its high general performance (ranking
2nd or 3rd in all games), a consequence derived from this
ranking system, which rewards controllers that perform well
across different games.

V. EXPERIMENTS

This section describes the experiments performed for this
paper. Each section details the changes and results obtained
for each one of the different configurations tested.

A. Reward Penalization

In this setting, the GVGAI framework is modified so that
every time an agent performs any action, the score in the game
is reduced by 1 point. In principle, one could assume that
controllers that are able to perform well using the minimum
possible amount of moves would be rewarded in the rankings.
These rankings are shown in Table III2.

All controllers seem to resist quite well the penalizations set
to the actions performed, with the exception of Return42.
This controller is specially affected by this change, as it
is the one with the highest drop in percentage of victories
(from 81.55% to 71.10%). The first and the second controller
alternate positions compared to the original rankings (where
OLETS was 1st and YBCRIBER was 2nd).

2To save space, no tables are reported for individual games and scores
achieved, albeit some of those results are discussed.



TABLE I
PERCENTAGE OF VICTORIES AND AVERAGE OF SCORE ACHIEVED (PLUS STANDARD ERROR) IN 4 DIFFERENT GAMES. FOURTH, SIXTH AND EIGHTH

COLUMNS INDICATE THE APPROACHES THAT ARE SIGNIFICANTLY WORSE THAN THAT OF THE ROW, USING THE NON-PARAMETRIC WILCOXON
SIGNED-RANK TEST WITH P-VALUE < 0.05. BOLD FONT FOR THE ALGORITHM THAT IS SIGNIFICANTLY BETTER THAN ALL THE OTHER 5 IN EITHER

VICTORIES OR SCORE.

Game Algorithm Victories (%) Significantly
better than ... Scores Significantly

better than ... Timesteps Significantly
better than ...

Aliens

A: YOLOBOT 100.00 (0.00) B, D, E 70.56 (0.59) B, C, D, E, F 434.55 (1.52) B, C, D, E, F
B: OLETS 98.80 (0.49) Ø 66.91 (0.64) E, F 790.96 (3.65) Ø

C: YBCRIBER 100.00 (0.00) B, D, E 69.56 (0.60) B, E, F 470.41 (1.82) B, D, E, F
D: Return42 97.40 (0.71) Ø 68.43 (0.68) B, E, F 513.13 (8.50) B, E, F
E: OLMCTS 99.20 (0.40) D 61.16 (0.52) Ø 613.02 (4.12) B

F: RHGA 100.00 (0.00) B, D, E 64.99 (0.60) E 599.38 (3.02) B, E

Butterflies

A: YOLOBOT 95.60 (0.92) E 27.80 (0.63) C, D 528.03 (24.26) E
B: OLETS 100.00 (0.00) A, E, F 26.13 (0.53) C, D 170.53 (5.74) A, E, F

C: YBCRIBER 100.00 (0.00) A, E, F 23.19 (0.43) Ø 59.45 (0.88) A, B, D, E, F
D: Return42 100.00 (0.00) A, E, F 24.59 (0.48) C 73.68 (1.38) A, B, E, F
E: OLMCTS 86.60 (1.52) Ø 31.44 (0.69) A, B, C, D 728.91 (21.82) Ø

F: RHGA 94.40 (1.03) E 32.89 (0.75) A, B, C, D 447.54 (17.48) A, E

Sheriff

A: YOLOBOT 95.00 (0.97) D 8.52 (0.09) C, D, E, F 826.31 (13.63) C, E
B: OLETS 97.20 (0.74) A, D, F 9.18 (0.07) A, C, D, E, F 679.67 (11.08) A, C, D, E, F

C: YBCRIBER 96.80 (0.79) D, F 6.09 (0.08) Ø 1006.00 (4.97) D
D: Return42 59.00 (2.20) Ø 6.49 (0.17) C 1018.96 (28.82) Ø
E: OLMCTS 97.40 (0.71) A, D, F 6.56 (0.08) C, D 1001.62 (4.69) D

F: RHGA 93.40 (1.11) D 8.04 (0.08) C, D, E 808.00 (13.47) A, C, E

Seaquest

A: YOLOBOT 0.20 (0.20) Ø 97.54 (12.69) Ø 1572.78 (2.29) Ø
B: OLETS 60.00 (2.19) A, E, F 1309.77 (74.33) A, C, E, F 1266.04 (16.90) A, E, F

