

Analysis of Self-Adaptive Monte Carlo Tree Search in
General Video Game Playing
Citation for published version (APA):

Sironi, C. F., & Winands, M. H. M. (2018). Analysis of Self-Adaptive Monte Carlo Tree Search in General
Video Game Playing. In 2018 IEEE Conference on Computational Intelligence and Games (pp. 397-400).
IEEE. https://doi.org/10.1109/CIG.2018.8490402

Document status and date:
Published: 01/08/2018

DOI:
10.1109/CIG.2018.8490402

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 25 Apr. 2024

https://doi.org/10.1109/CIG.2018.8490402
https://doi.org/10.1109/CIG.2018.8490402
https://cris.maastrichtuniversity.nl/en/publications/91a699d3-b5b6-4a8b-8bf5-b78702d85ae0

Analysis of Self-Adaptive Monte Carlo Tree Search
in General Video Game Playing

Chiara F. Sironi and Mark H. M. Winands
Games & AI Group, Department of Data Science and Knowledge Engineering

Maastricht University, Maastricht, The Netherlands
{c.sironi, m.winands}@maastrichtuniversity.nl

Abstract—A purpose of General Video Game Playing (GVGP)
is to create agents capable of playing many different real-
time video games. Instead of using a fixed general strategy, a
challenging aspect is devising strategies that adapt the search
to each video game being played. Recent work showed that on-
line parameter tuning can be used to adapt Monte-Carlo Tree
Search (MCTS) in real-time. This paper extends prior work on
Self-adaptive Monte-Carlo Tree Search (SA-MCTS) by further
testing one of the previously proposed on-line parameter tuning
strategies, based on the N-Tuple Bandit Evolutionary Algorithm
(NTBEA). Results show that, both for a simple and a more
advanced MCTS agent, on-line parameter tuning has impact on
performance only for a few GVGP games. Moreover, an informed
strategy as NTBEA shows a significant performance increase only
in one case. In a real-time domain as GVGP, advanced parameter
tuning does not seem very promising. Randomizing pre-selected
parameters for each simulation appears to be a robust approach.

Index Terms—Monte-Carlo tree search, self-adaptive search,
general video game playing, on-line parameter tuning

I. INTRODUCTION

In GVGP [1] there is the need to devise general search
approaches able to deal in real-time with many heteroge-
neous video games. Moreover, such approaches cannot exploit
game-specific and prior knowledge. MCTS with its variations
and enhancements [2] is one of the most commonly used
techniques in GVGP. MCTS is often controlled by many
parameters and the best parameter settings vary across games.
A problem when using MCTS in GVGP is that parameters
cannot be tuned in advance for the game at hand and have to
be set to values that are generally good (i.e. perform overall
well on a reference set of games, possibly heterogeneous).

Recently, methods to tune search parameters on-line have
been investigated. Sironi and Winands [3] propose on-line
parameter tuning for General Game Playing and show that
on-line tuned agents almost reach the same performance of
off-line tuned agents. Sironi et al. [4] apply on-line parameter
tuning to obtain a Self-adaptive MCTS (SA-MCTS) strategy
for GVGP and show that, when SA-MCTS is implemented
in the SAMPLEMCTS agent of the General Video Game AI
framework (GVGAI) the win rate in a few games is increased.

This paper extends prior work on SA-MCTS. It considers
one of the allocation strategies that performed best in [4],
the one based on the N-Tuple Bandit Evolutionary Algorithm
(NTBEA). This is compared with a less informed allocation
strategy based on a Multi-Armed Bandit (MAB) and with
a random allocation strategy. These allocation strategies are

tested both on a simple and a more advanced MCTS agent.
The effect of increasing the search budget is also investigated.

The paper is structured as follows. Section II describes
the SA-MCTS approach and the tested allocation strategies.
Section III discusses the results obtained by the experiments.
Conclusion and future work are presented in Section IV.

II. SELF-ADAPTIVE MONTE-CARLO TREE SEARCH

This section describes how parameters can be tuned on-
line to obtain a self-adaptive behavior of the search. Subsec-
tion II-A describes how on-line parameter tuning is integrated
with MCTS, while Subsection II-B describes three strategies
that decide how to allocate the available samples to evaluate
different parameter value combinations.

