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Abstract—General Video Game Playing (GVGP) is a field
of Artificial Intelligence where agents play a variety of real-
time video games that are unknown in advance. This limits
the use of domain-specific heuristics. Monte-Carlo Tree Search
(MCTS) is a search technique for game playing that does not
rely on domain-specific knowledge. This paper discusses eight
enhancements for MCTS in GVGP; Progressive History, N-Gram
Selection Technique, Tree Reuse, Breadth-First Tree Initializa-
tion, Loss Avoidance, Novelty-Based Pruning, Knowledge-Based
Evaluations, and Deterministic Game Detection. Some of these
are known from existing literature, and are either extended
or introduced in the context of GVGP, and some are novel
enhancements for MCTS. Most enhancements are shown to
provide statistically significant increases in win percentages when
applied individually. When combined, they increase the average
win percentage over sixty different games from 31.0% to 48.4%
in comparison to a vanilla MCTS implementation, approaching
a level that is competitive with the best agents of the GVG-AI
competition in 2015.

I. INTRODUCTION

General Video Game Playing (GVGP) [1] is a field of
Artificial Intelligence in games where the goal is to develop
agents that are able to play a variety of real-time video games
that are unknown in advance. It is closely related to General
Game Playing (GGP) [2], which focuses on abstract games
instead of video games. The wide variety of games in GGP and
GVGP makes it difficult to use domain-specific knowledge,
and promotes the use of generally applicable techniques.

There are two main frameworks for GVGP. The first frame-
work is the Arcade Learning Environment (ALE) [3] for
developing agents that can play games of the Atari 2600
console. The second framework is GVG-AI [4], which can
run any real-time video game described in a Video Game
Description Language [5], [6]. This paper focuses on the
GVG-AI framework.

The GVG-AI framework is used in the GVG-AI Competi-
tion [4], [7]. Past competitions only ran a Planning Track,
where agents were ranked based on their performance in
single-player games. In 2016, it is planned to extend this with a
2/N-Player Track, a Learning Track, and a Procedural Content
Generation Track. This paper focuses on the Planning Track.

Monte-Carlo Tree Search (MCTS) [8], [9] is a popular
technique in GGP [10] because it does not rely on domain-
specific knowledge. MCTS has also performed well in GVGP
in 2014 [4], which was the first year of the GVG-AI competi-
tion, but was less dominant in 2015 [7]. This paper discusses
and evaluates eight enhancements for MCTS to improve its

performance in GVGP: Progressive History, N-Gram Selection
Technique, Tree Reuse, Breadth-First Tree Initialization, Loss
Avoidance, Novelty-Based Pruning, Knowledge-Based Evalu-
ations and Deterministic Game Detection.

The remainder of the paper is structured as follows. Sec-
tion II provides background information on the GVG-AI
framework and the GVG-AI competition. MCTS is discussed
in Section III. In Section IV, the enhancements for MCTS in
GVGP are explained. Section V describes the experiments to
assess the enhancements. Finally, the paper is concluded in
Section VI and ideas for future research are discussed.

II. GVG-AI FRAMEWORK AND COMPETITION

In the GVG-AI competition [4], [7], agents play a variety
of games that are unknown in advance. Agents are given 1
second of processing time at the start of every game, and 40
milliseconds of processing time per tick. A tick can be thought
of as a turn in an abstract game. Every tick, the agent can
choose an action to play, and at the end of the tick the chosen
action is played and the game state progresses. Every game has
a duration of at most 2000 ticks, after which the game is a loss.
Other than that, different games have different termination
conditions, which define when the agent wins or loses. Every
game in GVG-AI contains at least an avatar object, which
is the “character” controlled by the agent. Games can also
contain many other types of objects. Games in GVG-AI are
fully observable and can be nondeterministic.

Agents can perform searches and attempt to learn which
actions are good using the Forward Model, consisting of two
important functions; advance and copy. Given a game state st,
the advance(a) function can be used to generate a successor
state st+1, which represents one of the possible states that can
be reached by playing an action a. In deterministic games,
there is only one such state st+1 for every action a, but
in nondeterministic games there can be more than one. The
copy(st) function creates a copy of st. This function is required
when it is desirable to generate multiple possible successors
of st, because every call to advance modifies the original
state, and there is no undo function. Because the framework
supports a wide variety of different games, it is not optimized
as well as any framework dedicated to a specific game would
be. This means that the advance and copy operations tend to
be significantly slower than equivalent functions in individual
game implementations.



Fig. 1. Example open-loop game tree. Nodes other than the root node can
represent multiple possible states in nondeterministic games.

III. MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) [8], [9] is a best-first
search algorithm that gradually builds up a search tree and uses
Monte-Carlo simulations to approximate the value of game
states. To handle nondeterministic games with probabilistic
models that are not exposed to the agent, an “open-loop” [11]
implementation of MCTS is used. In an open-loop approach,
the root node represents the current game state (s0), every edge
represents an action, and every other node n represents the set
of game states that can be reached by playing the sequence
of actions corresponding to the path from the root node to n,
starting from s0. See Figure 1 for an example.

MCTS is initialized with only the root node. Next, until
some computational budget expires, the algorithm repeatedly
executes simulations. Every simulation consists of the follow-
ing four steps [12], depicted in Figure 2.

In the Selection step, a selection policy is applied recur-
sively, starting from the root node, until a node is reached
that is not yet fully expanded (meaning that it currently has
fewer successors than available actions). The selection policy
determines which part of the tree built up so far is evaluated in
more detail. It should provide a balance between exploitation
of parts of the search tree that are estimated to have a high
value so far, and exploration of parts of the tree that have not
yet been visited frequently. The most commonly implemented
selection policy is UCB1 [8], [13], which selects the successor
Si of the current node P that maximizes Equation 1. Si and
P are nodes, which can represent sets of states.

UCB1(Si) =Q(Si) + C ×

√
ln(nP )

ni
(1)

Q(Si) ∈ [0, 1] denotes the normalized average score backprop-
agated through Si so far (as described below), C is a parameter
where higher values lead to more exploration, and nP and ni
denote the visit counts of P and Si, respectively.

In the Play-out step, the simulation is continued, starting
from the last state encountered in the selection step, using
a (semi-)random play-out policy. The most straightforward
implementation is to randomly draw actions to play from a
uniform distribution until a terminal game state is reached. In
GVGP, this is typically not feasible, and a maximum play-out
depth is used to end play-outs early.

In the Expansion step, the tree is expanded by adding one
or more nodes. The most common implementation adds one
node to the tree per simulation; the node corresponding to
the first action played in the play-out step. In this paper, the

Fig. 2. The four steps of an MCTS simulation. Adapted from [12].

tree is simply expanded by adding the whole play-out to the
tree. The number of simulations per tick tends to be low
enough in GVG-AI that there is no risk of running out of
memory. Therefore, to keep all information gathered, all nodes
are stored in memory.

In the Backpropagation step, the outcome of the final state
of the simulation is backpropagated through the tree. Let sT be
the final state of the simulation. Next, an evaluation X(sT ) of
the state is added to a sum of scores stored in every node on the
path from the root node to the final node of the simulation, and
the visit counts of the same nodes are incremented. Because
it is not feasible to let all simulations continue until terminal
states are reached in GVG-AI, it is necessary to use some
evaluation function for non-terminal states. A basic evaluation
function that is also used by the sample MCTS controllers
included in the GVG-AI framework is given by Equation 2.

X(sT ) =


107 + score(sT ) if sT is a winning state
−107 + score(sT ) if sT is a losing state
score(sT ) if sT is a non-terminal state

(2)
score(sT ) is the game score value of a state sT in GVG-AI.
In some games a high game score value can indicate that the
agent is playing well, but this is not guaranteed in all games.

Finally, the action leading to the node with the highest av-
erage score is played when the computational budget expires.

IV. MCTS ENHANCEMENTS FOR GVGP

There is a wide variety of existing enhancements for the
MCTS algorithm, many of which are described in [14]. This
section discusses a number of enhancements that have been
evaluated in GVGP; Progressive History, N-Gram Selection
Technique, Tree Reuse, Breadth-First Tree Initialization, Loss
Avoidance, Novelty-Based Pruning, Knowledge-Based Evalu-
ations, and Deterministic Game Detection. Some are known
from existing research, and some are new.

A. Progressive History and N-Gram Selection Technique

Progressive History (PH) [15] and N-Gram Selection Tech-
nique (NST) [16] are two existing enhancements for the
selection and play-out steps of MCTS, respectively. The basic
idea of PH and NST is to introduce a bias in the respective
steps towards playing actions, or sequences of actions, that
performed well in earlier simulations. Because the value
of playing an action in GVG-AI typically depends greatly
on the current position of the avatar, this position is also



Fig. 3. Tree Reuse in MCTS.

taken into account when storing data concerning the previous
performance of actions. For a detailed description of these
enhancements we refer to the original publications [15], [16].

B. Tree Reuse

Suppose that a search tree was built up by MCTS in a
previous game tick t− 1 ≥ 0, and an action at−1 was played.
The entire subtree rooted in the node corresponding to that
action can still be considered to be relevant for the new search
process in the current tick t. Therefore, instead of initializing
MCTS with only a root node, it can be initialized with a part of
the tree built in the previous tick, as depicted in Figure 3. This
was previously found to be useful in the real-time game of Ms
Pac-Man [17]. This idea has also previously been suggested in
the context of GVGP [11], but, to the best of our knowledge,
the effect of this enhancement on the performance of MCTS
in GVGP has not yet been evaluated.

