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Warning: this is not the final camera-ready version. Ab-

stract—We investigate the impact of supervised prediction models
on the strength and efficiency of artificial agents that use the
Monte-Carlo Tree Search (MCTS) algorithm to play a popular
video game Hearthstone: Heroes of Warcraft. We overview our
custom implementation of the MCTS that is well-suited for
games with partially hidden information and random effects.
We also describe experiments which we designed to quantify
the performance of our Hearthstone agent’s decision making.
We show that even simple neural networks can be trained and
successfully used for the evaluation of game states. Moreover,
we demonstrate that by providing a guidance to the game state
search heuristic, it is possible to substantially improve the win
rate, and at the same time reduce the required computations.

Index Terms—MCTS, Hearthstone, machine learning, neural
networks, heuristic

I. INTRODUCTION

Hearthstone: Heroes of Warcraft is a free-to-play online

video game developed and published by Blizzard Entertain-

ment. Its simple rules and appealing design made this game

successful among casual players. According to Blizzard’s data,

in 2017 the player-base of the game was about 70 million

and it grows with each of the released expansions. The game

is also popular within the eSport community, with cash-prize

tournaments and many international events every year.

Hearthstone is an example of a turn-based collectible card

game. During the game, two players choose their hero with a

unique power and compose a deck of thirty cards. They spend

mana points to cast spells, weapons and summon minions to

attack the opponent, with the goal to reduce the opponent’s

health to zero or below. Due to a large number of distinct

cards which implement various game mechanics, and spe-

cial in-game effects which often have randomized outcomes,

Hearthstone is an example of a game where actions may have

non-deterministic results. Moreover, during a game each player

is unaware of cards that the opponent holds in hand, nor the

ordering of yet-to-be-drawn cards in his deck. Finally, since a

player may perform several actions in each turn of the game

and ordering of those actions is pivotal to player’s success,

Hearthstone features great combinatoric complexity. All the
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above properties make Hearthstone a demanding challenge for

AI-controlled bots that are designed to play this game. One

objective of this article is to explain how our implementation

of the Monte Carlo Tree Search (MCTS) algorithm deals with

those problems. We also aim to discuss the means by which

MCTS can be facilitated by machine learning algorithms and

provide experimental evaluation of its performance.

The paper is organized as follows. In the next section, we

continue with providing context of the research and show

related initiatives. In Section III, the MCTS algorithm is dis-

cussed with the focus on problems encountered in Hearthstone

such as randomness, hidden information and combinatorial

complexity. We also shed some light on the game simulator

used for this research. The subsequent section is devoted to

methods of combining MCTS with machine-learning-based

heuristics. Finally, the last two sections contain a description

of empirical experiments which we conducted to evaluate our

Hearthstone agents and conclusions, respectively.

II. RELATED WORK

In recent years, Hearthstone has become a testbed for AI

research. A community of passionate players and developers

have started the HearthSim project (https://hearthsim.info/)

and created several applications that allow simulating the game

for the purpose of AI and machine learning experiments. A

few spin-offs of that project, e.g. HearthPWN and MetaStats,

provide tools for the players, which facilitate gathering data

from their games. These portals obtain and aggregate users’

data, such as game results, deck compositions, card usage

statistics and provide this information to the community.

Several groups of researchers from the field of machine

learning and AI have already chosen Hearthstone for their

studies. In [1], authors used evolutionary algorithms to tackle

the problem of building good decks. They used the results

of simulated games performed by simple AI bots as fitness

function values. Even though this study was described by

the authors as preliminary, the developed method was able to

construct reasonable decks from a basic set of cards. However,

one drawback of this method is the fact that it strongly depends

on the performance of the AI bots used for the evaluation of

the decks.

A few research groups were also considering a problem

of constructing an artificial agent able to play Hearthstone.

http://arxiv.org/abs/1808.04794v1
https://hearthsim.info/
http://www.hearthpwn.com/
http://metastats.net/


In particular, [2] used Monte-Carlo Tree Search (MCTS)

algorithm to choose an optimal action policy in the game.

Furthermore, [3] used deep neural networks to improve per-

formance of a MCTS-based Hearthstone bot, called Silverfish.

The combination of MCTS with prediction models make those

approaches similar to early versions of DeepMind’s AlphaGo

program [4]. It is worth noticing, however, that unlike Go,

in Hearthstone players do not have full information about the

game state and many actions have non-deterministic outcomes.

