
Learning Macromanagement in StarCraft
from Replays using Deep Learning

Niels Justesen
IT University of Copenhagen

Copenhagen, Denmark
noju@itu.dk

Sebastian Risi
IT University of Copenhagen

Copenhagen, Denmark
sebr@itu.dk

Abstract—The real-time strategy game StarCraft has proven to
be a challenging environment for artificial intelligence techniques,
and as a result, current state-of-the-art solutions consist of
numerous hand-crafted modules. In this paper, we show how
macromanagement decisions in StarCraft can be learned directly
from game replays using deep learning. Neural networks are
trained on 789,571 state-action pairs extracted from 2,005 replays
of highly skilled players, achieving top-1 and top-3 error rates
of 54.6% and 22.9% in predicting the next build action. By
integrating the trained network into UAlbertaBot, an open
source StarCraft bot, the system can significantly outperform
the game’s built-in Terran bot, and play competitively against
UAlbertaBot with a fixed rush strategy. To our knowledge, this is
the first time macromanagement tasks are learned directly from
replays in StarCraft. While the best hand-crafted strategies are
still the state-of-the-art, the deep network approach is able to
express a wide range of different strategies and thus improving
the network’s performance further with deep reinforcement
learning is an immediately promising avenue for future research.
Ultimately this approach could lead to strong StarCraft bots that
are less reliant on hard-coded strategies.

I. INTRODUCTION

Artificial neural networks have been a promising tool in
machine learning for many tasks. In the last decade, the
increase in computational resources as well as several algorith-
mic improvements, have allowed deep neural networks with
many layers to be trained on large datasets. This approach, also
re-branded as deep learning, has remarkably pushed the limits
within object recognition [13], speech recognition [8], and
many other domains. Combined with reinforcement learning,
these techniques have surpassed the previous state-of-the-art
in playing Atari games [16], the classic board game Go [23]
and the 3D first-person shooter Doom [15].

An open challenge for these methods are real-time strategy
(RTS) games such as StarCraft, which are highly complex
on many levels because of their enormous state and actions
space with a large number of units that must be controlled
in real-time. Furthermore, in contrast to games like Go, AI
algorithms in StarCraft must deal with hidden information;
the opponent’s base is initially hidden and must be explored
continuously throughout the game to know (or guess) what
strategy the opponent is following. The game has been a
popular environment for game AI researchers with several
StarCraft AI competitions such as the AIIDE StarCraft AI

Competition1, CIG StarCraft RTS AI Competition2 and the
Student StarCraft AI Competition3.

However, bots participating in these competitions rely
mainly on hard-coded strategies [6, 20] and are rarely able
to adapt to the opponent during the game. They usually have
a modular control architecture that divides the game into
smaller task areas, relying heavily on hand-crafted modules
and developer domain knowledge. Learning to play the entire
game with end-to-end deep learning, as it was done for Atari
games [16], is currently an unsolved challenge and perhaps
an infeasible approach. A simpler approach, which we follow
in this paper, is to apply deep learning to replace a specific
function in a larger AI architecture.

More specifically, we focus on applying deep learning
to macromanagement tasks in StarCraft: Brood War in the
context of deciding what to produce next. A neural network
is trained to predict these decisions based on a training set
extracted from replay files (i.e. game logs) of highly skilled
human players. The trained neural network is combined with
the existing StarCraft bot UAlbertaBot, and is responsible
for deciding what unit, building, technology, or upgrade to
produce next, given the current state of the game. While our
approach does not achieve state-of-the-art results on its own,
it is a promising first step towards self-learning methods for
macromanagement in RTS games. Additionally, the approach
presented here is not restricted to StarCraft and can be directly
applied to other RTS games as well.

II. STARCRAFT

StarCraft is a real-time strategy (RTS) game released by
Blizzard in 1998. The same year an expansion set called
StarCraft: Brood War was released, which became so popular
that a professional StarCraft gamer scene emerged. The game
is a strategic military combat simulation in a science fiction
setting. Each player controls one of three races; Terran, Protoss
and Zerg. During the game, they must gather resources to
expand their base and produce an army. The winner of a game
is the player that manages to destroy the opponent’s base.
Figure 1 shows a screenshot from a player’s perspective con-
trolling the Protoss. The screenshot shows numerous workers

1http://www.cs.mun.ca/∼dchurchill/starcraftaicomp/
2http://cilab.sejong.ac.kr/sc competition/
3http://sscaitournament.com/

ar
X

iv
:1

70
7.