A. Integration of On-line Parameter Tuning with MCTS

Figure 1 gives an overview of SA-MCTS. The central box
shows the four phases of standard MCTS: selection, expansion,
play-out and backpropagation. To tune parameters on-line two
more phases are added to the search: (i) an initial phase where
an allocation strategy chooses which combination of parameter
values will control the next simulation, and (ii) a final phase
where the reward obtained by the simulation is used to update
statistics about the chosen combination of parameters.

B. Allocation Strategies

An allocation strategy decides how to allocate the available
samples to the feasible parameter values that need to be eval-
uated. This section describes the three considered allocation
strategies: Random, Multi-Armed Bandit (MAB) [5], and N-
Tuple Bandit Evolutionary Algorithm (NTBEA) [6].

1) Random: before each MCTS simulation this allocation
strategy selects a parameter combination uniformly at random
from a set of manually pre-selected feasible values. This means
that it does not need to collect any statistics about the per-
formance of the combinations. This study includes a random
strategy to verify how the other more informed allocation
strategies would compare to one that uses no information
collected on-line to select parameter values. Note that by pre-
selecting the set of values we are still giving information to
the strategy, and its performance will depend on how good
these values are.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18

������������	
��

��������� 	
������ �������� ���������

�����������	

��
����	���������	�

�
���
�������
��

����	
��	
���	����

�
���������	�����
��

���������	

��
���� ���

������	�

���������

����

���
���������

�
	���������

������������
��

�������

��	�
�������

�������������

����������

���
���������������	�

��������������������	���

�����������	�����

��
�����
��������

�������������	

��
����	�		����

����������	�����

��
�����
�� �	
����

��

���� ���
���	�

Tuner Tuner Tuner Tuner TunerTuner

MCTS

Fig. 1. Interleaving on-line tuning with MCTS

2) MAB: this allocation strategy considers the problem as
a Multi-Armed Bandit [5], where each arm corresponds to one
of the combinations of parameter values. Before each simu-
lation a combination of parameter values ~p ∗ = 〈p1, ..., pd〉 is
selected with UCB1 as follows:

~p ∗ = argmax
~p∈P

{
Q(~p) + CMAB ×

√
lnN

N~p

}
.

Here, P is the set of all combinations of parameters, Q(~p) is
the average reward obtained by all simulations controlled by
combination ~p (normalized in [0, 1]), CMAB is the exploration
constant, N is the total number of simulations performed so
far, and N~p is the number of simulations performed so far
that were controlled by the parameter combination ~p. When
selecting the combination that maximizes the UCB1 value,
unexplored combinations are assigned a predefined value fpu
(i.e. first play urgency). For the experiments presented in
Section III CMAB is set to 0.7 and fpu is set to 1.0.

A limitation of this strategy is that it ignores the combina-
torial structure of the search space. When choosing parameter
values, it does not consider that good values in a combination
might be good in general or in other combinations.

3) NTBEA: this allocation strategy is based on the algo-
rithm proposed by Lucas et al. [6]. Two main components
of NTBEA can be distinguished: an evolutionary algorithm,
and an N-Tuple fitness landscape model (LModel). The evo-
lutionary algorithm considers each combination of parameters
as an individual and each single parameter as a gene. It starts
with a randomly generated parameter combination and evolves
it over time using statistics collected in LModel (e.g. average
reward and number of visits of tuples of parameters) to decide
which combination should be evaluated next. More precisely,
the evolutionary algorithm repeats the following steps:

1) Use the current combination ~p to control an MCTS
simulation.

2) Use the reward obtained by the MCTS simulation to
update the statistics for parameter tuples in LModel.

3) Generate x neighbors of ~p, each by mutating the value
of a randomly selected parameter in ~p.

4) Evaluate each of the x neighbors using LModel to
compute an estimate of their UCB1 value.

5) Set the neighbor with the highest estimated UCB1 value
as the current combination.

More details on how to use LModel to compute the estimate
of the UCB1 values can be found in [6]. For the experiments
presented in Section III x is set to 5 and the exploration
constant CNTBEA used to compute UCB1 values is set to 0.7.

III. EXPERIMENTS

This section presents an analysis of SA-MCTS under dif-
ferent conditions. Subsection III-A describes the experimental
setup and Subsection III-B reports and analyses the results.