These two properties make this game much more challenging

for the game state tree search algorithms, such as MCTS [5].

There were also attempts at constructing models for pre-

dicting cards that are likely to be played by an opponent

during a game. For instance, in [6] the author used data from

45,000 Hearthstone games to extract sequences of played cards

and represent each record as a bag of card bi-grams. By in-

vestigating co-occurrence probabilities, the method described

in that study was able to correctly predict opponent’s card

which will most likely appear during the following turns of

the game, in over 50% of cases. Such a high predictability

can be explained by the fact that even though the number

of possible Hearthstone decks is enormous, players tend to

build their decks in accordance to certain archetypes and their

composition is often inspired by the decks used by other

influential players.

Hearthstone was also a topic of international data mining

competitions. The first one, AAIA’17 Data Mining Challenge:

Helping AI to Play Hearthstone1, was focused on developing

a scoring model for predicting win chances of a player, based

on detailed description of a single game state [7]. Although the

data in this competition was generated using very simple bots

which were choosing their moves at random, the best models

created by participants were able to achieve AUC scores

above 0.80. The winner used an ensemble of 1-dimensional

convolutional neural networks to extract features from each

combination of both players’ cards on the board [8]. A year

later, the second edition of this challenge was launched. The

task in AAIA’18 Data Mining Challenge was to predict win-

rates of Hearthstone decks, based on a history of match-ups

between AI bots playing with similar decks.

Various other card games were also studied in the literature

related to machine learning and AI. For instance, in [9] authors

consider heads-up no-limit poker as an example of a game

with hidden information. They describe a DeepStack algorithm

which aims to handle the information asymmetry between

players by combining recursive reasoning with learning from

self-played games. As a different example one can give the

game Magic: The Gathering, studied, e.g. in [10]. Due to

the notable similarity to Hearthstone, these games pose many

similar challenges. In our work, however, we focus only on

Hearthstone. The growing interest of the machine learning

community in applications related to video games stems from

the fact that solutions to many game-related problems could be

1Competition’s web page: https://knowledgepit.fedcsis.org/contest/view.php?id=120

easily transfered to real-life issues, such as planning [11], real-

time decision making [12], [13] and, ultimately, general AI.

III. PLAYING HEARTHSTONE WITH MONTE-CARLO TREE

SEARCH

A. Game Simulator

The access to a game simulator allows game-playing agents

to perform dynamic reasoning about the game. The idea is to

run separate simulations that do not affect the actual (main)

state of the played game. This is a reason why a simulator is

often called a “forward model” as it enables forward planning.

Its performance, i.e., how many states it can visit per second,

is crucial for all methods that are based on searching the space

of the game such as MCTS, min-max or MTD(f). Therefore,

we have written a simulator for Hearthstone with the aim of

achieving the highest run-time performance. The main features

of our simulator are: (1) written entirely in C++ for high-

performance, (2) it performs 10K full games per second, in

average, and 30K when limiting to basic cards only, (4) makes

big use of inheritance and polymorphism (e.g., Secret : Spell

: Card), (5) effects such as hero powers are modeled as (non-

collectible) cards, (6) the total number of implemented cards =

483, (7) the implemented cards allow for making staple decks

from the standard meta-game.

The simulator calculates legal moves in each state of the

game, updates the state after a move is chosen, tests whether

the game reached a terminal state and calculates scores in a

finished game. States and actions are comparable and hashable.

We have divided complex game actions into atomic simple

actions, e.g., when the “SI-7 Agent” card is played, up to

three simple actions are generated: (1) Choose a card from

your hand (SI-7 Agent), (2) Choose a target on the battle-field,

where the minion is about to be placed, (3) Choose a target

for the battle-cry: deal 2 damage, provided that the required

combo condition was met. Similarly, an attack move consists

of two simple actions - choosing a character, which will attack

and choosing a target to attack.

B. Monte Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [14] has become the

state-of-the-art algorithm for game tree search. It is the algo-

rithm to go in domains such as Go [15], Hex [16], Arimaa [17],

General Game Playing (GGP) [18] or General Video Game

Playing (GVGP) [19]. This technique is a natural candidate

for universal domains such as GGP or GVGP, because given

only the way (interface) to simulate games, the same imple-

mentation of MCTS will work for any game. It has also been

increasingly successful in board games such as Settlers of

Catan [20] or 7 Wonders [21].

