
Fight or Flight: Evolving Maps for Cube 2 to Foster
a Fleeing Behavior

Daniele Loiacono
Dipartimento di Elettronica,

Informazione e Bioinformatica,
Politecnico di Milano,

Email: daniele.loiacono@polimi.it

Luca Arnaboldi
Dipartimento di Elettronica,

Informazione e Bioinformatica,
Politecnico di Milano,

Email: luca1.arnaboldi@mail.polimi.it

Abstract—The fight-or-flight response is a typical physiological
reaction to an imminent threat, which prepares the body to fight
or flee. Such a mechanism can be also exploited to some extent
in game design to elicit strong emotions in players. However, in
first person shooters, fleeing is often a not viable option, making
fight inevitable. In this work, we suggest that map design can be
effectively used to deal with this issue. In particular, we presented
a procedural content generation approach, based on evolutionary
computation, to evolve maps for Cube 2, an open source first
person shooter. Our results show that the design of evolved maps
is effectively able to foster the emergence of a fleeing behavior,
even in AI controlled characters specifically designed to fight and
chase the opponents.

I. INTRODUCTION

Fight-or-flight is a typical physiological response to an
attack or to a perceived threat [2]. Such a mechanism can
be also used by game designers to elicit strong reactions in
players, such as stress, fear, anxiety or excitement. This idea is
often exploited in survival horror games [22], while the design
of first person shooters, being mainly focused on providing
a frantic game experience, often makes the fight inevitable
and might desensitize the perception of danger in players.
Accordingly, our aim is to investigate how to deal with this
issue with an ad hoc level design for first person shooters.

Today, game developers generally exploit standard tools
and pipelines to speedup the whole development process.
Unfortunately, level design is a trial and error process that still
heavily relies on custom tools as well as on human expertise.
Nevertheless, level design is often one of the main challenge
for game developers and it is often the key to a successful
game. In particular, in mutliplayer first person shooters the
design of maps, i.e., the environment where the game takes
place, plays a major role to provide players with an exciting
and frantic experience: in fact, the design of maps affects
the pacing, the balancing and ultimately how the the game
is played.

Recent works in the literature [19], [21], [16], [3], [6], [24]
suggest that procedural content generation [25] is a promising
approach to develop tools that could improve the level design
process by either assisting or, in some specific tasks, replacing
the work of designers. In this paper, we present a procedural
content generation approach to design maps for Cube 2:
Sauerbraten, an open source first person shooter. In particular,

our work is based on and inspired by previous works on
the procedural generation of maps for first person shooters.
However, while previous works focused on survival time [4],
balancing [14], team-play [18], or resources distribution [1],
we focus on evolving maps with a design that makes fleeing
a more viable strategy for players.

We performed an experimental analysis to test our approach.
The results are encouraging and show that, even in simulated
matches between bots designed to fight and chase the oppo-
nents, a specific map design leads to the emergence of a fleeing
behavior.

This paper is organized as follows. In Section II we provide
an overview of the previous works in the literature on the
procedural generation of maps for first person shooters. Then,
in Section III we briefly describe Cube 2: Sauerbraten and in
Section IV the approach used in this work to evolve the maps.
Finally in Section V we present our experimental results and
in Section VI we draw some conclusions.

II. RELATED WORK

A. Map Design in First Person Shooters

Despite being a widely studied subject, the map design in
first person shooters is not yet a standardized process and
it still heavily relies on human expertise. Accordingly, some
authors [12], [8], [9] tried to identify the most frequent design
patterns that appear in first person shooters maps. In particular,
Hullet et al. described the major patterns used for level
design in single-player shooters [11]. Instead, Liapis et al. [15]
studied general patterns, usable across different game genres
(including first person shooters [1]). The major challenge of
this research direction lies on identifying relevant patterns and
on understanding how they affect the game dynamics and how
they interact with game mechanics.

B. Search-Based Procedural Content Generation

So far, search-based procedural content generation
(SB-PCG) [25] has been widely used to automatically generate
high-quality game contents and proved to be effective in
several game genres, including platform games [19], [5],
[21], racing games [23], [16], [3], RPG games [6], strategy
games [24], and others [10], [20]. This work is based on
previous works [4], [14] which applied SB-PCG to evolve



Fig. 1. A screenshot of Cube 2: Sauerbraten.