In nondeterministic games, it is possible that the new root
(which was previously a direct successor of the previous root)
represented more than one possible game state. In the current
tick, it is known exactly which of those possible states has been
reached. Therefore, some of the old results in this tree are no
longer relevant. For this reason, all the scores and visit counts
in the tree are decayed by multiplying them by a decay factor
γ ∈ [0, 1] before starting the next MCTS procedure. Tree
Reuse (TR) with γ = 0 completely resets the accumulated
scores and visit counts of nodes (but still retains the nodes,
and therefore the structure of the generated tree), and TR with
γ = 1 does not decay old results.

C. Breadth-First Tree Initialization and Safety Prepruning

In some of the games supported by the GVG-AI framework,
the number of MCTS simulations that can be executed in
a single tick can be very small; sometimes smaller than
the number of available actions. In such a situation, MCTS
behaves nearly randomly, and is susceptible to playing actions
that lead to a direct loss, even when there are actions available
that do not directly lose the game.

Theoretically this problem could be avoided by adjusting the
limit of the play-out depth of MCTS to ensure that a sufficient
number of simulations can be done. In practice, this can be
problematic because it requires a low initial depth limit to
ensure that it is not too high at the start of a game, and this
can in turn be detrimental in games where it is feasible and
beneficial to run a larger number of longer play-outs.

Fig. 4. Example search tree. Dark nodes represent losing game states, and
white nodes represent winning or neutral game states.

We propose to handle this problem using Breadth-First
Tree Initialization. The idea is straightforward; before starting
MCTS, the direct successors of the root node are generated
by a 1-ply Breadth-First Search. Every action available in the
root state is executed up to a number M times to deal with
nondeterminism, and the resulting states are evaluated. The
average of these M evaluations is backpropagated for every
successor with a weight equal to a single MCTS simulation.
MCTS is only started after this process. When MCTS starts,
every direct successor of the root node already has a prior
evaluation that can be used to avoid playing randomly in
cases with an extremely small number of simulations. The
M states generated for every successor are cached in the
corresponding nodes, so that they can be re-used in the
subsequent MCTS process. This reduces the computational
overhead of the enhancement.

Safety prepruning, originally used in an algorithm called
Iterated Width [18], has been integrated in this process. The
idea of safety prepruning is to count the number of immediate
game losses among the M generated states for each action,
and only keep the actions leading to nodes with the minimum
observed number of losses. All other actions are pruned.

D. Loss Avoidance

In GVGP, many games have a high number of losing game
states that are relatively easy to avoid. An example of such a
game is Frogs, where the avatar is a frog that should cross a
road and a river. The road contains trucks that cause a loss
upon collision, but can easily be avoided because they move
at a constant speed. The river contains logs that also move at
a constant speed, which the frog should jump on in order to
safely cross the river.

An example of a search tree with many losing states is
depicted in Figure 4. In this example, the rightmost action
in the root node is an action that brings the agent back to a
similar state as in the root node. In the Frogs game, this could
be an action where the frog stays close to the initial position,
and does not move towards the road.

The (semi-)random play used in the play-out step of MCTS
is likely to frequently run into losing game states in situations
like this. This leads to a negative evaluation of nodes that do in
fact lead to a winning position. This is only corrected when
sufficient simulations have been run such that the selection
step of MCTS correctly biases the majority of the simulations
towards a winning node. With a low simulation count in GVG-



Fig. 5. Example MCTS simulation with Loss Avoidance. The X values in
the last three nodes are evaluations of game states in those nodes. The dark
node is a losing node.

AI, MCTS is likely to repeatedly play the rightmost action in
Figure 4, which only delays the game until it is lost due to
reaching the maximum game duration.

This problem is similar to the problem of traps [19] or
optimistic moves [20] in (two-player) adversarial games. In
those cases, MCTS has an overly optimistic evaluation of
some states, whereas in the cases discussed here it has an
overly pessimistic evaluation of some states. In [21], it was
proposed to integrate shallow minimax searches inside some
of the steps of MCTS to improve its performance in game
trees with traps or optimistic moves. Using minimax searches
to prove wins or losses is difficult in GVGP because games
can be nondeterministic, but a similar idea can be used to get
less pessimistic evaluations.

In this paper, an idea named Loss Avoidance (LA) is
proposed for GVGP. The idea of LA is to try to ignore losses
by immediately searching for a better alternative whenever a
loss is encountered the first time a node is visited. An example
is depicted in Figure 5. Whenever the play-out step of MCTS
ends in a losing game state, that result is not backpropagated
as would commonly be done in MCTS. Instead, one state
is generated for every sibling of the last node, and only
the evaluation of the node with the highest evaluation is
backpropagated. All generated nodes are still added to the tree,
and store their own evaluation in memory.