In essence, the MCTS is a combination of three ideas:

storing statistics in the game tree, random sampling by means

of simulations to gather statistics and the Upper Confidence

Bounds method to select nodes based on the statistics gath-

ered so far. The Upper Confidence Bounds applied to Trees

(UCT) addresses the exploitation-exploration problem and it

https://knowledgepit.fedcsis.org/contest/view.php?id=120


is a generalization of the Upper Confidence Bounds (UCB-1)

method. The UCT formula is as follows:

a∗ = arg max
a∈A(s)

{

Q(s, a) + C

√

ln [N(s)]

N(s, a)

}

(1)

where A(s) is a set of actions available in state s, Q(s, a)
denotes the average result of playing action a in state s in

the simulations performed so far, N(s) - a number of times

state s has been visited in previous simulations and N(s, a) -

a number of times action a has been sampled in this state in

previous simulations. Constant C controls the balance between

exploration and exploitation. It has to be tuned, but provided

that scores of games are confined to the [0, 1] interval, the

sensible starting value is
√
2.

The algorithm typically consists of four phases: selection,

expansion, simulation and backpropagation. Algorithms (1)

and (2) describe the usage of these phases.

(1) Selection. Traverse the nodes, that are already stored in

the tree. At each level, the next node is chosen according to

the selection policy - the UCT method, by default.

(2) Expansion. A certain number of new nodes is added

to the tree. In the classical MCTS variant, only one node is

added by each iteration, which is a good trade-off between the

algorithm’s efficiency and memory usage.

(3) Simulation. Starting from the last visited state in the

tree, play (simulate) the game till the end. No nodes are

added to the tree in this phase. Actions for each player are

chosen randomly, however, there are extensions of the MCTS

algorithm that introduce heuristics in the simulation. This

phase is also called “Monte-Carlo phase”.

(4) Back-propagation. Starting from the last visited node

in the tree, which is the one the simulation started from, all

the way up to the root node, update the Q(s, a) values based

on the result of the simulation.
1) Handling Imperfect Information: The majority of suc-

cessful applications of the MCTS algorithm have been done in

the realm of perfect information games, i.e., games in which

each player has complete information about the current state

of the game. Games with hidden information have been proven

to be difficult for any combinatorial method such as game-tree

search. There have been many variants and extensions to the

MCTS proposed to deal with imperfect information. However,

they can be clustered into two types of approaches:

1) Perfect Information Monte Carlo Tree Search

(PIMC) - this method determines (guesses) all infor-

mation that is hidden and, from that point, treats the

game as perfect information one. Variants of PIMC

differ in the way how many distinct determinizations

they perform and how the knowledge obtained from

running the algorithm with different determinizations is

combined. The two major problems related to PIMC [22]

are strategy fusion and nonlocality [23].

2) Information Set Monte Carlo Tree Search (ISM-

CTS) [23] - this variant uses the concept of information

sets, which are abstract groups of states that are indis-

tinguishable from a particular player’s perspective. In

ISMCTS, a node in the game tree is associated with

an information set rather than a single state. There-

fore, the decisions of a player are made based upon

what the player actually observes. ISMCTS is much

less susceptible to the problems of strategy fusion and

nonlocality. However, ISMCTS is typically much harder

to implement as it requires to simulate games under

imperfect information or deal with partially observable

moves.

We propose an algorithm, which is a combination of

ISMCTS and PIMC. From the first concept, we borrow

the idea of information sets. However, they are not used to

simulate games under hidden information. Instead, they serve

as keys in the so-called transposition table. The transposition

tables are a way to model the “game-tree” without duplicated

nodes, which would occur if there is more than one way to

reach the same state. The “tree” effectively then becomes a

directed acyclic graph (DAG). Transposition tables are also

often used to combine symmetric states in order to reuse

calculations. In the transposition table we used, the values

are nodes and there is a unique key-value mapping between

information sets and nodes. Each node contains a hashmap

of edges with key being a player’s move. Each edge contains

the statistics of the particular move and a pointer to the next

node as observed in the current iteration of MCTS. The next

node pointer might vary in subsequent iterations if the same

move can have multiple outcomes (non-determinism) and thus

lead to various information sets. From the PIMC concept,

we borrow the idea of determinizations. At the beginning

of each MCTS iteration, a copy of a hidden information

state is determined into a perfect information state. This

is not to be confused with information set. The default

solution to determinization is to sample the state randomly

among possible legal states. However, when generating games

for machine learning experiments, we used the “cheater”

approach that can determinize the correct state. Such an

approach is often used in teaching sessions. In particular, in

card games, human experts teach beginners how to play with

open cards. In our case, the justification is that the “cheater”

allows for generating stronger games quicker.