A. Setup

SA-MCTS is evaluated in the single-player track of the GV-
GAI framework [1]. The allocation strategies tune feasible pre-
selected parameters on-line for the following MCTS agents:
• SAMPLEMCTS: the MCTS agent provided in the

framework. This agent implements a simple version
of MCTS that uses UCB1 as selection strategy and a
random play-out strategy. For this agent we tune the
UCB1 exploration constant C with values in {0.6, 0.7,
0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0},
and the maximum search depth D with values in
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. When this
agent is not tuned on-line it uses the following fixed
parameter setting: C = 1.4, D = 10.

• MAASTCTS2: the winner of the 2016 GVGAI Single-
Player Planing Championship [7]. It implements MCTS
with UCB1 selection strategy and a series of enhance-
ments, among which the use of Progressive History in
the selection strategy and the N-Gram Selection Tech-
nique (NST) as play-out strategy. For this agent we
tune the UCB1 exploration constant C with values
in {0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0},

the Progressive History weight W with values in
{0.1, 0.25, 0.5, 1, 3, 5, 7.5, 10, 20, 50}, the NST proba-
bility of playing a random action ε with values
in {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, the
minimum number of visits for an N-gram to be con-
sidered in the computation K with values in {1, 3, 5,
7, 10, 15, 20, 30, 50}, and the maximum used N-gram
length N with values in {1, 2, 3, 4, 5}. When this agent
is not tuned on-line it uses the following fixed parameter
setting: C = 0.6, W = 1, ε = 0.5, K = 7, N = 3.

All agents do not keep any knowledge between game runs,
so both the game tree built by MCTS and the parameter
statistics collected by the allocation strategies are reset.

Four series of experiments were performed. The first series
of experiments tests the SAMPLEMCTS agent with fixed
parameter values, and three SAMPLEMCTS agents with values
tuned on-line by each of the allocation strategies. The game
tick is set to 40ms as in the GVGAI competition, and the
agents are tested on 20 single-player games. The second
series of experiments tests the MAASTCTS2 agent with fixed
parameter values, and three MAASTCTS2 agents with values
tuned on-line by each of the allocation strategies. The game
tick is set to 40ms and the agents are tested on the same
20 single-player games. The third series of experiments is the
same as the second, but the game tick is set to 100ms and
only 10 of the initial 20 games are used. Games for which
MAASTCTS2 is performing close to 100% are excluded.
Only games for which there is more room for improvement
when given more search time are kept. The fourth series
of experiments tests the performance of SAMPLEMCTS and
MAASTCTS2 when their parameters are set to fixed values
expected to be sub-optimal for the games. These values are
C = 0, D = 1 for SAMPLEMCTS, and C = 0, W = 0,
ε = 0, K =∞, N = 1 for MAASTCTS2.

Results presented below always report the win percentage of
the agent with 95% confidence interval. The win percentage is
computed by playing all 5 levels of each game for 100 times,
obtaining a total of 500 samples per game per agent.

B. Results

Tables I, II, III and IV show results obtained with the first,
second, third and fourth series of experiments, respectively.

What is more interesting to observe for the first two series
of experiments is that the random strategy seems to achieve
in most of the games the same performance as the agent with
fixed parameters. In addition, for almost all the games neither
the MAB nor the NTBEA allocation strategy seem to perform
better than the random strategy.

A combination of three factors might explain these results.
Firstly, the manually constructed sets of parameter values
might be mostly reasonable for all the games and might not
contain particularly bad values. This means that for games
for which the fixed parameter settings are sub-optimal, ran-
domization will instead be able to control most of the search
with optimal values. This is probably what happens in Table I
for Chase and Crossfire, for which SAMPLEMCTS with the

TABLE I
WIN PERCENTAGE OF SAMPLEMCTS WITH FIXED PARAMETERS AND
SAMPLEMCTS WITH PARAMETERS TUNED ON-LINE BY EACH OF THE

ALLOCATION STRATEGIES. GAME TICK IS SET TO 40ms

Game SAMPLEMCTS
Fixed parameters Random MAB NTBEA

Aliens 100.0(±0.00) 100.0(±0.00) 99.6(±0.55) 100.0(±0.00)
Bait 6.6(±2.18) 8.0(±2.38) 7.6(±2.33) 6.8(±2.21)

Butterflies 95.2(±1.88) 94.4(±2.02) 95.2(±1.88) 95.6(±1.80)
CamelRace 4.2(±1.76) 5.6(±2.02) 5.8(±2.05) 3.8(±1.68)