LA causes MCTS to keep an optimistic initial view of the
value of nodes. This tends to work well in the single-player
games of GVG-AI, where it is often possible to reactively get
out of dangerous situations. It is unlikely to work well in,
for instance, adversarial games, where a high concentration of
losses in a subtree typically indicates that an opposing player
has more options to win and is likely in a stronger position.

In an open-loop implementation of MCTS, LA can have a
significant amount of computational overhead in game trees
with many losses. For instance, in the Frogs game it roughly
halves the average number of MCTS simulations per tick. This
is because the node prior to the node with the losing game
state does not store the corresponding game state in memory,
which means that all states generated in the selection and play-
out steps need to be re-generated by playing the same action
sequence from the root node. In nondeterministic games this

process can also lead to finding a terminal state before the full
action sequence has been executed again. To prevent spending
too much time in the same simulation, the LA process is not
started again, but the outcome of that state is backpropagated.

E. Novelty-Based Pruning

The concept of novelty tests was first introduced in the
Iterated Width algorithm (IW) [18], [22]. In IW, novelty tests
are used for pruning in Breadth-First Search (BrFS). Whenever
a state s is generated in a BrFS, a novelty measure (described
in more detail below) nov(s) is computed. This is a measure
of the extent to which s is “new” with respect to all previously
generated states. States with a lower measure are “more novel”
than states with a higher measure [22]. The original IW
algorithm consists of a sequence of calls to IW(0), IW(1), etc.,
where IW(i) is a BrFS that prunes a state s if nov(s) > i. In
GVGP, it was found that it is only feasible to run a single IW(i)
iteration [18]. The best results were obtained with IW(1), and
a variant named IW( 3

2 ) (see [18] for details).
The definition of the novelty measure nov(s) of a state s

requires s to be defined in terms of a set of boolean features.
An example of a boolean feature that can be a part of a state
is a predicate at(cell, type), which is true in s if and only if
there is an object of the given type in the given cell in s.
Then, nov(s) is defined as the size of the smallest tuple of
features that are all true in s, and not all true in any other
state generated previously in the same search process. If there
is no such tuple, s must be an exact copy of some previously
generated state, and nov(s) is defined as n + 1, where n is
the number of features that are defined. For example, suppose
that in s, at((x, y), i) = true, and in all previously generated
states, at((x, y), i) = false. Then, nov(s) = 1, because there
is a tuple of size 1 of features that were not all true in any
previously generated state.

IW(1) prunes any state s with nov(s) > 1. In this paper,
Novelty-Based Pruning (NBP) is proposed as an idea to prune
nodes based on novelty tests in MCTS. The goal is not to
prune bad lines of play, but to prune redundant lines of play.

MCTS often generates states deep in the tree before other
states close to the root. For instance, the last state of the first
play-out is much deeper in the tree than the first state of the
second play-out. This is an important difference with the BrFS
used by IW. It means that the novelty measure nov(s) of a
state s should be redefined in such a way that it not necessarily
uses all previously generated states, but only a specific set of
states, referred to as the neighborhood N(s) of s.
N(s) is the union of four sets of states. The first set consists

of the siblings on the “left” side of s. The ordering of the
states matters, but can be arbitrary (as in a BrFS). The second
set contains only the parent p(s) of s. The third set consists
of all siblings of p(s). The fourth set is the neighborhood of
p(s). More formally, let si denote the ith successor of a parent
p(si). Then, N(si) is defined as N(si) = {s1, s2, . . . , si−1}∪
{p(si)}∪Sib(p(si))∪N(p(si)), where Sib(p(si)) denotes the
set of siblings of p(si). For the root state r, N(r) = Sib(r) =
∅. An example is depicted in Figure 6.



Fig. 6. States used for NBP in MCTS. The grey states are the neighborhood
of si in MCTS. For si+1, si is also included. The black states would be
included for the novelty tests in IW, but not in MCTS.

Using the above definition of N(s), nov(s,N(s)) is defined
as the size of the smallest tuple of features that are all true in s,
and not all true in any other state in the set N(s). The novelty
tests are used in MCTS as follows. Let n be a node with a list
of successors Succ(n). The first time that the selection step
reaches n when it is fully expanded, all successors Succ(n)
are novelty tested based on a single state generated per node,
using a threshold of 1 for the novelty tests (as in IW(1)).
The same boolean features are used to define states in GVG-
AI as described in [18]. Nodes are marked as not being
novel if they fail the novelty test. Whenever all successors
of a node are marked as not novel, that node itself is also
marked as not novel. There are a few exceptions where nodes
are not marked. If a state has a higher game score than the
parent, it is always considered to be novel. Additionally, states
transitioned into by playing a movement action are always
considered to be novel in games where either only horizontal,
or only vertical movement is available (because these games
often require moving back and forth which can get incorrectly
pruned by NBP otherwise), and in games where the avatar
has a movement speed ≤ 0.5 (because slow movement does
not result in the avatar reaching a new cell every tick, and is
therefore not detected by the cell-based boolean features).