C: YBCRIBER 60.60 (2.19) A, E, F 452.48 (28.84) A 1180.91 (11.55) A, B, E, F
D: Return42 69.80 (2.05) A, B, C, E, F 2858.29 (123.42) A, B, C, E, F 1170.54 (13.14) A, B, C, E, F
E: OLMCTS 46.60 (2.23) A, F 508.48 (38.61) A 1266.75 (12.99) A, F

F: RHGA 24.60 (1.93) A 301.21 (27.40) A 1384.76 (12.76) A

TABLE II
RANKINGS TABLE FOR THE COMPARED ALGORITHMS ACROSS ALL

GAMES. IN THIS ORDER, THE TABLE SHOWS THE RANK OF THE
ALGORITHMS, THEIR NAME, TOTAL POINTS, AVERAGE OF VICTORIES AND

POINTS ACHIEVED PER GAME, FOLLOWING THE F1 SCORING SYSTEM.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLETS 68 89.00 10 25 18 15
2 YBCRIBER 66 89.35 18 15 15 18
3 Return42 59 81.55 8 18 8 25
4 YOLOBOT 57 72.70 25 12 12 8
4 OLMCTS 57 82.45 12 8 25 12
5 RHGA 45 78.10 15 10 10 10

TABLE III
RANKINGS TABLE IN THE Reward Penalization SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 YBCRIBER 80 94.55 18 25 12 25
2 OLETS 61 89.45 10 18 18 15
3 YOLOBOT 58 72.95 25 10 15 8
4 OLMCTS 57 82.95 12 8 25 12
5 Return42 49 71.10 8 15 8 18
6 RHGA 47 80.15 15 12 10 10

Penalizations affect controllers differently, in different de-
grees, but the changes in performance are not extremely
large in this setting. Regarding scores obtained, all controllers
obtain now negative scores, but the cross comparison among
them shows stability in the results, without major changes in
performance in this metric.

TABLE IV
RANKINGS TABLE IN THE Discounted Reward SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLETS 78 80.70 10 25 18 25
2 OLMCTS 73 87.15 15 15 25 18
3 RHGA 58 81.15 18 18 12 10
4 YOLOBOT 56 63.90 25 8 15 8
5 Return42 44 56.45 12 12 8 12
6 YBCRIBER 43 55.95 8 10 10 15

B. Discounted Reward

In this setting, the score returned by the forward model for
a given state s is discounted depending on the depth of search
(d), according to the following scheme:

rdisc(s) = rraw(s)×Dd (3)

where D is the discount factor, set to 0.9 to produce a sig-
nificant (but not too damaging) effect on the controllers. The
question that this modification poses is to verify how robust
the controllers are to delayed rewards that are discounted in
the future. The rankings for this configuration are shown in
Table IV

This setting affects the controllers more than the previous
one, although the first ranked controller is still the same
(OLETS). In this configuration, YBCRIBER is the agent that
suffers the most significant drop on the averages of victories,
going from 89.35% to 55.95%.



TABLE V
RANKINGS TABLE IN THE Noisy World SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLMCTS 83 74.75 25 8 25 25
2 Return42 63 50.70 10 25 10 18
3 YBCRIBER 53 49.00 15 18 8 12
4 RHGA 52 53.70 12 12 18 10
5 YOLOBOT 51 53.70 18 10 15 8
6 OLETS 50 49.75 8 15 12 15

It is interesting to note that reward discounting has such a
surprisingly disruptive effect on the rankings. This modifica-
tion affects the distinct agents tested in this study in different
ways, and suggests as an open question whether it would
be possible to identify concrete changes that would benefit
particular controllers. In this scenario, the biggest impact
happens in the game Seaquest, where the performances of
YBCRIBER and Return42 plummet (the latter in percentage
of victories, the former in both victories and score), OLMCTS
increases slightly, and OLETS remains the same, enough to
keep the first position in this game (and consequently, in the
overall ranking).

Another interesting observation is that both sample con-
trollers (OLMCTS and RHGA) are resilient to this setting, which
allows them to climb to the 2nd and 3rd positions of the
rankings, respectively.