In our implementation, there are two interfaces for the

concept of the game state:

Game state for simulations (GS) - this is the only interface

used to apply the logic of the game such as determining legal

moves, applying moves, checking whether the game has ended

or getting the result of the game. This interface is used both in

the selection and simulation phases. However, in the selection,

the other interface (information sets) is used as well.

Information Set Game state for statistics (IS) - this is

an abstraction of a state with possible hidden information. It

represents all kind of information, based on which a player will

take actions. The idea is to use only a subset of the simulation

game state in order to group states. Such a separate interface

not only allows for ignoring hidden information but also for



reducing the resolution of the state. For instance, states that

are similar in terms of some arbitrary measure can be grouped

together. The information sets in our approach are plain data

storage objects. The only methods the IS interface contains are

hash and equals, what enables efficient equality comparisons.

After the GS has been determined, the selection phase starts

from the root node. In each visited node during that phase,

the set of currently legal moves is computed and intersected

with the set of all moves observed in the node so far. Each

move is associated with an edge. Active edges are the ones

that correspond to moves that are currently available. The

active edges are scored according to the selection formula

(c.f. Equation 1) and the best scored edge is chosen. Next,

the GS interface is used to apply the selected edge’s move

and compute the resulting state. This state is then used to

generate an information set. We call this process capturing

the information set and the GS requires an implementation of

the capture() method that returns the IS from a given player’s

perspective. The perspective is decided based on which player

is active in the current state. Once the IS is created, it is used

to query the transposition table for the next node to traverse.

If no such node exists, it is added to the transposition table

with the key equal to the current IS and the selection phase is

terminated. The selection phase is repeated for the next node

until the termination condition (a node visited for the first time)

is not satisfied. Because nodes are matched with information

sets, this statistics of actions performed within the same IS

are clustered together. Moreover, this allows to significantly

reduce the combinatorial size of the game tree in comparison

with using regular game states as nodes. When the selection

phase ends, the last seen GS is passed to the simulation phase

as the starting state. The result of a simulation is propagated

to all edges chosen in the selection phase.

Algorithm 1 Pseudocode of the main MCTS loop.

The simulation method starts from the movingState and

performs a quasi-random simulation and returns the result of

the game. It can be replaced by another evaluation procedure

as discussed later in the paper.

1: procedure ITERATE(state)

2: rootNode← createRoot(state)

3: node← rootNode ⊲ current node

4: while elapsedT ime < allotedT ime do

5: movingState← determinize(state)

6: while mcts.selection 6= finished do

7: if movingState.terminal 6= true then

8: node← node.select(movingState)
9: end if

10: end while

11: propagate(simulation(movingState))

12: end while

13: end procedure

2) Handling Randomness: Non-determinism in games can

quickly increase the combinatorial complexity to enormous

levels. For example, there are 5.36 ∗ 1028 different deals

Algorithm 2 Pseudocode of the inner MCTS loop. The

findOrCreate method accepts an information set and returns

the corresponding node from the transposition table.

1: procedure NODE.SELECT(movingState)

2: moves← movingState.getMoves()
3: currentEdges← []
4: for each move in moves do

5: edge← allEdges[move]
6: if edge not found then

7: edge← new edge(move)
8: allEdges[move]← edge

9: end if

10: edge.N ← +1 ⊲ incr. observed count

11: currentEdges.push(edge)
12: end for

13: chosenEdge← selection(currentEdges) ⊲ UCT

14: chosenMove← chosenEdge.getMove()
15: chosenEdge.V ← +1 ⊲ incr. visit count

16: if chosenEdge.V == 1 then

17: mcts.selection← finished

18: end if

19: movingState.apply(chosenMove)
20: is← capture(movingState) ⊲ create IS

21: tt← mcts.getT ranspositionTable()
22: chosenEdge.nextNode← tt.f indOrCreate(is)
23: return chosenEdge.nextNode

24: end procedure

possible in the game of Bridge. Randomness is also prevalent

in Hearthstone, with effects such as “discover a random spell”

or “deal from X to Y damage”. Each unique random outcome

would most likely result in a different state, and therefore,

would require its own node in the tree.