Chase 3.2(±1.54) 6.6(±2.18) 6.6(±2.18) 6.2(±2.12)
Chopper 91.4(±2.46) 86.2(±3.03) 86.0(±3.04) 89.2(±2.72)
Crossfire 4.2(±1.76) 8.8(±2.49) 8.6(±2.46) 14.2(±3.06)
DigDug 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)
Escape 0.2(±0.39) 0.8(±0.78) 4.2(±1.76) 0.2(±0.39)

HungryBirds 5.4(±1.98) 4.6(±1.84) 5.6(±2.02) 4.4(±1.80)
Infection 97.0(±1.50) 97.6(±1.34) 98.0(±1.23) 97.8(±1.29)

Intersection 100.0(±0.00) 100.0(±0.00) 100.0(±0.00) 100.0(±0.00)
Lemmings 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

MissileCommand 60.4(±4.29) 63.0(±4.24) 61.6(±4.27) 60.0(±4.30)
Modality 27.0(±3.90) 27.0(±3.90) 27.4(±3.91) 28.2(±3.95)

PlaqueAttack 91.8(±2.41) 93.4(±2.18) 87.6(±2.89) 92.8(±2.27)
Roguelike 0.0(±0.00) 0.0(±0.00) 0.2(±0.39) 0.0(±0.00)
SeaQuest 55.0(±4.37) 50.4(±4.39) 49.6(±4.39) 51.6(±4.38)

SurviveZombies 41.0(±4.32) 42.6(±4.34) 37.6(±4.25) 42.2(±4.33)
WaitForBreakfast 15.4(±3.17) 17.6(±3.34) 15.8(±3.20) 13.2(±2.97)

Avg Win% 39.9(±0.96) 40.3(±0.96) 39.9(±0.96) 40.3(±0.96)

TABLE II
WIN PERCENTAGE OF MAASTCTS2 WITH FIXED PARAMETERS AND
MAASTCTS2 WITH PARAMETERS TUNED ON-LINE BY EACH OF THE

ALLOCATION STRATEGIES. GAME TICK IS SET TO 40ms

Game MAASTCTS2
Fixed parameters Random MAB NTBEA

Aliens 100.0(±0.00) 100.0(±0.00) 99.6(±0.55) 100.0(±0.00)
Bait 31.8(±4.09) 30.4(±4.04) 22.0(±3.63) 31.6(±4.08)

Butterflies 98.6(±1.03) 99.2(±0.78) 99.4(±0.68) 100.0(±0.00)
CamelRace 44.4(±4.36) 41.0(±4.32) 39.2(±4.28) 42.4(±4.34)

Chase 28.0(±3.94) 30.4(±4.04) 20.2(±3.52) 26.8(±3.89)
Chopper 99.8(±0.39) 99.8(±0.39) 99.6(±0.55) 99.6(±0.55)
Crossfire 31.8(±4.09) 27.4(±3.91) 17.2(±3.31) 28.4(±3.96)
DigDug 1.6(±1.10) 1.2(±0.96) 1.8(±1.17) 1.2(±0.96)
Escape 93.4(±2.18) 94.6(±1.98) 80.4(±3.48) 92.2(±2.35)

HungryBirds 100.0(±0.00) 100.0(±0.00) 100.0(±0.00) 100.0(±0.00)
Infection 100.0(±0.00) 99.8(±0.39) 99.8(±0.39) 100.0(±0.00)

Intersection 100.0(±0.00) 100.0(±0.00) 100.0(±0.00) 100.0(±0.00)
Lemmings 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

MissileCommand 96.8(±1.54) 96.6(±1.59) 92.6(±2.30) 94.6(±1.98)
Modality 25.6(±3.83) 24.6(±3.78) 32.0(±4.09) 41.0(±4.32)

PlaqueAttack 94.8(±1.95) 95.0(±1.91) 94.2(±2.05) 95.8(±1.76)
Roguelike 4.6(±1.84) 4.8(±1.88) 0.8(±0.78) 3.2(±1.54)
SeaQuest 58.4(±4.32) 53.6(±4.38) 53.8(±4.37) 54.6(±4.37)

SurviveZombies 42.4(±4.34) 42.8(±4.34) 38.2(±4.26) 40.8(±4.31)
WaitForBreakfast 99.0(±0.87) 98.4(±1.10) 98.0(±1.23) 98.0(±1.23)