In the selection step of MCTS, when one of the successors
Succ(n) of n should be selected, any successor n′ ∈ Succ(n)
is ignored if it is marked as not novel, unless the average
normalized score Q(n) < 0.5. In such cases, the situation
is considered to be dangerous and all alternatives should be
considered to see if a better position can be found. For the
final selection of the move to play in the real game, non-novel
nodes are also only considered if the best novel alternative has
a normalized average score < 0.5.

When the successors Succ(n) have been novelty tested,
every node ni ∈ Succ(n) stores a set of tuples of features that
were all true in the states generated for the purpose of novelty
testing for the nodes {n} ∪ Succ(n). This means that the
tuples of features that are true in the neighborhood N(s) of a
state s can be reconstructed relatively efficiently by traversing
the path from s back to the root, and collecting the tuples in
the stored sets. This is the main reason for defining N(s) as
described above. Including more states (for instance, the black
states in Figure 6) would require also traversing back down
the tree to collect more sets of tuples. This could increase
the number of nodes that NBP marks as not being novel, but

would also be more expensive computationally. This is not a
problem in the BrFS of IW, because it can simply store all
tuples of features that are all true in any generated state in the
same set for the entire search process.

Novelty measures are assigned to nodes based on only one
state per node. Therefore, given two identical open-loop game
trees in nondeterministic games, it is possible that a node
in one tree is pruned and the equivalent node in the other
tree is not pruned. For this reason, when combining NBP
with Tree Reuse, the results of novelty tests on nodes in the
first ply below the new root node are reset when reusing the
previous tree. This does not entirely remove the influence of
nondeterminism on NBP, but close to the root that influence
is at least reduced.

F. Knowledge-Based Evaluations

An important problem with MCTS in GVG-AI is that it is
often infeasible to find any terminal states, or even states with a
change in game score. This means that the evaluation function
in Equation 2 often returns the same value for all states gen-
erated in the same tick, and MCTS explores the search space
and behaves randomly. In this paper, a heuristic evaluation
function is proposed that uses knowledge collected during
simulations, and distances to objects that could potentially be
interesting, to distinguish between states that have identical
evaluations according to Equation 2. The basic idea is not
new; some agents in the competition of 2014 used distance-
based evaluation functions [4]. A similar idea is also described
in [23], and extended in [24]. The idea discussed here is based
on the same intuition, but a number of implementation details
are different. Another related idea is described in [25], where
MCTS is used to learn which objects are interesting, and a
pathfinding algorithm is used to move towards a selected goal.

Let X(s0) denote the evaluation of the current game state
s0, and let X(sT ) denote the evaluation of the final state
sT of a play-out. If X(sT ) = X(s0), a heuristic evaluation
EvalKB(sT ) is computed and added to X(sT ). For every
object type i observed in a game, let d0(i) denote the distance
from the avatar to the closest object of type i in s0, and let
dT (i) denote the distance from the avatar to the closest object
of type i in sT . These distances are computed using the A*
pathfinding algorithm [26]. The pathfinding algorithm takes
objects of the wall type into account as obstacles. Many games
can also contain other objects that block movement, or portals
that can be used for teleportation. These objects are not taken
into account, because the agent would first need to learn how
these objects influence pathfinding. For every object type i, a
weight wi is used to reward or punish the agent for moving to
objects of that type. This is done by computing EvalKB(sT )
as given by Equation 3, normalizing it to lie in [0, 0.5], and
adding it to X(sT ) if otherwise X(sT ) = X(s0).

EvalKB(sT ) =
∑
i

wi × (d0(i)− dT (i)) (3)

Object types i with a small absolute weight (|wi| < 10−4) are
ignored, to save the computational cost of pathfinding.



The weights wi are determined as follows. To motivate
exploration, all weights are initialized with positive values (0.1
for NPCs, 0.25 for Movables, and 1 for Resources and Portals),
and incremented by 10−4 every game tick. States st generated
during the selection or play-out steps of MCTS are used to
adjust these weights. Let st−1 denote the predecessor of st.
Whenever such a state st is generated, it is used to update some
of the weights wi. The intuition is that, if X(st) 6= X(st−1),
it is likely that some interesting collision event occurred in the
transition from st−1 to st that caused the change in score. The
framework provides access to a set E(st) of collision events
that occurred in that transition. Every event e ∈ E(st) is a
collision event between two objects, where one object is either
the avatar, or an object created by the avatar (for instance, a
missile fired by the avatar), and the other object is of some
type i. Let ∆ = X(st)−X(st−1) denote the observed change
in score. For every object type i, a sum ∆i is kept of all
changes in scores observed in state transitions where collision
events with objects of type i occurred. Additionally, a counter
ni of event occurrences is kept for every type i, such that the
average change in score ∆i = ∆i

ni
for collisions with every

type can be computed. Whenever an event with an object of
type i is observed, wi is updated as given by Formula 4.

wi ← wi + (∆i − wi)× αi (4)

αi is a learning rate that is initialized to 0.8 for every type,
and updated as given by Formula 5 after updating wi.