03
74

3v
1

 [
cs

.A
I]

 1
2

Ju
l 2

01
7

http://www.cs.mun.ca/~dchurchill/starcraftaicomp/
http://cilab.sejong.ac.kr/sc_competition/
http://sscaitournament.com/

Fig. 1: A screenshot of StarCraft: Brood War, seen from the perspective of
the Protoss player. Copyright (c) Blizzard Entertainment 1998.

collecting minerals and gas resources, and some buildings used
to produce combat units. To master the game, StarCraft players
need quick reactions to accurately and efficiently control a
large number of units in real-time. Tasks related to unit control
are called micromanagement tasks, while macromanagement
refers to the higher-level game strategy the player is following.
Part of the macromanagement is the chosen build order, i.e.
the order in which the player produces material in the game,
which can be viewed as the strategic plan a player is following.
In this paper, the term build is used to refer to any of the
four types of material that can be produced: units, buildings,
upgrades and technologies. Besides the opening build order,
it is equally important for the player to be able to adapt to
the opponent’s strategy later in the game. For example, if a
player becomes aware that the opponent is producing flying
units it is a bad idea to exclusively produce melee troops that
are restricted to ground attacks. Players need to be able to react
and adjust to the build strategies of their opponent; learning
these macromanagement decisions is the focus of this paper.
Macromanagement in StarCraft is challenging for a number
of reasons, but mostly because areas which are not occupied
by friendly units are not observable, a game mechanic known
as fog-of-war. This restriction means that players must order
units to scout the map to locate the opponent’s bases. The
opponent’s strategy must then be deduced continuously from
the partial knowledge obtained by scouting units.

Today, most StarCraft players play the sequel expansion set
StarCraft II: Legacy of the Void. While this game introduces
modern 3D graphics and new units, the core gameplay is the
same as in the original. For StarCraft: Brood War, bots can
communicate with the game using the Brood War Application
Programming Interface (BWAPI)4, which has been the foun-
dation of several StarCraft AI competitions.

4http://bwapi.github.io/

III. RELATED WORK

A. Build Order Planning

Build order planning can be viewed as a search problem,
in which the goal is to find the build order that optimizes
a specific heuristic. Churchill et al. applied tree search for
build order planning with a goal-based approach; the search
tries to minimize the time used to reach a given goal [5].
This approach is also implemented in UAlbertaBot and runs
in real-time.

Other goal-based methods that have shown promising re-
sults in optimizing opening build orders are multi-objective
evolutionary algorithms [1, 12, 14]. The downside of goal-
based approaches is that goals and thus strategies are fixed,
thereby preventing the bot from adapting to its opponent.
Justesen et al. recently demonstrated how an approach called
Continual Online Evolutionary Planning (COEP) can continu-
ally evolve build orders during the game itself to adapt to the
opponent [10]. In contrast to a goal-based approach, COEP
does not direct the search towards a fixed goal but can instead
adapt to the opponent’s units. The downside of this approach
is however, that it requires a sophisticated heuristic that is
difficult to design.

B. Learning from StarCraft Replays

Players have the option to save a replay file after each game
in StarCraft, which enables them to watch the game without
fog-of-war. Several web sites are dedicated to hosting replay
files, as they are a useful resource to improve one’s strategic
knowledge of the game. Replay files contain the set of actions
performed by both players, which the StarCraft engine can
use to reproduce the exact events. Replay files are thus a
great resource for machine learning if one wants to learn how
players are playing the game. This section will review some
previous approaches that learn from replay files.

Case-based reasoning [9, 19, 30], feature-expanded decision
trees [4], and several traditional machine learning algorithms
[4] have been used to predict the opponent’s strategy in RTS
games by learning from replays. While strategy prediction is
a critical part of playing StarCraft, the usefulness of applying
these approaches to StarCraft bots has not been demonstrated.

Dereszynski et al. trained Hidden Markov Models on 331
replays to learn the probabilities of the opponent’s future unit
productions as well as a probabilistic state transition model
[7]. The learned model takes as input the partial knowledge
about the opponent’s buildings and units and then outputs the
probability that the opponent will produce a certain unit in
the near future. Synnaeve et al. applied a Bayesian model
for build tree prediction in StarCraft from partial observations
with robust results even with 30% noise (i.e. up to 30% of
the opponent’s buildings are unknown) [26]. These predictive
models can be very useful for a StarCraft bot, but they do not
directly determine what to produce during the game. Tactical
decision making can benefit equally from combat forward
models; Uriarte et al. showed how such a model can be fine-
tuned using knowledge learned from replay data [28].

The approach presented in this paper addresses the com-
plete challenge that is involved in deciding what to produce.
Additionally, our approach learns a solution to this problem
using deep learning, which is briefly described next.

C. Deep Learning

Artificial neural networks are computational models loosely
inspired by the functioning of biological brains. Given an input
signal, an output is computed by traversing a large number of
connected neural units. The topology and connection weights
of these networks can be optimized with evolutionary algo-
rithms, which is a popular approach to evolve game-playing
behaviors [21]. In contrast, deep learning most often refers to
deep neural networks trained with gradient descent methods
(e.g. backpropagation) on large amounts of data, which has
shown remarkable success in a variety of different fields. In
this case the network topologies are often hand-designed with
many layers of computational units, while the parameters are
learned through small iterated updates. As computers have
become more powerful and with the help of algorithmic
improvements, it has become feasible to train deep neural
networks to perform at a human-level in object recognition
[13] and speech recognition [8].