The novelty of our MCTS implementation is complete

exclusion of nature moves. This makes the game modeling

and simulating significantly easier using our library. Actions

may include any non-determinism. This is possible, because

we do not store game-states directly in the tree as results

of actions. As shown on Algorithm (2), each time a move

is played, we compute the resulting state dynamically,

even if the move has been already sampled in previous

iterations. The resulting state is used to create the information

set, which then is used to fetch the next node to visit. In

consequence, statistics of moves are averaged according to the

probability distribution of various random effects. If a move is

good in average, the score will be high and it will be chosen

more frequently in the selection phase of the MCTS algorithm.

3) Handling Combinatorial Explosion: We have already

introduced the idea of the separation of “virtual game states”

modeled as Information Sets and the regular game states for

simulations. This allowed us to gather statistics in a much

more coarse-grained representation of state-space. However,

the combinatorial complexity of the game is still very high

due to the number of possible attacks, the fact that attacks can



be done in chosen order and the options to intertwine playing

cards between the attacks. The authors of [24] have calculated

that, in the pessimistic case, there are approximately 1010

possible ways of performing the attacks. Quite often, however,

lots of permutations of attacks will result in the same state in

the end and there is no need to examine all of them. To tackle

this problem, we have developed the so-called “board solver”

- a heuristic that generates a sequence of attack actions in

a given state. In general, the heuristic first checks if it can

kill the opponent in one turn and does it if possible. If not,

the heuristic will check whether the opponent is likely to

win during their next turn and if so, the attacks will focus

on killing the most threatening opponent minions. If no of

these cases appear, the heuristic will score all possible single

attacks based on the gain − loss of the board potential. A

single attack is a pair (attacker, defender). In Hearthstone,

there are at most 8 attackers and 8 defenders, so, in the

pessimistic case, 64 scores need to be calculated. The attacks

are applied in a greedy fashion, i.e., the best scored attack

is applied first (if possible), next the second best and the

process continues until there are no more legal attacks. An

application of an attack may render some of the following

attacks illegal, for example when they use an attacker that

has already attacked or defender that has already been killed.

The heuristic for attacks is used as an artificial action in the

game: “use solver”. The MCTS is allowed to choose this

action at any point during the turn, but only once per turn.

Once the action is chosen, the attack moves are generated

and applied, to there will not be any attacks move anymore

during the turn for the minions that are already on the board.

4) Interfacing heuristics with MCTS: The MCTS algorithm

is quite powerful on its own, but it can still benefit from

domain-specific optimizations. It has been proven that, in more

complex games such as Go [4] with huge branching factor and

delayed rewards of taking actions, the vanilla method needs

to be enhanced by some form of heuristics.

This weakness has motivated us to combine this algorithm

with heuristics represented by prediction models. Such pre-

diction models can be trained to either predict the outcome of

the game by looking at a potential next state (candidate state)

of the game or at a potential action (candidate action). In the

scope of this paper, we will use the terms “machine learning

prediction models” and “heuristic evaluation” interchangeably.

There is a couple of ways to combine external heuristics

with the MCTS algorithm. The authors of paper [25] give

a nice review of four common methods: Tree Policy Bias,

Simulation Policy Bias, Early Cutoff and Move Ordering. We

use the first three of them:

(1) Tree Policy Bias - here the heuristic evaluation function

is included together with the Q(s, a) in the UCT formula (see

Eq. 1) or its equivalent. A typical implementation of this idea

is called Progressive Bias [26], in which the standard UCT

evaluation is linearly combined with the heuristic evaluation

with the weight proportional to the number of simulations.

The more simulations are performed, the more statistical

confidence, and therefore, the higher weight is assigned to

the standard UCT formula.

(2) Simulation Policy Bias - here the heuristic values affect

probabilities of certain actions in the simulation phase to make

simulated players stronger and, therefore, each simulation a

better approximation of a potential future game. The two most

common implementations are pseudo-roulette selection with

probabilities computed using Boltzmann distribution (where

the heuristic evaluation is used) or the so-called epsilon-greedy

approach [27]. In the latter, the action with the highest heuristic

evaluation is chosen with the probability of ǫ or a random one

with the probability of 1− ǫ.