αi ← max(0.1, 0.75× αi) (5)

This idea is similar to using gradient descent for minimizing
|∆i−wi|. The main reason for not simply using ∆i directly is
to avoid relying too much on the knowledge obtained from a
low number of observed events.

G. Deterministic Game Detection

The idea of Deterministic Game Detection (DGD) is to
detect when a game is likely to be deterministic, and treat
deterministic games differently from nondeterministic games.
At the start of every game, M random sequences of actions of
length N are generated. Each of the M sequences is used to
advance a copy of the initial game state s0, with R repetitions
per sequence. If any of the M action sequences did not result
in equivalent states among the R repetitions for that sequence,
the game is classified as nondeterministic. Additionally, any
game in which NPCs are observed is immediately classified as
nondeterministic. Any other game is classified as deterministic.
In this paper, M = N = 5 and R = 3.

Many participants in previous GVG-AI competitions [7]
used a similar idea to switch to a different algorithm for
deterministic games (for instance, using Breadth-First Search
in deterministic games and MCTS in nondeterministic games).
In this paper, DGD is only used to modify MCTS and the TR
and NBP enhancements in deterministic games. The Q(Si)
term in Equation 1 (or the equivalent term in the formula of
PH) is replaced by 3

4×Q(Si)+
1
4×Q̂max(Si), where Q̂max(Si)

is the maximum score observed in the subtree rooted in Si.

TABLE I
WIN PERCENTAGES (BENCHMARK AGENTS, 1000 RUNS PER SET)

Sets SOLMCTS MCTS IW(1) YBCRIBER

Set 1 34.5 ± 2.9 41.7 ± 3.1 55.8 ± 3.1 68.8 ± 2.9
Set 2 33.4 ± 2.9 33.5 ± 2.9 47.0 ± 3.1 65.0 ± 3.0
Set 3 13.2 ± 2.1 23.0 ± 2.6 17.8 ± 2.4 40.3 ± 3.0
Set 4 28.3 ± 2.8 30.5 ± 2.9 30.6 ± 2.9 43.5 ± 3.1
Set 5 19.7 ± 2.5 28.9 ± 2.8 17.5 ± 2.4 42.6 ± 3.1
Set 6 30.1 ± 2.8 28.6 ± 2.8 32.8 ± 2.9 54.4 ± 3.1

Total 26.5 ± 1.1 31.0 ± 1.2 33.6 ± 1.2 52.4 ± 1.3

This is referred to as mixmax [27], [28]. Additionally, TR and
NBP are modified to no longer decay or reset any old results.

V. EXPERIMENTS

A. Setup

The enhancements discussed in this paper have been exper-
imentally evaluated using the following setup. Every experi-
ment was run using six sets that are available in the framework,
of ten games each, for a total of sixty different games per
experiment. Table VI lists the names of the games for every
set. Average results are presented for every set of games, and
for the total of all sixty games combined. For every game,
five different levels were used, with a minimum of fifteen
repetitions per level per experiment (leading to a minimum
of 750 runs per set). 95% confidence intervals are presented
for all results. All games were played according to the GVG-
AI competition rules1, on a CentOS Linux server consisting of
four AMD Twelve-Core OpteronT 6174 processors (2.2 GHz).

B. Results

In the first experiment, the following benchmark agents
are compared to each other; SOLMCTS, MCTS, IW(1), and
YBCRIBER. SOLMCTS is the Sample Open Loop MCTS
controller included in the framework. MCTS is our baseline
implementation of MCTS, based on the MAASTCTS [29]
agent, which has a number of differences in comparison to
SOLMCTS. MCTS expands all nodes for states generated in
simulations (as opposed to one node per simulation), C is
set to 0.6 in the UCB1 equation (as opposed to C =

√
2),

it simulates up to ten actions after the selection step (as
opposed to ten steps from the root node), it uses the 1 second
of initialization time for running the algorithm (as opposed
to not using that time), and it plays the action with the
maximum average score (as opposed to the maximum visit
count). IW(1) is the Iterated Width-based agent, as described
in [18]. YBCRIBER is an IW-based agent with a number of
other features, which won the GVG-AI competition at the
IEEE CEEC 2015 conference. The results are given in Table I.
The experimental data reveals that the baseline MCTS agent
outperforms SOLMCTS. IW(1) performs slightly better than
MCTS overall, and YBCRIBER performs much better than the
other benchmark agents.