Fig. 2. The recursive structure of an octree.

maps for Cube 2. In particular, Cardamone et al. [4] proposed
four different map encodings and applied a genetic algorithm
to evolve interesting maps; in their work, the fitness function
used to evaluate the maps was based both on the size of
the map and on the average length of the fights (i.e., how
long players do survive after starting to fight an opponent).
Later, Lanzi et al. [14] extended the work of Cardamone et
al. by focusing on the problem of evolving balanced maps
for FPS when players either have different skill levels or are
using different weapons. More recently, Ølsted et al. [18],
focused on evolving maps for multiplayer FPS involving
teams, introducing a new map encoding and evaluating the
maps through user interaction. Finally, the work of Cachia et
al. [1] further extended the previous works to evolve Cube 2
maps with two floors; to evaluate the maps they combined
the metrics used in [4], [14] with general heuristics for level
design introduced in [15].

III. CUBE 2: SAUERBRATEN

Cube 2: Sauerbraten (Cube 2 in brief), is a rather popular
open source arena first person shooter (see a screenshot of
the game in Figure 1). It includes several game modes, such
as deathmatch, capture the flag, domination, and others; it
also features seven different weapons, ranging from melee
weapons to long ranged ones, i.e., chainsaw, pistol, machine
gun, shotgun, rifle, grenade launcher, and rocket launcher. In
addition, Cube 2 was used in several works in the literature [4],
[14], [1] as it allows the creation of custom maps and offers
AI controlled characters.

A. Maps

The maps of Cube 2 are based on a recursive structure,
called octree; indeed, each octree is a sort of cube recursively

Fig. 3. The behavior of bots in Cube 2.

composed by 8 smaller octrees (see Figure 2). The map
editor provided with the game allows to build complex 3D
structures by editing and combining together several octrees.
In fact, for each octree it is possible either to change its size
or to move inward any of its vertexes; moreover, it is also
possible to recursively edit or remove the octrees contained
in a bigger octree. Finally, the editor allows also to place the
spawning points (i.e., where players appear after being killed),
ammunition, weapons, and power-ups.

B. AI

Cube 2 provides AI controlled characters, generally called
bots, that can play against or with players. In general, the
behavior of the bots in Cube 2 can be effectively described
with the finite state machine represented in Figure 3. When
a match starts, the bot is in an Idle state, where it explores
and patrols the map searching for enemies. As soon as an
enemy is in sight, the bot enters in a Fighting state, that can
be decomposed in a Shooting state and in a Pursue state: in
the Shooting state, the bot has the enemy in sight and is either
aiming or shooting at it; whenever the bot looses temporarily
the sight of the enemy, it enters in the Pursue state, where it
navigates the map searching for the enemy. If the enemy is
not visible for a given amount of time, the bot re-enters in the
Idle state. The bot re-enters the Idle state also from Fighting
state when it kills the enemy or it is killed by him (this could
also happen in the Idle state, if a not visible enemy kills the
bot).

It is possible to adjust the skill level of the bots by setting a
skill parameter which ranges from 0 to 100. Unfortunately, this
skill parameter affects all bot behaviors and it is not possible to
adjust only specific skills (e.g., it is not possible to increase or
decrease the navigation skills of the bot without affecting also
its aiming skills). Accordingly, we extended the AI routines of
Cube 2 to allow for the independent adjustment of individual
bot skills. In particular, we identified three major skills and
made them independent from the general skill level of the
bot: (i) aiming skill, that affects how accurate the bot is when
shooting; (ii) positioning skill, that affects how good the bot
is at keeping an appropriate combat distance to better exploit
the weapon used; (iii) camping skill, that affects how good the



Fig. 4. A screenshot of some maps available in Cube 2.

bot is at moving and aiming at the same time. All these skills
have a value that ranges from 0 to 100.

IV. OUR APPROACH

In this section we describe the map encoding and the fitness
function we used to evolve maps for Cube 2; in addition, we
describe also some additional metrics computed to analyze the
design of evolved maps.