Avg Win% 62.6(±0.95) 62.0(±0.95) 59.4(±0.96) 62.5(±0.95)

random allocation strategy seems to have a better performance
than SAMPLEMCTS with fixed parameters. Secondly, the
number of simulations that the agents can perform might be
too small (usually a few dozen of simulations per tick, with
a 40ms tick duration). A small number of simulation might
have two implications: (i) the allocation strategies cannot find
optimal values early enough in the game to make a difference
in the performance, and (ii) even if there are sub-optimal
values among the feasible ones, the number of simulations
controlled by them is not high enough to be detrimental.
Thirdly, the continuous change of parameter values selected by
the allocation strategies, especially by the random one, might
cause more diversity in the simulations. A more diversified
search might actually be beneficial to tackle GVGP games.

From the third series of experiments (Table III) we can see
that a longer search time significantly increases the perfor-
mance of MAASTCTS2 in many of the games. With more
search time there are a few games (Bait, Chase and Survive
Zombies) for which the performance of the agent tuned with
the random strategy seems to decrease. Also the overall per-
formance of the agent tuned with MAB seems inferior to the
other agents, as we would expect. The MAB allocation strategy

TABLE III
WIN PERCENTAGE OF MAASTCTS2 WITH FIXED PARAMETERS AND
MAASTCTS2 WITH PARAMETERS TUNED ON-LINE BY EACH OF THE

ALLOCATION STRATEGIES. GAME TICK IS SET TO 100ms

Game MAASTCTS2
Fixed parameters Random MAB NTBEA

Bait 51.8(±4.38) 40.4(±4.31) 31.2(±4.07) 36.6(±4.23)
CamelRace 95.8(±1.76) 92.2(±2.35) 85.4(±3.10) 90.8(±2.54)

Chase 56.2(±4.35) 50.4(±4.39) 43.0(±4.34) 51.6(±4.38)
Crossfire 84.8(±3.15) 83.2(±3.28) 68.2(±4.09) 81.8(±3.39)
DigDug 0.0(±0.00) 0.2(±0.39) 0.4(±0.55) 0.0(±0.00)

Lemmings 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)
Modality 26.2(±3.86) 25.6(±3.83) 38.8(±4.28) 40.4(±4.31)
Roguelike 32.6(±4.11) 30.6(±4.04) 28.4(±3.96) 32.0(±4.09)
SeaQuest 58.6(±4.32) 56.0(±4.36) 61.8(±4.26) 56.2(±4.35)

SurviveZombies 49.0(±4.39) 46.0(±4.37) 44.8(±4.36) 45.4(±4.37)

Avg Win% 45.5(±1.38) 42.5(±1.37) 40.2(±1.36) 43.5(±1.37)

suffers from the high overhead of computing the UCB1 value
for all parameter combinations before each simulation, and in
addition does not exploit information about the combinatorial
structure of the parameter space. However, even if we increase
the search time to 100ms, the results are still in line with what
is observed for 40ms. The random allocation strategy is still
quite robust, and MAB and NTBEA do not seem much better.

Over all the first three series of experiments, it is still
interesting to notice that there are a few games for which
on-line parameter tuning seems beneficial. For the SAMPLEM-
CTS agent, on-line tuning with NTBEA significantly increases
the performance in Crossfire, and on-line tuning with MAB
significantly increases the performance in Escape (Table I).
Moreover, for the MAASTCTS2 agent the performance in
Modality is significantly increased by NTBEA when using
40ms per tick (Table II), and by both NTBEA and MAB
when using 100ms per tick III. This suggest that the allocation
strategies that make informed decisions have the potential to
be useful even when decisions have to be made fast.

The fourth series of experiments (Table IV) seems to con-
firm that on-line parameter adaptation (whether randomly or
with an informed strategy) might still have some benefits. We
can see that the sub-optimal values for these experiments cause
a decrease in performance for many of the games if compared
with the fixed values used in previous experiments. Neverthe-
less, there are games for which the performance is higher (if
not the highest over all experiments), like Crossfire, Escape
and Wait For Breakfast for SAMPLEMCTS, and Modality for
MAASTCTS2. This suggests that for those games the fixed
values used in the first three series of experiments were non-
optimal. Moreover, some good values for those games might
have been left out of the pre-selected sets of values.