In Table II, our MCTS implementation with Breadth-First
Tree Initialization and Safety Prepruning (BFTI) is compared

1Revision 24b11aea75722ab02954c326357949b97efb7789 of the GVG-AI frame-
work (https://github.com/EssexUniversityMCTS/gvgai) was used.



TABLE II
BREADTH-FIRST TREE INITIALIZATION WITH SAFETY PREPRUNING

Win Percentage % of Losses t < 2000
Sets BFTI MCTS BFTI MCTS
Set 1 43.3 ± 3.5 41.7 ± 3.1 42.6 ± 4.7 52.8 ± 4.1
Set 2 33.1 ± 3.4 33.5 ± 2.9 50.8 ± 4.4 51.1 ± 3.8
Set 3 21.2 ± 2.9 23.0 ± 2.6 0.0 ± 0.0 16.1 ± 2.6
Set 4 30.3 ± 3.3 30.5 ± 2.9 73.4 ± 3.8 76.8 ± 3.1
Set 5 23.1 ± 3.0 28.9 ± 2.8 72.4 ± 3.6 73.7 ± 3.2
Set 6 29.2 ± 3.3 28.6 ± 2.8 69.3 ± 3.9 72.3 ± 3.3

Total 30.0 ± 1.3 31.0 ± 1.2 51.0 ± 1.7 56.7 ± 1.5

TABLE III
WIN PERCENTAGES (PH AND NST, 750 RUNS PER SET)

Sets BFTI PH NST NST+PH
Set 1 43.3 ± 3.5 43.2 ± 3.5 45.1 ± 3.6 43.5 ± 3.5
Set 2 33.1 ± 3.4 34.5 ± 3.4 36.5 ± 3.4 38.0 ± 3.5
Set 3 21.2 ± 2.9 23.3 ± 3.0 23.1 ± 3.0 24.1 ± 3.1
Set 4 30.3 ± 3.3 29.5 ± 3.3 29.7 ± 3.3 32.3 ± 3.3
Set 5 23.1 ± 3.0 23.9 ± 3.1 30.0 ± 3.3 28.0 ± 3.2
Set 6 29.2 ± 3.3 30.0 ± 3.3 31.1 ± 3.3 33.1 ± 3.4

Total 30.0 ± 1.3 30.7 ± 1.3 32.6 ± 1.4 33.2 ± 1.4

to the MCTS implementation without BFTI. The results for
MCTS are based on 1000 runs per set, and the results for
BFTI on 750 runs per set. BFTI appears to lower the win
percentage slightly, but the 95% confidence intervals overlap.
The two columns on the right-hand side show the percentage
of lost games where the game was terminated before t = 2000
(where t = 2000 is the maximum duration of a game in GVG-
AI). BFTI reduces this percentage significantly. Even though
it may slightly decrease win percentages, the quality of play in
lost games can be considered to be improved; the agent delays
a significant number of losses. This may leave more time for
other enhancements to find wins. Therefore, BFTI is included
in the baseline MCTS agent for the following experiments that
evaluate other enhancements individually. This is followed by
an experiment with more enhancements combined.

Table III shows the win percentages obtained by adding Pro-
gressive History (PH), N-Gram Selection Technique (NST), or
both to the BFTI agent. PH and NST appear to increase the
average win percentage, but the confidence intervals overlap.
The two combined result in a statistically significant increase.

Figure 7 depicts 95% confidence intervals for the win
percentage of the BFTI agent with Tree Reuse (TR), for six
different values of the decay factor γ. The confidence interval
for BFTI is shaded in grey. TR with γ ∈ {0.4, 0.6, 1.0}
significantly improves the win percentage of BFTI.

Table IV shows the win percentages of adding either
Knowledge-Based Evaluations (KBE), Loss Avoidance (LA)
or Novelty-Based Pruning (NBP) to the BFTI agent. All three
individually show an increase in the average win percentage
over BFTI, with KBE giving the largest increase.

Table V shows the win percentages of a number of variants
of MCTS with multiple enhancements combined. “No DGD”
is an agent with all enhancements discussed in this paper, ex-
cept for Deterministic Game Detection (DGD). “No BFTI” is
an agent with all enhancements except for BFTI. This is added
to test the assumption made earlier that the ability of BFTI
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Fig. 7. 95% confidence intervals for win percentages of BFTI with Tree
Reuse (TR) for different values of the decay factor γ. The area shaded in
grey is the confidence interval for the win percentage of BFTI without TR.