C. Noisy World

In this modification, noise is added to the actions executed
by the controller. Concretely, with a probability p, a different
random action is chosen to be performed instead of the one
intended by the controller. p was set to a high value, 0.25, in
order to achieve a big impact in the controllers employed in
this study. This noise is introduced both in the real game and
in the forward model. The rankings obtained with this setting
are shown in Table V.

This modification in the game engine and forward model
produces a very important change in the rankings. The most
significant is that a new controller gains the first position in
the rankings: OLMCTS, with a relevant difference of points
and percentage of victories with the second (Return42, 19
and 24.05%). Actually, it becomes the best controller in three
out of the four games tested. On the other hand, OLETS, the
best controller in the default setting, drops to the last position.

In general, all agents observe an important drop on the av-
erage of victories achieved (between 20% and 40%), with the
exception of OLMCTS that, resilient to this modification, only
suffers a drop of 7.7%. The differences on scores achieved are
not large, with the exception of Seaquest, where all controllers
achieved significantly lower scores. The loss in Sheriff and
Aliens is smaller, and Butterflies experiences a slight increase.
This change in Butterflies could be explained by the nature of
the game (see Section II-B): higher scores are achievable only
when less cocoons remain closed, but the game is lost when
all cocoons open.

TABLE VI
RANKINGS TABLE IN THE Broken World SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLMCTS 85 68.50 25 10 25 25
2 YBCRIBER 58 46.50 15 15 10 18
3 YOLOBOT 56 49.75 18 8 18 12
4 OLETS 55 40.30 10 18 12 15
5 Return42 49 34.00 8 25 8 8
6 RHGA 49 42.15 12 12 15 10

TABLE VII
RANKINGS TABLE IN THE Broken Forward Model SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLMCTS 71 83.05 18 10 25 18
2 OLETS 63 63.80 10 18 10 25
3 YBCRIBER 60 77.15 15 12 18 15
4 YOLOBOT 58 64.05 25 8 15 10
5 RHGA 51 57.00 12 15 12 12
6 Return42 49 38.45 8 25 8 8

D. Broken World

In this setting, the same configuration as in the previous case
was used, but in this case only the real game can introduce
noise in the actions supplied, while the forward model is
always accurate. Again, p = 0.25 and the rankings are detailed
in Table VI. The idea of this modification is to test how the
agents can cope with a forward model that does not reproduce
noise in the real game.

The new results obtained with this modification are similar
to those achieved in the previous case. OLMCTS becomes the
highest ranked entry achieving the best result in the same three
games as shown in Section V-C, and drop in victory percentage
happens across all controllers.

Note that the drop in percentage of victories is higher than
in the previous scenario, where even OLMCTS loses 20.5
percentage points. This could be explained by the fact that
inaccuracies are now introduced due to the noise included in
the actions executed in the real game, but not in the forward
model. However, it is interesting to note that again one of the
sample (hence, simplest with regards to the value function)
controllers suffers this effect the least.

Finally, regarding the games in particular, Butterflies still
remains as the game where percentage of victories change the
less (hence also being the game where OLMCTS does not rank
the first).

E. Broken Forward Model

Finally, this setting proposes the complementary scenario to
the one shown in the previous section. Noise with p = 0.25
is introduced only in the forward model, while the actions
supplied to the game are never altered. The rankings for this
configuration are shown in Table VII.

In this final setting, OLMCTS achieves again the highest
position in the rankings. It is worth noting, however, that in
this case the difference with the second ranked entry (OLETS)
is only of 8 ranking points. Additionally, it only achieves the



first position in one of the four games, and all controllers
suffer a smaller loss in the percentage of victories than in the
previous case.

An interesting observation that can be drawn from this
results is that, when noise in the actions is only present in
the real game instead of in the forward model, the agents
have more difficulties to deal with this hazard. In other words,
the algorithms tested are more robust to noise present in the
forward model (when no noise is present in the real game)
than vice-versa.

F. Overall Comparison

Figure 1 depicts the average of victories of all controllers
in the four games tested, for the different six configurations
experimented with in this research. This graphic summarizes
well the findings of this study. It is clear that the latter modifi-
cations (adding noise in different parts of the framework) affect
the controllers more than the first two changes in most of the
games (Butterflies remains as an exception to this statement,
where the loss in average of victories is smaller).