A combination of deep learning and reinforcement learning
has achieved human-level results in Atari video games [16,
17] and beyond human-level in the classic board game Go
[23]. In the case of Go, pre-training the networks on game
logs of human players to predict actions was a critical step
in achieving this landmark result because it allowed further
training through self-play with reinforcement learning.

While deep learning has been successfully applied to
achieve human-level results for many types of games, it is still
an open question how it can be applied to StarCraft. On a much
smaller scale Stanescu et al. showed how to train convolutional
neural networks as game state evaluators in µRTS [25] and
Usunier et al. applied reinforcement learning on small-scale
StarCraft combats [29]. To our knowledge no prior work shows
how to learn macromanagement actions from replays using
deep learning.

Also worth mentioning is a technique known as imitation
learning, in which a policy is trained to imitate human players.
Imitation learning has been applied to Super Mario [3] and
Atari games [2]. These results suggest that learning to play
games from human traces is a promising approach that is the
foundation of the method presented in this paper.

IV. APPROACH

This section describes the presented approach, which con-
sists of two parts. First, a neural network is trained to predict
human macromanagement actions, i.e. what to produce next
in a given state. Second, the trained network is applied to
an existing StarCraft bot called UAlbertaBot by replacing the
module responsible for production decisions. UAlbertaBot is
an open source StarCraft bot developed by David Churchill5

5https://github.com/davechurchill/ualbertabot

that won the annual AIIDE StarCraft AI Competition in 2013.
The bot consists of numerous hierarchical modules, such as an
information manager, building manager and production man-
ager. The production manager is responsible for managing the
build order queue, i.e. the order in which the bot produces new
builds. This architecture enables us to replace the production
manager with our neural network, such that whenever the
bot is deciding what to produce next, the network predicts
what a human player would produce. The modular design of
UAlbertaBot is described in more detail in Ontanón et al. [20].

A. Dataset

This section gives an overview of the dataset used for
training and how it has been created from replay files. A replay
file for StarCraft contains every action performed throughout
the game by each player, and the StarCraft engine can recreate
the game by executing these actions in the correct order.
To train a neural network to predict the macromanagement
decisions made by players, state-action pairs are extracted
from replay files, where a state describes the current game
situation and an action corresponds to the next build produced
by the player. Additionally, states are encoded as a vector of
normalized values to be processed by our neural network.

Replay files are in a binary format and require preprocessing
before knowledge can be extracted. The dataset used in
this paper is extracted from an existing dataset. Synnaeve
et al. collected a repository of 7,649 replays by scraping
the three StarCraft community websites GosuGamers, ICCup
and TeamLiquid, which are mainly for highly skilled players
including professionals [27]. A large amount of information
was extracted from the repository and stored in an SQL
database by Robertson et al. [22]. This database contained
state changes, including unit attributes, for every 24 frames in
the games. Our dataset is extracted from this database, and an
overview of the preprocessing steps is shown in Figure 2.

From this database, we extract all events describing ma-
terial changes throughout every Protoss versus Terran game,
including when (1) builds are produced by the player, (2) units
and buildings are destroyed and (3) enemy units and build-
ings are observed. These events take the perspective of one
player and thus maintain the concept of partially observable
states in StarCraft. The set of events thus represent a more
abstract version of the game only containing information about
material changes and actions that relate to macromanagement
tasks. The events are then used to simulate abstract StarCraft
games via the build order forward model presented in Justesen
and Risi [10]. Whenever the player takes an action in these
abstract games, i.e. produces something, the action and state
pair is added to our dataset. The state describes the player’s
own material in the game: the number of each unit, building,
technology, and upgrade present and under construction, as
well as enemy material observed by the player.

The entire state vector consists of a few sub-vectors de-
scribed here in order, in which the numbers represent the
indexes in the vector:

Justesen et. alRobertson et. al

BWAPI

Event files State-action filesSQL databaseReplay files

protoss_build:{
 13: [Probe],
 377: [Probe],
 ...
},
protoss_lost : {
 2244: [Probe],
 6018: [Zealot],
...
},
terran_spotted:{
 2088: [(1413568, Supply Depot)],
 2184: [(1207, Barracks)],
 ...
},
terran_lost : {
 3456: [(1195, SCV)],
 4856: [(1413573, Marine)],
...
}