(3) Early Cutoff - terminate the simulation earlier (e.g.,

with some probability or at fixed depth) and return the heuristic

evaluation of the last reached state instead of the terminal one.

In [25], this enhancement is reported to achieve the best results

among the tested methods.

The aforementioned AlphaGo program employs both, Tree

Policy Bias and Simulation Policy Bias. Motivated by its suc-

cess, we decided to apply a similar approach for Hearthstone.

IV. AUGMENTING MCTS WITH MACHINE LEARNING

The state of the art implementations of MCTS, such as

AlphaZero, use deep neural networks for providing heuristic

evaluations of states and actions. Two main approaches are

used – so called value network is a deep neural network that

provides the predictions of a game outcome given a state of the

game. The predictions are usually provided as scores which

can be interpreted as probabilities of winning the game by each

player. Such predictions may be used by MCTS to foresee an

outcome of a playout without simulating it until the terminal

state, or even to entirely replace the simulation phase. A policy

network is another type of a neural network that given the state

of a game provides values of each action available in that state.

Policy network may thus provide information about which

actions should be chosen in a state. As shown in [4], [28],

the use of value and policy network heuristics significantly

improves the performance of MCTS methods, enabling them

to beat humans in very complex games.

In our solution we will focus on the value network heuristic

for Hearthstone. We will use an iterative approach to neural

network training, which uses large amount of hearthstone

games, generated by self-playing bots.

A. Game-state vectorization with embeddings

Heuristic functions for evaluating game states require a

vectorized representation of the state. It is common to use

hand-crafted attributes to represent particular aspects of the

state and then, using some weighted combination of those

attributes, derive a value representing the utility of a state.

While this approach works for games such as chess, it may be

difficult to engineer such attributes for much more complex

games such as Go or Hearthstone. As we use deep learning

methods for obtaining heuristic functions, it is possible to

represent Hearthstone states by large vectors composed of

values of low-level features such as: attributes of each minion



on the board (HP, attack, taunt, charge etc.), attributes of

each player (HP, weapons, mana, hero type, etc.), attributes

of cards in hand (type, mana cost, etc.) and general attributes

(turn number, cards in deck, etc.). Moreover, as most cards

in Hearthstone have custom descriptions that define special

effects, it is necessary to extend the vectors by meaningful

representations of particular cards.

One way to represent the cards in a relatively low-

dimensional vector space is by using a word2vec model [29]

to learn the embeddings from cards’ textual descriptions.

It can be done either by aggregating vector representations

of words from the texts or by training a paragraph vector

model [30], where each paragraph corresponds to a single

card. Since descriptions of Hearthstone cards are relatively

short and use a limited vocabulary, it is expected that a

dimensionality of our embeddings should be much lower than

in other common applications of the word2vec model. We

experimentally checked that using more than 16 dimensions

brings negligible improvements, and thus we used embedding

size 10 in our further experiments. To learn the embeddings,

we used the skip-gram model implemented in TensorFlow.

Apart from the embedding size, standard parameter values

were used, i.e. context size was set to 10 and the batch size was

256. The model was trained for 300 epochs using a stochastic

gradient descent optimizer, with a learning rate 0.1, decreased

by a factor of 10−1 after every 100 epochs.

In our final solution, we used a vectorizer that had 750

elements, including all low-level features for both players and

utilized embeddings to represent all cards and minions.

B. State evaluation with value network

Our state evaluation heuristic uses a fully connected neural

network for providing the win probabilities of each player. The

network consists of three dense layers with 256, 128 and 64

neurons respectively and uses tanh activation function. The

input is a vector of size 750 (as described in the previous

section), while the output consists of two neurons with a

softmax activation. The network thus solves a classification

task: given a state predict the winner.

The training data for the network is generated by recording

games played between bots. During a simulation, the state

of the game is vectorized to vector ~S at each step, and the

final score of the game is stored as a two-element vector:

~score = [p1score, p2score]. Next, the vectorized states are

sampled randomly with some probability p and pairs [~S, ~score]
are added to the training dataset. Random sampling is required,

as consecutive states are highly correlated. Finally the network

is trained to provide score given a state vector. We used ADAM

optimizer with learning rate = 0.001

Value networks are trained to predict scores of games

that were played with different decks as well as from the

perspective of any of the two players. However, the accuracy of

the predictions are better if there are separate networks trained

for particular decks and even for particular player positions

(first or second player).