IV. CONCLUSION AND FUTURE WORK

This paper extended the analysis of SA-MCTS in GVGP by
testing on-line parameter tuning both on a simple and a more
advanced MCTS agent. The effect of increasing the search
time has also been evaluated. In addition, the performance
of NTBEA, one of the allocation strategies that performed
best in previous work on on-line parameter tuning, has been
compared with a less informed allocation strategy (MAB) and
a completely random allocation strategy.

Given the obtained results, we may conclude that the use of
on-line parameter tuning might be more suitable for domains

TABLE IV
WIN PERCENTAGE OF SAMPLEMCTS AND MAASTCTS2 WITH

SUB-OPTIMAL FIXED PARAMETER VALUES. GAME TICK IS SET TO 40ms

Game SAMPLEMCTSSUB MAASTCTS2SUB
Aliens 67.0(±4.13) 100.0(±0.00)
Bait 6.0(±2.08) 23.2(±3.70)

Butterflies 66.8(±4.13) 98.8(±0.96)
CamelRace 3.0(±1.50) 32.0(±4.09)

Chase 3.6(±1.63) 29.0(±3.98)
Chopper 0.0(±0.00) 98.4(±1.10)
Crossfire 10.2(±2.66) 20.2(±3.52)
DigDug 0.0(±0.00) 1.0(±0.87)
Escape 29.6(±4.01) 92.4(±2.33)

HungryBirds 1.8(±1.17) 99.4(±0.68)
Infection 95.0(±1.91) 100.0(±0.00)

Intersection 100.0(±0.00) 100.0(±0.00)
Lemmings 0.0(±0.00) 0.0(±0.00)

MissileCommand 32.4(±4.11) 94.2(±2.05)
Modality 17.0(±3.30) 47.0(±4.38)

PlaqueAttack 24.6(±3.78) 88.0(±2.85)
Roguelike 0.0(±0.00) 1.6(±1.10)
SeaQuest 25.0(±3.80) 58.8(±4.32)

SurviveZombies 27.4(±3.91) 36.6(±4.23)
WaitForBreakfast 58.2(±4.33) 84.8(±3.15)

Avg Win% 28.4(±0.88) 60.3(±0.96)

where a higher number of simulations can be reached, or
for domains that are more sensitive to changes in the search
parameter values. Moreover, we may conclude that in a real-
time context like GVGP, randomization of parameter values
usually gives a robust setting for a small number of parameters,
especially if we pre-select small sets of feasible values.

For future work it would be interesting to see if increasing
time constraints to achieve a few thousands simulations per
tick would make a difference. It would also be interesting to
investigate other ways of on-line self-adaptation of the search
that do not necessarily involve changing search parameters.

ACKNOWLEDGMENT

This work is funded by the Netherlands Organisation for
Scientific Research (NWO) in the framework of the project
GoGeneral, grant number 612.001.121.

REFERENCES

[1] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Couëtoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 general
video game playing competition,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 8, no. 3, pp. 229–243, 2016.

[2] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of Monte Carlo tree search methods,” Computational Intelligence
and AI in Games, IEEE Transactions on, vol. 4, no. 1, pp. 1–43, 2012.

[3] C. F. Sironi and M. H. M. Winands, “On-line parameter tuning for Monte-
Carlo tree search in general game playing,” in Workshop on Computer
Games. Springer, 2017, pp. 75–95.

[4] C. F. Sironi, J. Liu, D. Perez-Liebana, R. D. Gaina, I. Bravi, S. M. Lucas,
and M. H. M. Winands, “Self-adaptive MCTS for general video game
playing,” in Applications of Evolutionary Computation. EvoApplications
2018, ser. Lecture Notes in Computer Science, K. Sim and P. Kaufmann,
Eds., vol. 10784. Springer, 2018, pp. 358–375.

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[6] S. M. Lucas, J. Liu, and D. Perez-Liebana, “The n-tuple bandit
evolutionary algorithm for game agent optimisation,” arXiv preprint
arXiv:1802.05991, 2018.

[7] D. J. N. J. Soemers, C. F. Sironi, T. Schuster, and M. H. M. Winands,
“Enhancements for real-time Monte-Carlo tree search in general video
game playing,” in Computational Intelligence and Games (CIG), 2016
IEEE Conference on. IEEE, 2016, pp. 1–8.