Event file State-action file

Probe: 0,0,0,0.0625,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.0625,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.0782,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.0938,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Pylon: 0,0,0,0.1094,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.1094,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.125,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0,0...
Gateway: 0,0,0,0.1406,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0156,0,0,0,0...
Probe: 0,0,0,0.1406,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0156,0,0,0,0,0...
Assimilator: 0,0,0,0.1563,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0...
Probe: 0,0,0,0.1406,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0,0,0,0...
Probe: 0,0,0,0.1406,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0,0,0,0...
Assimilator: 0,0,0,0.1719,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0...
Probe: 0,0,0,0.1719,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0,0,0,0...
Probe: 0,0,0,0.1875,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0.0156...
Cyber Core: 0,0,0,0.2031,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156...
Probe: 0,0,0,0.2031,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0.031,0...
Probe: 0,0,0,0.2188,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0.031,0...
Pylon: 0,0,0,0.2344,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0.031,0...
...

Forward
model

(a) (b)

(c) (d)

Replay
file parser

Fig. 2: An overview of the data preprocessing that converts StarCraft replays
into vectorized state-action pairs. (a) shows the process of extracting data from
replay files into an SQL database, which was done by Robinson et al. [22]. (b)
shows our extended data processing that first extracts events from the database
into files (c) containing builds, kills and observed enemy units. All events are
then run through a forward model to generate vectorized state-action pairs
with normalized values (d).

1) 0-31: The number of units/buildings of each type present
in the game controlled by the player.

2) 32-38: The number of each technology type researched
in the game by the player.

3) 39-57: The number of each upgrade type researched in
the game by the player. For simplicity, upgrades are
treated as a one-time build and our state description thus
ignores level 2 and 3 upgrades.

4) 58-115: The number of each build in production by the
player.

5) 116-173: The progress of each build in production by
the player. If a build type is not in production it has a
value of 0. If several builds of the same type are under
construction, the value represents the progress of the build
that will be completed first.

6) 174-206: The number of enemy units/buildings of each
type observed.

7) 207-209: The number of supply used by the player
and the maximum number of supplies available. Another
value is added which is the supply left, i.e. the difference
between supply used and maximum supplies available.

All values are normalized into the interval [0, 1]. The
preprocessed dataset contains 2,005 state-action files with a
total of 789,571 state-action pairs. Six replays were excluded
because the Protoss player used the rare mind control spell on
a Terran SCV that allows the Protoss player to produce Terran
builds. While the data preprocessing required for training is a
relatively long process, the same data can be gathered directly
by a playing (or observing) bot during a game.

B. Network Architecture

Since our dataset contains neither images nor sequential
data, a simple multi-layered network architecture with fully-
connected layers is used. Our game state contains all the
material produced and observed by the player throughout the
game, unless it has been destroyed, and thus there is no need
for recurrent connections in our model. The network that
obtained the best results has four hidden layers. The input
layer has 210 units, based on the state vector described in
Section IV-A, which is followed by four hidden layers of 128
units with the ReLU activation function. The output layer has
one output neuron for each of the 58 build types a Protoss
player can produce and uses the softmax activation function.
The output of the network is thus the probability of producing
each build in the given state.

C. Training

The dataset of 789,571 state-action pairs is split into a
training set of 631,657 pairs (80%) and a test set of 157,914
pairs (20%). The training set is exclusively used for training
the network, while the test set is used to evaluate the trained
network. The state-action pairs, which come from 2,005 dif-
ferent Protoss versus Terran games, are not shuffled prior to
the division of the data to avoid that actions from the same
game end up in both the training and test set.

The network is trained on the training set, which is shuffled
before each epoch. Xavier initialization is used for all weights
in the hidden layers and biases are initialized to zero. The
learning rate is 0.0001 with the Adam optimization algorithm
[11] and a batch size of 100. The optimization algorithm uses
the cross entropy loss function −

∑
i y

′
i log(yi), where y is the

output vector of the network and y′ is the one-hot target vector.
The problem is thus treated as a classification problem, in
which the network tries to predict the next build given a game
state. In contrast to classical classification problems, identical
data examples (states) in our dataset can have different labels
(builds), as human players execute different strategies and also
make mistakes while playing. Also, there is no correct build
for any state in StarCraft, but some builds are much more
likely to be performed by players as they are more likely to
result in a win. The network could also be trained to predict
whether the player is going to win the game, but how to best
incorporate this in the decision-making process is an open
question. Instead here we focus on predicting actions made
by human players, similarly to the supervised learning step in
AlphaGo [23].

D. Applying the Network to a StarCraft Bot

Learning to predict actions in games played by humans
is very similar to the act of learning to play. However, this
type of imitation learning does have its limits as the agent
does not learn to take optimal actions, but instead to take
the most probable action (if a human was playing). However,
applying the trained network as a macromanagement module
of an existing bot could be an important step towards more
advanced approaches.