In our preliminary tests we created a dataset with over 3.5M

samples from games played by strong MCTS bots (cheater

MCTS with 1 second per move) playing with 400 different

decks. The network were trained to predict outcomes of the

games played with any of the available decks and for any of

the players. The accuracy of the value network trained using

this dataset was evaluated on a separate validation set and

reached 0.76.

We have used the trained value network for early termina-

tion of random simulations. The termination was done after

the last move of a player in turn, but not earlier than after

k=20 steps. After termination, the statistics in MCTS tree were

updated with probabilities of winning obtained from the value

network.

C. Iterative learning - mastering Hearthstone

To further improve the performance of our solution, we have

prepared an environment for continuous, iterated learning of

our machine learning models. The main idea is that MCTS

with a heuristic may be used to generate games of progres-

sively better quality. Those games may then be used to create

more accurate heuristics, which may be used to generate games

of even better quality. This process may be repeated many

times for better optimization of the heuristics.

In our approach to iterative learning, we have started with

plain MCTS to generate over 20000 games. Next, those games

were used to generate an initial dataset consisting of randomly

selected states and corresponding scores. Models for value

networks were trained and used to generate the next version

of the bot. Then, in each iteration, the bot played 3000 games,

from which new state-score pairs were sampled and added to

the training dataset. The training dataset length was clipped to

1M samples, so that after a few iterations older samples were

removed and most recent samples were appended as in a FIFO

buffer. The state-score pairs were sampled with probability

p = 0.5. In each iteration, value networks were retrained from

scratch using 80% of the training dataset. Remaining 20% was

used for validation of the network.

Using iterated learning, we were able to achieve an accuracy

of 0.775 for the first player and 0.794 for the second player,

when training for one type of deck only. In the next section

we describe in details the performance of particular bots.

V. EXPERIMENTS

We have conducted a series of experiments to measure the

skill of various Hearthstone bots based on MCTS and different

heuristics. Due to the high complexity of Hearthstone, mainly

caused by the large number of possible decks and the impact

of random effects on the game outcome, we have restricted our

test cases to only two decks: ZooWarlock and CubeWarlock.

Moreover, we have fixed the positions of both players, so that

ZooWarlock deck was always played by the first player, while

CubeWarlock by the second.

In order to obtain the best possible version of the value

network, we have run iterative training for 64 iterations. Next,

we have created a hearthstone bot for each version of the



TABLE I: Evaluation results - 0.5 second per move

P1
P1

wins
P2

wins
P1

win %
P2

win %
P2

mcts 735 265 73,5% 26,5% mcts

mctsVS 500 0 100,0% random
mctsVS 391 108 78,4% mcts
mctsV 410 90 82,0% mcts
mctsS 395 105 79,0% mcts

random 0 500 100,0% mctsVS
mcts 219 280 56,1% mctsVS
mcts 249 251 50,2% mctsV
mcts 266 234 46,8% mctsS

TABLE II: Evaluation results - 1 second per move

P1
P1

wins
P2

wins
P1

win %
P2

win %
P2

mcts 705 294 70,6% 29,4% mcts

mctsVS 500 0 100,0% random
mctsVS 364 135 72,9% mcts
mctsV 380 120 76,0% mcts
mctsS 358 143 71,6% mcts

random 0 500 100,0% mctsVS
mcts 224 276 55,2% mctsVS
mcts 220 279 55,9% mctsV
mcts 263 236 47,3% mctsS

value network obtained during the iterative learning. Finally,

we have used 64 versions of the bot to play over 50k matches

between themselves and assigned a glicko2 rating [31] to each

bot. Based on the glicko2 rating, we have selected the best bot,

and thus the best value network, for the first and second player

(obtained from 21st and 33rd iteration respectively).

For our final evaluation, we have compared plain MCTS

(denoted by mcts) with two different heuristics: a) previously

selected, best value networks from iterative learning - denoted

by V; b) board solver described in section III-B3 - denoted

by S. We have measured the impact of the value network,

board solver and both of those combined together. Each con-

figuration of the bot was used to play 500 games against plain

MCTS bot. Moreover, we have also compared our solution

with a randomly playing bot. To have a baseline for the

performance, a 500-game match between only plain MCTS

bots was played as well. The games were played with two

time limits per move used by MCTS: 0.5 and 1.0 second. The

results are presented in tables I and II. The strength of each

bot is measured by the percentages of won games.