A. Encoding

Cube 2 provides a map editor that allows users to create
custom maps visually appealing and with a rather complex
structure (see some examples in Figure 4). However, in this
work we focus only on the map topology and, more specif-
ically, on a kind of maps that are quite easy to generate.
Accordingly, as in [4], [14], our maps have a single floor
represented as a 64× 64 matrix of square tiles. Each tile can
be either empty or filled with a block of fixed height (each
block is built using octrees). The empty tiles represent the
map area that can be navigated by players, e.g., rooms, arenas
and corridors of the maps. The blocks cannot be traversed by
players and their height is specifically designed to make it
not possible for players to jump over them; hence, blocks are
basically used to separate the open areas of the map. Being a
direct encoding of the 64×64 matrix of tiles not very effective,
we used an encoding proposed by Cardamone in [4], defined
as follows. All the tiles of the map are by default filled with a
block and only empty tiles are encoded. Each arena is encoded
as a triplet < x, y, s >, where x and y define the center of the
arena and s is the size of the arena. Similarly, each corridor
is encoded as a triplet < x, y, l >, where x and y define the
center of the corridor and l encodes both the length and the
direction of the corridor (positive length is used to encode
horizontal corridors, while a negative length is used to encode
a vertical corridor). All the arenas are squared and corridor
have a fixed width of three tiles. As a result, the genotype is
a vector of triplets that encodes na arenas and nc corridors
(in all the experiments reported in this work na = 20 and

nc = 60). In order to generate a map usable in Cube 2 with
this encoding, two additional steps are required: (i) all the
empty tiles that are not reachable from the center of the map
are removed, i.e., we make the maps fully connected; (ii) we
uniformly distribute spawning points, weapon pick-ups, and
add-ons over the empty tiles of the map.

B. Fitness

To evaluate how much fleeing is a viable option in a given
map, we designed a fitness function based on the gameplay
statistics we collect from a simulated match between bots
on the map to evaluate. Despite the fact that an approach
based on simulation (also followed in [4], [14]) is rather time
consuming and relies on the game AI, it allows us to evaluate
better how the map design actually affects the game dynamics.
Instead, a fitness function based only on a static analysis of
the maps (i.e., the topology, the placement of resources, etc.)
might either fail to capture entirely the relationship between
map design and game dynamics or lead to unnecessary design
constraints (e.g., symmetry, fair distribution of resources, etc.).
Accordingly, to evaluate the fitness of a map we simulate
a match of 30 minutes (this value was set based on an
empirical analysis on randomly generated maps); simulations
are performed with accelerated game time such that a 30
minutes match takes only few seconds to be simulated. Based
on the statistics collected during this simulated match, we
compute the fitness of the maps as follows:

f =
nlost
nfight

, (1)

where nfight is the number of times bots enter in Fighting
state (see Figure 3), nlost is the number of times bots go from
Pursue state to Idle state (see Figure 3), because they lost
contact with the enemy during a fight. Therefore, this fitness
function basically measures the fraction of fights that do not
end with either killing the opponent or being killed.

C. Design Metrics

In the following, we present additional metrics useful to
better understand the design of evolved maps and how it affects
the most important game dynamics.

Balancing. In a FPS, balancing is very important to make
sure players have an enjoyable game experience [14], [13].
Following the definition introduced in [14], we evaluated the
balancing of a map by computing the entropy of the kills
distributions among bots:

B = −
∑
i

ki
K

logN

(
ki
K

)
, (2)

where ki are the kills performed by the i-th bot in the simulated
match, N is the number of bots in the match, and K =

∑
i ki.

As a result, B is always between 0 and 1; in particular, it is
close to 1 when all the bots perform almost the same number
of kills, while it is close to 0 when a single bot performs
almost all the kills. Figure 5 provides an insight of the value



Fig. 5. The value of B computed according Equation 2 with two bots (blue
line), three bots (red line), and four bots (green line); on the x-axis is reported
the fraction of kill performed by the first bot (we assume that the other kills
are evenly shared among other bots).

Fig. 6. The value of P computed according to Equation 3; on the x-axis is
reported τ = tidle/nfight, i.e., the average time (in seconds) between two
consecutive fights.

of B computed by Equation 2, with a number of bots that
goes from 2 to 4.