5 2 1 41 0 1 0 0 0 0 133 6 1 0 .3 .7 0 0 0 .4.5 0 1 4 54 47 312 11

.05 .26 .02 .61 .00 .01 .00 .00

(a) Own material (b) Material under construction (c) Progress of material under construction (d) Opp. material (e) Supply

4 hidden layers
each with 128 units

(ReLU)

Output layer
with 58 units

(Softmax)

Input layer with 210 units.

Fig. 3: Neural Network Architecture. The input layer consists of a vectorized state containing normalized values representing the number of each unit, building,
technology, and upgrade in the game known to the player. Only a small subset is shown on the diagram for clarity. Three inputs also describe the player’s
supplies. The neural network has four hidden fully-connected layers with 128 units each using the ReLU activation function. These layers are followed by an
output layer using the softmax activation function and the output of the network is the prediction of each build being produced next in the given state.

In this paper, we build on the UAlbertaBot, which has a
production manager that manages a queue of builds that the
bots must produce in order. The production manager, which
normally uses a goal-based search, is modified to use the
network trained on replays instead. The production manager in
UAlbertaBot is also extended to act as a web client; whenever
the module is asked for the next build, the request is forwarded,
along with a description of the current game state, to a web
server that feeds the game state to the neural network and then
returns a build prediction to the module. Since the network is
only trained on Protoss versus Terran games, it is only tested in
this matchup. Our approach can however easily be applied to
the other matchups as well. UAlbertaBot does not handle some
of the advanced units well, so these where simply excluded
from the output signals of the network. The excluded units
are: archons, carriers, dark archons, high templars, reavers
and shuttles. After these are excluded from the output vector,
values are normalized to again sum to 1. An important question
is how to select one build action based on the network’s
outputs. Here two action selection policies are tested:

Greedy action selection: The build with the highest proba-
bility is always selected. This approach creates a deterministic
behavior with a low variation in the units produced. A major
issue of this approach is that rare builds such as upgrades will
likely never be selected.

Probabilistic action selection: Builds are selected with the
probabilities of the softmax output units. In the example in
Figure 3, a probe will be selected with a 5% probability and
a zealot with 26% probability. With a low probability, this
approach will also select some of the rare builds, and can
express a wide range of strategies. Another interesting feature
is that it is stochastic and harder to predict by the opponent.

V. RESULTS

A. Build Prediction

The best network managed to reach a top-1 error rate of
54.6% (averaged over five runs) on the test set, which means
that it is able to guess the next build around half the time,
and with top-3 and top-10 error rates of 22.92% and 4.03%.
For a simple comparison, a baseline approach that always
predicts the next build to be a probe, which is the most
common build in the game for Protoss, has a top-1 error rate
of 73.9% and thus performs significantly worse. Predicting
randomly with uniform probabilities achieves a top-1 error rate
of 98.28%. Some initial experiments with different input layers
show that we obtain worse error rates by omitting parts of the
state vector described in IV-A. For example, when opponent
material is excluding from the input layer the networks top-1
error increases to an average of 58.17%. Similarly, omitting
the material under construction (together with the progress)
increases the average top-1 error rate to 58.01%. The results
are summarized in Table I with error rates averaged over five
runs for each input layer design. The top-1, top-3 and top-10
error rates in the table show the networks’ ability to predict
using one, three and ten guesses respectively, determined by
their output. All networks were trained for 50 epochs as the
error rates stagnated prior to this point. Overfitting is minimal
with a difference less than 1% between the top-1 training and
test errors.

To gain further insights into the policy learned by the
network, the best network’s prediction of building a new base
given a varying number of probes is plotted in Figure 4. States
are taken from the test set in which the player has only one
base. The network successfully learned that humans usually
create a base expansion when they have around 20-30 probes.

Input Top-1 error Top-3 error Top-10 error
a+b+c+d+e 54.60% ± 0.12% 22.92% ± 0.09% 4.03% ± 0.14%
a+b+c+e 58.17% ± 0.16% 24.92% ± 0.10% 4.23% ± 0.04%
a+d 58.01% ± 0.42% 24.95% ± 0.31% 4.51% ± 0.16%
a 60.81% ± 0.09% 26.64% ± 0.11% 4.65% ± 0.21%
Probe 73.90% ± 0.00% 73.90% ± 0.00% 73.90% ± 0.00%
Random 98.28% ± 0.04% 94.87% ± 0.05% 82.73% ± 0.08%

TABLE I: The top-1, top-3 and top-10 error rates of trained networks
(averaged over five runs) with different combinations of inputs. (a) is the
player’s own material, (b) is material under construction, (c) is the progress
of material under construction, (d) is the opponent’s material and (e) is supply.
The input layer is visualized in Figure 3. Probe is a baseline predictor that
always predicts the next build to be a probe and Random predicts randomly
with uniform probabilities. The best results (in bold) are achieved by using
all the input features.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

N
ex

us
 p

re
d

ic
tio

n

of probes

Fig. 4: The prediction of the next build being a Nexus (a base expansion)
predicted by the trained neural network. Each data point corresponds to one
prediction from one state. These states have only one Nexus and are taken
from the test set. The small spike around 11 and 12 probes shows that the
network predicts a fast expansion build order if the Protoss player has not
build any gateways at this point.