The baseline win-rates are 73.5% for the first player and

26.5% for the second in case of 0.5 second per move time

limit. Increasing the time limit improves the strength of the

second player, resulting in win-rates 70.6% for the first player

and 29.4% for the second. The evaluation results show that

each heuristic has a noticeable impact on the strength of the

bot. As the first player has already a high win-rate, adding

heuristics improves the win-rate by up to 9 percentage points.

However, in case of the second player, adding heuristics may

TABLE III: A summary of results obtained in games between AI
agents and human opponents.

P1
P1

wins
P2

wins
P1

win %
P2

win %
P2

Regular 7 7 50% mctsVS-1s
Legend 12 9 43% mctsVS-1s
mctsVS-1s 9 6 60% Regular
mctsVS-1s 3 15 17% Legend

even double the win-rate.

It is important to note here that the type of deck used has

a huge impact on the strength of the bot. The deck used by

the first player has an aggressive, but fairly straightforward,

style of play. The deck used by the second player, has on the

other hand, a lot of complex strategies and needs to be played

carefully; yet used by a skillful player, it has a much greater

winning potential compared to the first deck. This fact may

help to understand why the strength of the second player is

increased so dramatically when using well-crafted heuristics.

Moreover, heuristics provide a larger advantage, when play-

ing with lower time per move limit as MCTS performs a fewer

number of iterations. A combination of a value network and

board solver, when only 0.5 seconds per move are available

for the MCTS to perform simulations, provide the greatest

boost to the bot’s strength. With 1 second per move available,

the difference between using only value network and the

combination of value network and board solver is minimal.

Finally, we have arranged matches between a few hearth-

stone players and our bot. The results are presented in table

III. Games were played by two regular players (Hearthstone

rank > 15, which is held by approx. 75% players) and two

players with a Legendary rank (the best one with less than

0.5% of players).

VI. CONCLUSIONS

In this paper, a fully-fledged approach to constructing a

Hearthstone playing bot was presented. Some novel features

of the approach include modification of the MCTS algorithm

to handle randomness without explicitly defined nature moves,

a combination of the PIMC and ISMCTS methods to tackle

imperfect information, and a heuristic solver for calculating

attacks in Monte Carlo simulations. In addition, we designed

and conducted machine learning experiments aimed at learning

game state evaluation functions. Finally, an iterative learning

loop aimed at creating the “ultimate bot” was proposed.

We can conclude that the resulting agent is likely to be

among the strongest Hearthstone bots at the moment. Although

Hearthstone has become a testbed for AI, there has not been

yet proposed any universal benchmarking methods, so it is dif-

ficult to assess the strength other than by human observation,

self-play between various versions of the agent or a random

player. However, in all cases, the proposed solution shows

its upper hand. The bot is able to win, with an impressive

consistency, 100% games against the random player. It is also

capable of winning games against Legend rank players, which



alone can be regarded as very promising. The human players

reported that in many situations they felt the bot played really

well. Finally, we have shown the progressive improvement of

the bot’s skills by sparing it against previous versions. We

designated two decks for this experiment, but the approach

can be generalized for any number of decks easily, e.g., as an

ensemble that chooses the right model (or even blends a few

of them) for the deck on the fly.

In order to benchmark our agent against other Hearth-

stone bots, we plan to submit it to the 2018 Hearthstone

AI Competition held under the CIG (Computational In-

telligence in Games) conference. Our submission to this

competition will differ with the approach described in this

paper in several details. It will work with the Sabber-

Stone (https://github.com/HearthSim/SabberStone) simulation

engine as this is the official engine to be used during the com-

petition. This simulator is only able to simulate approximately

200 games per second, on a modern high-end consumer PC,

whereas our simulator performs 10000 games, on average.

Because of this fact, we choose to limit the depth of the Monte

Carlo simulations to the end of a single turn. At the end of

the turn, the state evaluation function powered by machine

learning will be used. We hope that the solutions adopted

for the CIG competition will help us in designing even more

cunning artificial Hearthstone agent, and as a consequence,

move us one step further in the pursuit of the Grail of video

games – smarter and challenging AI.
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