Pacing. In a FPS, pacing generally refers to the frequency with
which players are engaged in fights. It tends to significantly
affect game experience: a too high pace usually leads to a
stressful experience, but a too low pace typically leads to a
boring experience. To evaluate how the design of the map
affects the pacing, we defined the following metric:

P =
2

1 + e−3/τ
− 1, (3)

where τ = tidle/nfight represents the average time the bots
spend between two fights (tidle is the time spent in Idle state
and nfight is the number of times bots enter Fighting state). As
a result, the value of P is computed with a sigmoidal function

(see Figure 6) that is almost 1 when τ is very small and then
quickly decreases toward 0.

Kill Streaks. A kill streak is the number of kills a player is
able to perform without dying. Completing a long streaks is
generally a very exciting experience for a player and several
popular shooters, e.g., Call of Duty 1 and Halo 2, reward
players when they achieve a long kill streak. As map design
could affect the average length of kill streaks, we compute
also the average length of the kill streaks performed during
the match:

Lstrk =

∑
i streaki
Nstrk

, (4)

where streaki is the length of i-th kill streaks achieved during
the game and Nstrk is the number of streaks during the whole
match.

Fighting Time. In a FPS, players basically spend time either
exploring the map (i.e., searching for an opponent or for
resources) or fighting (i.e., either shooting or chasing). The
map design might have a significant impact on the time
balance between these two activities. Accordingly, to keep
track of this, we compute the following metric:

Tf =
tfight

tfight + tidle
, (5)

where tfight and tidle are respectively the time spent by all
the bots in respectively the Fighting and in the Idle states (see
Figure 3). Therefore, Tf , that ranges from 0 to 1, computes
the fraction of the match time that bots spend fighting.

Bots Statistics. Finally, we keep also track of some bot statis-
tics that might be affected by the map design. In particular, we
collect (i) the number of kills performed by each bot during
the match (ki), (ii) the total number of kills performed during
the match (K), and (iii) the shooting accuracy of each bot
(acci), computed as the number of hits over the number of
shots performed.

V. EXPERIMENTAL ANALYSIS

We applied a genetic algorithm to evolve maps for Cube 2
that make it possible for players to flee. In our experimental
analysis, maps are evolved for two players with slightly dif-
ferent playing styles. The first playing style, named Berserker,
is quite an aggressive and very dynamic playing style: it is the
typical style of players with poor aiming skills, more effective
in close combats situated in open spaces (where they are very
good at moving and aiming at the same time). The second
playing style, named Gunner, exhibits a more balanced and
static playing style: typical of players with average aiming
skills, that need more time to shoot accurately and are more
effective in closed spaces. To model these different playing
styles with Cube 2 bots we used the following AI parameters.
The Berserker bot has general skill equal to 75, aiming skill
equal to 40, positioning skill equal to 50, and camping skill

1http://www.callofduty.com/
2http://www.halowaypoint.com/



Fig. 7. Average (blue line) and maximum (red line) fitness values of the maps
evolved for each generation. Curves are computed as the average of 12 runs
(bars represent the standard errors).

equal to 90. The Gunner bot has general skill equal to 75,
aiming skill equal to 75, positioning skill equal to 75, and
camping skill equal to 20.

The setup of the evolutionary process is similar to the one
used in [14]. We performed 12 runs 3, each one consisting of
30 generations with a population of 75 maps; uniform mutation
is applied with probability 0.3; matrix crossover [17] is applied
with probability 0.3. The fitness of each map is evaluated
running a 30 minutes match with a Berserker bot against a
Gunner bot, both using a rocket launcher.

Figure 7 shows that the genetic algorithm is effectively able
to steadily improve both the average and the maximum fitness
of the population as the generations progress. As the results
show, the average fitness of the population is initially almost
close to zero and, after 30 generations, the average fitness is
around 0.1, while the maximum value of the fitness grows from
a value around 0.05 to a value close to 0.15. The average and
maximum fitness of the evolved maps might seem quite small,
but they are actually quite difficult to achieve without a specific
design of the maps. In fact, despite the overall size of the
maps is quite limited 4 and the bots AI is primarily designed
to pursue the opponent, our results show that the number of
fights that do not end with a death goes from less than 1%
on average (with a maximum of 6%) in the initial population,
towards to almost 11% on average (with a maximum of 15%)
in the final population.