TABLE IV
WIN PERCENTAGES (KBE, LA AND NBP, 750 RUNS PER SET)
Sets BFTI KBE LA NBP
Set 1 43.3 ± 3.5 50.4 ± 3.6 52.0 ± 3.6 49.6 ± 3.6
Set 2 33.1 ± 3.4 52.3 ± 3.6 34.0 ± 3.4 34.5 ± 3.4
Set 3 21.2 ± 2.9 19.1 ± 2.8 23.3 ± 3.0 23.5 ± 3.0
Set 4 30.3 ± 3.3 30.1 ± 3.3 29.6 ± 3.3 32.0 ± 3.3
Set 5 23.1 ± 3.0 31.3 ± 3.3 31.9 ± 3.3 23.9 ± 3.1
Set 6 29.2 ± 3.3 33.2 ± 3.4 28.8 ± 3.2 34.8 ± 3.4

Total 30.0 ± 1.3 36.1 ± 1.4 33.3 ± 1.4 33.0 ± 1.4

to delay games may enable other enhancements to find more
wins. The last agent contains all enhancements. In combination
with all the other enhancements, DGD significantly improves
the win percentage. DGD was found not to provide a signif-
icant increase in win percentage when applied to the BFTI,
TR (γ = 0.6) or NBP agents without other enhancements
(those results have been omitted to save space). Additionally,
BFTI appears to increase the win percentage in combination
with all other enhancements, whereas Table II shows it appears
to decrease the win percentage when other enhancements are
absent, but these differences are not statistically significant.

VI. CONCLUSION AND FUTURE WORK

Eight enhancements for Monte-Carlo Tree Search (MCTS)
in General Video Game Playing (GVGP) have been discussed
and evaluated. Most of them have been shown to significantly
(95% confidence) increase the average win percentage over
sixty different games when added individually to MCTS. All
the enhancements combined increase the win percentage of our
basic MCTS implementation from 31.0±1.2 to 48.4±1.5. This
final performance is relatively close to the win percentage of
the winner of the IEEE CEEC 2015 conference; YBCRIBER,
with a win percentage of 52.4± 1.3.

Many of the discussed enhancements have parameters,
which so far have only been tuned according to short, prelimi-
nary experiments. These parameters can likely be tuned better
in future work to improve the performance. Loss Avoidance
(LA) and Novelty-Based Pruning (NBP) as proposed in this
paper have binary effects, in that LA backpropagates only
one result from multiple generated siblings and NBP classifies
nodes as either novel or not novel. Perhaps these can be im-
proved by making them less binary. The overall performance
of the agent can also likely be improved by incorporating more
features that are commonly seen among the top entries in past



TABLE V
WIN PERCENTAGES (ENHANCEMENTS COMBINED, 750 RUNS PER SET)

Sets BFTI No DGD No BFTI All Enhanc.
Set 1 43.3 ± 3.5 62.7 ± 3.5 62.7 ± 3.5 62.8 ± 3.5
Set 2 33.1 ± 3.4 56.4 ± 3.5 55.7 ± 3.6 59.3 ± 3.6
Set 3 21.2 ± 2.9 22.1 ± 3.0 28.5 ± 3.2 28.7 ± 3.2
Set 4 30.3 ± 3.3 32.7 ± 3.4 47.1 ± 3.6 48.1 ± 3.6
Set 5 23.1 ± 3.0 37.2 ± 3.5 39.6 ± 3.5 42.1 ± 3.5
Set 6 29.2 ± 3.3 38.3 ± 3.5 49.2 ± 3.6 49.1 ± 3.6

Total 30.0 ± 1.3 41.6 ± 1.4 47.1 ± 1.5 48.4 ± 1.5

TABLE VI
NAMES OF THE GAMES IN EVERY SET

Set 1 Aliens, Boulderdash, Butterflies, Chase, Frogs, Missile
Command, Portals, Sokoban, Survive Zombies, Zelda

Set 2 Camel Race, Digdug, Firestorms, Infection, Firecaster,
Overload, Pacman, Seaquest, Whackamole, Eggomania

Set 3 Bait, BoloAdventures, BrainMan, ChipsChallenge, Modality,
Painter, RealPortals, RealSokoban, TheCitadel, ZenPuzzle

Set 4 Roguelike, Surround, Catapults, Plants, Plaque-Attack,
Jaws, Labyrinth, Boulderchase, Escape, Lemmings

Set 5 Solarfox, Defender, Enemy Citadel, Crossfire, Lasers,
Sheriff, Chopper, Superman, WaitForBreakfast, CakyBaky

Set 6 Lasers 2, Hungry Birds, Cook me Pasta, Factory Manager, Race
Bet 2, Intersection, Black Smoke, Ice and Fire, Gymkhana, Tercio

competitions, such as the use of influence maps [30]. Finally,
some of the new enhancements for MCTS, such as LA and
NBP, can be evaluated in domains other than GVG-AI.
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