B. Playing StarCraft

UAlbertaBot is tested playing the Protoss race against the
built-in Terran bot, with the trained network as production
manager. Both the greedy and probabilistic actions selection
strategies are tested in 100 games in the two-player map Astral
Balance. The results, summarized in Table II, demonstrates
that the probabilistic strategy is clearly superior, winning 68%
of all games. This is significant at p ≤ 0.05 according to
the two-tailed Wilcoxon Signed-Rank. The greedy approach,
which always selects the action with the highest probability,
does not perform as well. While the probabilistic strategy is
promising, it is important to note that an UAlbertaBot playing
as Protoss and following a powerful hand-designed strategy
(dragoon rush), wins 100% of all games against the built-in
Terran bot.

To further understand the difference between the two ap-
proaches, the builds selected by each selection strategy are
analyzed. A subset of these builds are shown in Table III.
The probabilistic strategy clearly expresses a more varied
strategy than the greedy one. Protoss players often prefer
a good mix of zealots and dragoons as it creates a good

Action selection Built-in Terran
Probabilistic 68%
Probabilistic (blind) 59%
Greedy 53%
Random 0%
UAlbertaBot (dragoon rush) 100%

TABLE II: The win percentage of UAlbertaBot with the trained neural network
as a production manager against the built-in Terran bot. The probabilistic
strategy selects actions with probabilities equal to the outputs of the network
while the greedy network always selects the action with the highest output,
and random always picks a random action. The blind probabilistic network
does not receive information about the opponent’s material (inputs are set to
0.0). UAlbertaBot playing as Protoss with the scripted dragoon rush strategy
wins 100% of all games against the built-in Terran bot.

dynamic army, and the greedy strategy clearly fails to achieve
this. Additionally, with the greedy approach the bot never
produces any upgrades, because they are too rare in a game to
ever become the most probable build. The blind probabilistic
approach (which ignores knowledge about the opponent by
setting these inputs to zero) reached a lower win rate of just
59%, further corroborating that the opponent’s units and build-
ings are important for macromanagement decision making. We
also tested the probabilistic approach against UAlbertaBot with
the original production manager configured to follow a fixed
marine rush strategy, which was the best opening strategy for
UAlbertaBot when playing Terran. Our approach won 45%
of 100 games, demonstrating that it can play competitively
against this aggressive rush strategy, learning from human
replays alone.

Figure 5 visualizes the learned opening strategy with greedy
action selection. While the probabilistic strategy shows a better
performance in general (Table II), the strategy performed by
the greedy action selection is easier to analyze because it is
deterministic and has a one-sided unit production. The learned
build order shown in Figure 5 is a One Gate Cybernetics
Core opening with no zealots before the cybernetics core.
This opening was performed regularly against the built-in
Terran bot, which does not vary much in its strategy. The
opening is followed by a heavy production of dragoons and
a few observers. A base expansion usually follows the first
successful confrontation. Some losses of the greedy approach
were caused by UAlbertaBot not being able to produce more
buildings, possibly because there was no more space left in
the main base. A few losses were also directly caused by some
weird behavior in the late game, where the bot (ordered by the
neural network) produces around 20 pylons directly after each
other. Generally, the neural network expresses a behavior that
often prolongs the game, as it prefers expanding bases when
leading the game. This is something human players also tend
to do, but since UAlbertaBot does not handle the late game
very well, it is not a good strategy for this particular bot.

The behavior of the probabilistic strategy is more difficult to
analyze, as it is stochastic. It usually follows the same opening
as the greedy approach, with small variations, but then later in
the game, it begins to mix its unit production between zealots,
dragoons and dark templars. The timings of base expansions
are very different from game to game as well as the use of
upgrades.

1.000 0.999 0.999

0.001

0 5 366 670 947 1114 1322 1650 1879 2037

0.987

0.010

0.003

0.475

0.519

0.005

0.980

0.020

0.879

0.117

0.004

0.098

0.870

0.025

0.006

0.001

0.989

0.003

0.006

0.001

0.001

0.358

0.006

0.616

0.001

0.006

0.002

2328 2471

0.998

0.001

0.001

0.922

0.002

0.043

0.021

0.002

0.011

2775

0.164

0.001

0.132

0.021

0.002

0.680

Frame

Probe

Nexus PylonGatewayAssimilator

Forge ZealotCybernetics Core

Fig. 5: The opening build order learned by the neural network when playing against the built-in Terran bot (the build order also depends on the enemy units
observed). The number next to each build icon represents the probability of the build being produced next, and points on the timescale indicate when the bot
requests the network for the next build. In this example the network follows the greedy strategy, always picking the build with the highest probability.