In order to get a better insight about the design of maps
evolved by the genetic algorithm, we computed and reported
additional metrics. Figure 8 shows the analysis of general
gameplay metrics, i.e., the balancing, the pacing, the average
length of kill streaks, and the fraction of time spent in
fights. Figure 9 shows statistics about bots performance on
the map, such as the accuracy of the bots, the fraction of
kills performed by bots, and the total number of kills. Data
show that evolving maps to increase the fitness value does
not affect the balancing (reported in red in Figure 8a), the

3Experiments were performed on a machine with 4 CPU cores, that made
it easy to run 4 simulations in parallel.

4All the maps evolved are based on a grid of 64× 64 tiles as described in
Section IV.

(a)

(b)

Fig. 8. Analysis of gameplay metrics in the evolved maps with respect to
the fitness, f : (a) balancing in red and pacing in blue; (b) fraction of time
spent fighting in red and average length of kill streaks in blue. The values
of the metrics are plotted for each map with a circle and fitted with linear
regression; the resulting trend-lines are plotted (dashed lines) along with their
equations.

distribution of kills performed by the bots (reported in red in
Figure 9b), and has just a minor effect on the average length of
kill streaks (reported in blue in Figure 8b). Instead, the design
of maps with high fitness values affects more significantly
the pacing (reported in blue in Figure 8a), the amount of
time spent fighting (reported in red in Figure 8b), and the
total number of kills performed by the bots (reported in blue
Figure 9b). As expected, the pacing, P , of the maps decreases
from a value around 0.5 (when f is almost 0) to 0.2 (when f
is greater than 0.15), which means that average time between
fights increases from less than 3 seconds to almost 8 seconds
(according to Equation 3); the same happens to the amount of
time spent fighting, i.e., Tf , that decreases from almost 70%
(when the fitness is small) to approximately 50% (when the
fitness is large) of the whole match time; also the total number



(a)

(b)

Fig. 9. Analysis of bots statistics on the evolved maps with respect to the
fitness, f : (a) accuracy of Gunner bot, accg , in red and Berserker bot, accb,
in blue; (b) fraction of kills performed by the Gunner bot, kg , in red and total
number of kills, K, in blue. The values of the statistics are plotted for each
map with a circle and fitted with linear regression; the resulting trend-lines
are plotted (dashed lines) along with their equations.

of kills performed by the bots drops from more than 200 to
approximately 100. These results suggest that maps that foster
a fleeing behavior generally require a more complex structure
that also makes it more difficult for the players to find each
other, reducing the pace and the number of fights the bots
are engaged in. Finally, Figure 9a shows that the accuracy of
Gunner and Berserker bots slightly improves with the fitness
value. This is probably due to the fact that maps with higher
fitness values feature more close spaces, where it is easier to
shoot more accurately.

Figure 10 summarizes all the changes in the map design
from early generations, i.e., first 5 generations, to late gener-
ations, i.e., last 5 generations. All the changes of the metrics
were tested with a Wilcoxon rank sum test [7], with p-values
p < 0.05 considered statistically significant. The results of this

Fig. 10. A summary of the design differences between maps in the early
generations (i.e., maps evolved in the first 5 generations) and maps in late
generations (i.e., maps evolved in the last 5 generations). For each metric is
reported the average value computed on maps from early and late generations.
The line is reported in: (i) green, if the metric increases and the difference is
statistically significant; (ii) red, if the metric decreases and the difference is
statistically significant; (iii) gray, if the change is not statistically significant.
All the values of metrics are normalized between 0 and 1, to make it easier
to plot them together.

analysis are consistent with the previous discussion.