Concretely, it can be observed how the Broken World
configuration produces the higher variance in the results: a
forward model that is not able to simulate the noise on the
actions that is present in the real game is not good enough for
most controllers. However, this change does not equally affect
all agents. The ones that use simpler value functions (with less
domain knowledge, like OLMCTS) respond better to a noisy
world without a noisy forward model.

It is also worth mentioning that a forward model that
simulates noise, even at the high rate of executing a random
action with p = 0.25, can cope with both a noisy and a
non-noisy real game environment. In fact, in some occasions,
results obtained in the Broken Model configuration are
better than the ones from a Noisy World, which suggests
that these techniques (especially OLMCTS) are robust to a
noisy forward model even if the game itself is not noisy.

VI. CONCLUSIONS AND FUTURE WORK

This paper described a study on the robustness of sev-
eral good general video game AI controllers (concretely, the
winners of the four legs of the previous competitions and
some sample controllers from the GVGAI framework) when
the conditions of the rewards and/or actions are changed in
the environment. In this research, alterations in the rewards
(introducing penalties for using certain actions, or discounting
the game score) and in the action performed (either by
including noise in the real game, or in the forward model,
or both) are introduced to analyze how the rankings change.
A key finding of the research is that some of these changes can
dramatically alter the rankings of the agents, which provides
a simple way to effectively expand the set of GVGAI games.

An interesting outcome of this study is that simpler con-
trollers, those that utilize a state value function that only
focuses on score and winning conditions, achieve better results
when noise is introduced on the actions. The effect on the rank-
ing differs significantly depending on the game and the agent

and the nature of the modifications. For instance, controllers
that included an element of best-first search (Return42 and
YOLOBOT) seem to handle unexpected noise badly. This is
consistent with earlier results where MCTS is able to handle
the introduction of noise much better than A* [8].

Furthermore, not all simple controllers perform well under
noisy circumstances: RHGA is not able to climb in the
rankings as much as OLMCTS, which becomes the 1st ranked
entry in some scenarios or OLETS, which is able to keep the
second position in these settings. Furthermore, results show
that, in the noisy settings, a noisy forward model with a
non-noisy real game makes the controllers behave better than
introducing noise in the real game (either alone, or together
with noise in the forward model). The latter condition (noisy
model, deterministic world) is likely to most closely model
non-game situations such as robot control.

The results shown in this paper leave us with multiple open
questions for future investigation. A straightforward one could
be to explore the parameter space (like the values of the noise
probability p or the discount factor D) to find out at which
point they actually trigger the modifications observed in this
paper. In other words, it is possible to analyze the continuum
of values of p to identify at which point the amount of noise
introduces a change in the rankings. It would also be possible
to introduce other types or noise (like variations in the states
observed) to analyze how does that modify the rankings, and
study the effect of this in more games (especially in those
omitted by the decisions explained in Section II-B).

For instance, given that the performance of the agents does
also depend on the game used, a possible question to ask
is if it is possible to identify or classify games with respect
to what changes can make controllers go up or down in the
rankings. For instance, what features make certain games be
more indifferent to penalizations in the moves made? Could
we infer some game design lessons from these categorizations?

As different controllers react differently to the changes
made, it is worth investigating if it is possible to automatically
find the parameters that will make some controllers behave
better than others. In other words, could we find, maybe by
evolution, the values of certain parameters that would permit
us to have any ranking desired using a specific set of games?
This would parallel previous work on evolving game maps to
induce differential rankings between agents [18].

This research also proposes a new way of evaluating
controllers: the same agents in a set of games can perform
differently depending on the setting used. Therefore, it is at
least thought provoking to consider if the best controller in a
competition should be the one that resists such changes in the
environment best.

Finally, it could be argued that we are not only testing
the robustness of the controllers, but also the robustness of
the competition itself, and thus its value as a benchmark.
If the rankings of controllers only depended on the amount
and type of noise, this would mean the benchmark would be
rather brittle. However, as observed above, some controllers
do better than others under all or almost all conditions. For
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Fig. 1. Victory percentages per configuration and game.

example, OLMCTS always performs better than RHGA. It
therefore seems that the underlying challenge of the GVGAI
competition is fairly robust to perturbations.
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