Probe Zealot Dragoon Dark
templar Observer Scout Corsair Leg

enhancements
Ground
weapons

Ground
armor

Plasma
shields

Action selection
Probabilistic 50.84 14.62 17.3 1.00 3.56 0.11 0.13 0.32 0.03 0.07 0.01
Greedy 70.12 1.46 32.75 0.00 2.40 0.00 0.00 0.00 0.00 0.00 0.00

TABLE III: The average number of different unit types produced by the two different action selection strategies against the built-in Terran bot. The results
show that the greedy strategy executes a very one-sided unit production while the probabilistic strategy is more varied.

VI. DISCUSSION

This paper demonstrated that macromanagement tasks can
be learned from replays using deep learning, and that the
learned policy can be used to outperform the built-in bot in
StarCraft. In this section, we discuss the short-comings of this
approach and give suggestions for future research that could
lead to strong StarCraft bots by extending this line of work.

The built-in StarCraft bot is usually seen as a weak player
compared to humans. It gives a sufficient amount of competi-
tion for new players but only until they begin to learn estab-
lished opening strategies. A reasonable expectation would be
that UAlbertaBot, using our trained network, would defeat the
built-in bot almost every time. By analyzing the games played,
it becomes apparent that the performance of UAlbertaBot
decrease in the late game. It simply begins to make mistakes
as it takes weird micromanagement decisions when it controls
several bases and groups of units. The strategy learned by our
network further enforces this faulty behavior, as it prefers base
expansions and heavy unit production (very similar to skilled
human players) over early and risky aggressions. The trained
network was also observed to make a few faulty decisions,
but rarely and only in the very late game. The reason for
these faults might be because some outputs are excluded, since
UAlbertaBot does not handle these builds well.

Despite the presented approach not achieving a skill level on
pair with humans, it should be fairly straightforward to extend
it further with reinforcement learning. Supervised learning
on replays can be applied to pre-train networks, ensuring
that the initial exploration during reinforcement learning is
sensible, which proved to be a critical step to surpass humans
in the game Go [23]. Reinforcement learning is especially

promising for a modular-based bot as it could optimize the
macromanagement policy to fit the fixed micromanagement
policy. Additionally, learning a macromanagement policy to
specifically beat other bots that are competing in a tournament
is a promising future direction.

This paper also introduces a new benchmark for machine
learning, where the goal is to predict the next unit, building,
technology or upgrade that is produced by a human player
given a game state in StarCraft. An interesting extension
to the presented approach, which could potentially improve
the results, could involve including positional information
as features for the neural network. The features could be
graphical and similar to the minimap in the game that gives
an abstract overview of where units and buildings are located
on the map. Regularization techniques such as dropout [24]
or L2 regularization [18] could perhaps reduce the error rate
of deeper networks and ultimately improve the playing bot.

Finally, it would be interesting to apply our trained network
to a more sophisticated StarCraft bot that is able to manage
several bases well and can control advanced units such as spell
casters and shuttles. This is currently among our future goals,
and hopefully this bot will participate in the coming StarCraft
competitions.

VII. CONCLUSION

This paper presented an approach that learns from StarCraft
replays to predict the next build produced by human players.
789,571 state-action pairs were extracted from 2,005 replays
of highly skilled players. We trained a neural network with
supervised learning on this dataset, with the best network
achieving top-1 and top-3 error rates of 54.6% and 22.9%. To

demonstrate the usefulness of this approach, the open source
StarCraft bot UAlbertaBot was extended to use such a neural
network as a production manager, thereby allowing the bot
to produce builds based on the networks predictions. Two
action selection strategies were introduced: A greedy approach
that always selects the action with the highest probability,
and a probabilistic approach that selects actions corresponding
to the probabilities of the network’s softmax output. The
probabilistic strategy proved to be the most successful and
managed to achieve a win rate of 68% against the games
built-in Terran bot. Additionally, we demonstrated that the
presented approach was able to play competitively against
UAlbertaBot with a fixed rush strategy. Future research will
show whether reinforcement learning can improve these results
further, which could narrow the gap between humans and
computers in StarCraft.

REFERENCES

[1] J. Blackford and G. B. Lamont. The real-time strategy game
multi-objective build order problem. In AIIDE, 2014.

[2] M. Bogdanovic, D. Markovikj, M. Denil, and N. de Freitas.
Deep Apprenticeship Learning for Playing Video Games. PhD
thesis, Citeseer, 2014.

[3] Z. Chen and D. Yi. The game imitation: Deep supervised
convolutional networks for quick video game ai. arXiv preprint
arXiv:1702.05663, 2017.