Figure 11 shows six examples of maps evolved in the 12
runs performed along with their fitness values. Maps in the left
column have low fitness values and are typically evolved in
early generations; maps in the middle column are examples of
maps evolved halfway through the process; maps in the right
column are examples from late generations with high values
of fitness. Despite maps on the left seem to have a slightly
more simple structure than maps on the right column, overall
they look quite similar. Accordingly, to get a better insight
we looked into the game dynamics that take place on these
maps. Figure 12 shows the distributions of the deaths of bots
on these six examples of maps. The distributions show that
in maps with low fitness values the action takes place in a
very limited area of the map, i.e., these maps feature a sort of
central hub connected to all the peripheral areas. In contrast,
in maps with high fitness values the action is distributed all
over the map and they can generally be navigated following
a closed circular path; in particular, it is interesting to note
that adding even a single shortcut to such a navigation path
(as in both maps in the middle column of Figure 12) leads
to significantly reducing the emergence of a fleeing behavior,
i.e., a lower fitness value.



(a) (b) (c)
f = 0.002 f = 0.105 f = 0.185

(d) (e) (f)
f = 0.027 f = 0.080 f = 0.133

Fig. 11. Examples of the maps evolved reported with their fitness values.

VI. CONCLUSIONS

In this work, we presented a procedural content generation
approach to design FPS maps that allow to avoid fights more
easily. In particular, we used a genetic algorithm to evolve
maps for Cube 2, an open source FPS. We encoded the
maps following the same approach introduced in [4] and we
evaluated them on the basis of statistics collected from sim-
ulated matches between bots. To get additional insight about
the design of the evolved maps we also analyzed additional
metrics of the maps, such as the balancing, the pacing, the
average length of kill streaks, the average fraction of match
time spent in a fight, the shooting accuracy, and the total
number of kills. Our results showed that the genetic algorithm
is actually able to evolve maps that foster the emergence of
a fleeing behavior, even in simulated matches involving bots
that are specifically designed to always fight and chase the
opponents. The analysis of evolved maps shows that this result
is achieved with a design that does not include any central hub
area but, instead, features a quite long closed path that allows
to navigate almost the whole map. In addition, we noted that
while such a design pattern does not have any significant effect
on the balancing and on the average length of kill streaks,
it significantly reduces the pacing, the time spent in a fight
and the total number of kills performed during the match. As
future work, it might be interesting to validate our results with

human players and investigate whether the evolved maps are
actually able to elicit some sort of fight-or-flight response. To
improve the evaluation of the evolved maps, we might consider
to introduce an explicit fleeing behavior that bots can select to
avoid fights. We also plan to investigate how the distribution
of weapons, ammunition and power-ups affects the emergence
of fleeing behaviors. Finally, we want to explore in depth the
trade-off between the pacing and the emergence of fleeing
behavior that we found in this work.

REFERENCES

[1] William Cachia, Antonios Liapis, and Georgios N Yannakakis. Multi-
level evolution of shooter levels. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference, 2015.

[2] Walter B Cannon. The wisdom of the body. The American Journal of
the Medical Sciences, 184(6):864, 1932.

[3] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Interactive
evolution for the procedural generation of tracks in a high-end racing
game. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, GECCO ’11, pages 395–402, New York, NY,
USA, 2011. ACM.

[4] Luigi Cardamone, Georgios N. Yannakakis, Julian Togelius, and
Pier Luca Lanzi. Evolving interesting maps for a first person shooter.
In Proceedings of the 2011 international conference on Applications of
evolutionary computation - Volume Part I, EvoApplications’11, pages
63–72, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] Kate Compton and Michael Mateas. Procedural level design for platform
games. In John E. Laird and Jonathan Schaeffer, editors, AIIDE, pages
109–111. The AAAI Press, 2006.



(a) (b) (c)
f = 0.002 f = 0.105 f = 0.185

5.4 Sommario 105

(a) Mappa iniziale (b) Mappa intermedia (c) Mappa finale

Figura 5.55: Heat Maps delle uccisioni del bot Artilleryman nel secondo esempio
del terzo esperimento.

(a) Mappa iniziale (b) Mappa intermedia (c) Mappa finale

Figura 5.56: Heat Maps delle morti del bot Artilleryman nel secondo esempio del
terzo esperimento.

(a) Mappa iniziale (b) Mappa intermedia (c) Mappa finale

Figura 5.57: Mappe delle Kill Traces del bot Artilleryman nel secondo esempio
del terzo esperimento.

(d) (e) (f)
f = 0.027 f = 0.080 f = 0.133

Fig. 12. Heat maps of deaths distribution over the six maps depicted in Figure 11. Color encodes the density of deaths: red areas corresponds to the highest
density while blue areas to the lowest one.