[4] H.-C. Cho, K.-J. Kim, and S.-B. Cho. Replay-based strategy
prediction and build order adaptation for starcraft ai bots.
In Computational Intelligence in Games (CIG), 2013 IEEE
Conference on, pages 1–7. IEEE, 2013.

[5] D. Churchill and M. Buro. Build order optimization in starcraft.
In AIIDE, pages 14–19, 2011.

[6] D. Churchill, M. Preuss, F. Richoux, G. Synnaeve, A. Uriarte,
S. Ontanón, and M. Certickỳ. Starcraft bots and competitions.
2016.

[7] E. W. Dereszynski, J. Hostetler, A. Fern, T. G. Dietterich, T.-T.
Hoang, and M. Udarbe. Learning probabilistic behavior models
in real-time strategy games. In AIIDE, 2011.

[8] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al.
Deep speech: Scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567, 2014.

[9] J.-L. Hsieh and C.-T. Sun. Building a player strategy model
by analyzing replays of real-time strategy games. In Neural
Networks, 2008. IJCNN 2008.(IEEE World Congress on Com-
putational Intelligence). IEEE International Joint Conference
on, pages 3106–3111. IEEE, 2008.

[10] N. Justesen and S. Risi. Continual online evolution for in-
game build order adaptation in starcraft. In The Genetic and
Evolutionary Computation Conference (GECCO), 2017.

[11] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[12] H. Köstler and B. Gmeiner. A multi-objective genetic algorithm
for build order optimization in starcraft ii. KI-Künstliche
Intelligenz, 27(3):221–233, 2013.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[14] M. Kuchem, M. Preuss, and G. Rudolph. Multi-objective as-
sessment of pre-optimized build orders exemplified for starcraft
2. In Computational Intelligence in Games (CIG), 2013 IEEE
Conference on, pages 1–8. IEEE, 2013.

[15] G. Lample and D. S. Chaplot. Playing fps games with deep
reinforcement learning. arXiv preprint arXiv:1609.05521, 2016.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[17] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International
Conference on Machine Learning, 2016.

[18] S. J. Nowlan and G. E. Hinton. Simplifying neural networks by
soft weight-sharing. Neural computation, 4(4):473–493, 1992.

[19] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram. Case-
based planning and execution for real-time strategy games. In
International Conference on Case-Based Reasoning, pages 164–
178. Springer, 2007.

[20] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill,
and M. Preuss. A survey of real-time strategy game ai research
and competition in starcraft. IEEE Transactions on Computa-
tional Intelligence and AI in games, 5(4):293–311, 2013.

[21] S. Risi and J. Togelius. Neuroevolution in games: State of the
art and open challenges. IEEE Transactions on Computational
Intelligence and AI in Games, 2015.

[22] G. Robertson and I. D. Watson. An improved dataset and
extraction process for starcraft ai. In FLAIRS Conference, 2014.

[23] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-
vam, M. Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484–489,
2016.

[24] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural net-
works from overfitting. Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[25] M. Stanescu, N. A. Barriga, A. Hess, and M. Buro. Evaluating
real-time strategy game states using convolutional neural net-
works. In Computational Intelligence and Games (CIG), 2016
IEEE Conference on, pages 1–7. IEEE, 2016.

[26] G. Synnaeve and P. Bessiere. A bayesian model for plan
recognition in rts games applied to starcraft. arXiv preprint
arXiv:1111.3735, 2011.

[27] G. Synnaeve and P. Bessiere. A dataset for starcraft ai\ & an
example of armies clustering. arXiv preprint arXiv:1211.4552,
2012.

[28] A. Uriarte and S. Ontanón. Automatic learning of combat
models for rts games. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference, 2015.

[29] N. Usunier, G. Synnaeve, Z. Lin, and S. Chintala. Episodic ex-
ploration for deep deterministic policies: An application to star-
craft micromanagement tasks. arXiv preprint arXiv:1609.02993,
2016.

[30] B. G. Weber and M. Mateas. A data mining approach to strategy
prediction. In Computational Intelligence and Games, 2009.
CIG 2009. IEEE Symposium on, pages 140–147. IEEE, 2009.

http://arxiv.org/abs/1702.05663
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.05521
http://arxiv.org/abs/1111.3735
http://arxiv.org/abs/1211.4552
http://arxiv.org/abs/1609.02993

	I Introduction
	II StarCraft
	III Related Work
	III-A Build Order Planning
	III-B Learning from StarCraft Replays
	III-C Deep Learning

	IV Approach
	IV-A Dataset
	IV-B Network Architecture
	IV-C Training
	IV-D Applying the Network to a StarCraft Bot

	V Results
	V-A Build Prediction
	V-B Playing StarCraft

	VI Discussion
	VII Conclusion