[6] Joris Dormans and Sander Bakkes. Generating missions and spaces
for adaptable play experiences. Computational Intelligence and AI in
Games, IEEE Transactions on, 3(3):216–228, 2011.

[7] Jean Dickinson Gibbons and Subhabrata Chakraborti. Nonparametric
Statistical Inference. CRC Press, 2010.

[8] Robert Giusti, Kenneth Hullett, and Jim Whitehead. Weapon design
patterns in shooter games. In Proceedings of the First Workshop on
Design Patterns in Games, page 3. ACM, 2012.

[9] Christian Güttler and Troels Degn Johansson. Spatial principles of level-
design in multi-player first-person shooters. In Proceedings of the 2Nd
Workshop on Network and System Support for Games, NetGames ’03,
pages 158–170, New York, NY, USA, 2003. ACM.

[10] Erin J. Hastings, Ratan K. Guha, , and Kenneth O. Stanley. Automatic
content generation in the galactic arms race video game. IEEE Trans-
actions on Computational Intelligence and AI in Games, 4(1):245–263,
2009.

[11] Kenneth Hullett and Jim Whitehead. Design patterns in fps levels. In
FDG ’10: Proceedings of the Fifth International Conference on the
Foundations of Digital Games, pages 78–85, New York, NY, USA, 2010.
ACM.

[12] Kenneth M. Hullett. The Science of Level Design: Design Patterns and
Analysis of Player Behavior in First-person Shooter Levels. PhD thesis,
Santa Cruz, CA, USA, 2012. AAI3540841.

[13] Raph Koster. Theory of Fun for Game Design. PARAGLYPH PRESS,
2005.

[14] Pier Luca Lanzi, Daniele Loiacono, and Riccardo Stucchi. Evolving
maps for match balancing in first person shooters. In 2014 IEEE
Conference on Computational Intelligence and Games, CIG 2014,
Dortmund, Germany, August 26-29, 2014, pages 1–8. IEEE, 2014.

[15] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. Towards
a generic method of evaluating game levels. In Proceedings of the
Ninth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE’13, pages 30–36. AAAI Press, 2014.

[16] D. Loiacono, L. Cardamone, and P. L. Lanzi. Automatic track generation
for high-end racing games using evolutionary computation. Computa-
tional Intelligence and AI in Games, IEEE Transactions on, 3(3):245
–259, sept. 2011.

[17] Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013.
Available for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[18] P. T. Ølsted, B. Ma, and S. Risi. Interactive evolution of levels for a
competitive multiplayer fps. In 2015 IEEE Congress on Evolutionary
Computation (CEC), pages 1527–1534, May 2015.

[19] Chris Pedersen, Julian Togelius, and Georgios N. Yannakakis. Optimiza-
tion of platform game levels for player experience. In Christian Darken
and G. Michael Youngblood, editors, AIIDE. The AAAI Press, 2009.

[20] Sebastian Risi, Joel Lehman, David B. D’Ambrosio, Ryan Hall, and
Kenneth O. Stanley. Combining search-based procedural content gener-
ation and social gaming in the petalz video game. In Mark Riedl and
Gita Sukthankar, editors, AIIDE. The AAAI Press, 2012.

[21] Noor Shaker, Georgios N. Yannakakis, and Julian Togelius. Towards
automatic personalized content generation for platform games. In
G. Michael Youngblood and Vadim Bulitko, editors, AIIDE. The AAAI
Press, 2010.

[22] Maral Tajerian. Fight or flight: The neuroscience of survival horror.
http://www.gamasutra.com/view/feature/172168/, 2012.

[23] J. Togelius, R. De Nardi, and S.M. Lucas. Towards automatic person-
alised content creation for racing games. In Proc. IEEE Symposium
on Computational Intelligence and Games CIG 2007, pages 252–259,
2007.

[24] Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing, Johan
Hagelbäck, and Georgios N. Yannakakis. Multiobjective exploration of
the starcraft map space. In Proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG), pages 265–272, 2010.

[25] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne. Search-based procedural content generation. In
Proceedings of EvoApplications, volume 6024. Springer LNCS, 2010.


